research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [IrCl2(NHCHPh)((dppm)(C(N2dppm))-κ3P,C,P′)]Cl·5.5MeCN and [IrI(NHCHPh)(((dppm)C(N2))-κ2P,C)(dppm-κ2P,P′)]I(I3)·0.5I2·MeOH·0.5CH2Cl2: triazene fragmentation in a PCN pincer iridium complex

CROSSMARK_Color_square_no_text.svg

aInstitute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
*Correspondence e-mail: gabriel.partl@uibk.ac.at

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 December 2018; accepted 3 January 2019; online 8 January 2019)

The structure of [IrCl2(C58H51N3P4)]Cl·5.5CH3CN or [IrCl2(NHCHPh)(((dppm)C(N2dppm))-κ3P,C,P)]Cl·5.5CH3CN [3, dppm = bis­(di­phenyl­phos­phino)methane; systematic name: di­chlorido(1,1,3,3,7,7,9,9-octa­phenyl-4,5-di­aza-1,3λ5,7λ4,9-tetra­phosphanona-3,5-dien-6-yl-κ2P1,P9)­(phenyl­methanimine-κN)iridium(III) chloride aceto­nitrile hemihendeca­solvate], resulting from an oxygen-mediated cleavage of a triazeneyl­idene­phospho­rane ligand producing a diazo­methyl­ene­phospho­rane and a nitrene moiety, which in turn rearrange via a Staudinger reaction and a 1,2-hydride shift to the first title complex, involves a six-coordinate IrIII complex cation coordinated by a facial PCP pincer ligand, a benzaldimine and two chlorido ligands. The pincer system features a five- and a seven-membered ring, with the central divalent carbon of the PCP pincer ligand being connected to a phosphine and a diazo­phospho­rane. The chlorido ligands are positioned trans to the central carbon atom and to the phospho­rus donor of the seven-membered ring of the pincer system, respectively. A chloride ion serves as counter-ion for the monocationic complex. The structure of [IrI(C26H22N2P2)(C26H22P2)(C6H7N)]I(I3)·0.5I2·CH3OH·0.5CH2Cl2 or [IrI(NHCHPh)((dppm)C(N2)-κ2P,C)(dppm-κ2P,P′)]I(I3)·0.5I2·CH3OH·0.5CH2Cl2 {4, systematic name: (4-diazo-1,1,3,3,-tetra­phenyl-1,3λ4-diphosphabutan-4-yl-κP1)iodido[methyl­enebis(di­phenyl­phosphine)-κ2P,P′](phenyl­methanimine-κN)iridium(III) iodide–triiodide–di­chloro­methane–iodine–methanol (2/2/1/1/2)}, accessed via treatment of the triazeneyl­idene­phospho­rane complex [Ir((BnN3)C(dppm)-κ3P,C,N)(dppm-κ2P,P′)]Cl with hydro­iodic acid, consists of a dicationic six-coordinate IrIII complex, coordinated by a bidentate diazo­methyl­ene­phospho­rane, a benzaldimine, a chelating dppm moiety and an iodido ligand. The phospho­rus atoms of the chelating dppm are trans to the central carbon atom of the diazo­methyl­ene­phospho­rane and the iodide ligand, respectively. Both an iodide and a triiodide moiety function as counter-ions. The aceto­nitrile solvent mol­ecules in 3 are severely disordered in position and occupation. In 4, the I3 anion is positionally disordered (ratio roughly 1:1), as is the I anion with a ratio of 9:1. The di­chloro­methane solvent mol­ecule lies near a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. Another disorder occurs for the solvent methanol with a 1:1 ratio.

1. Chemical context

A peculiarity of triazenes is that their N—N bonds are comparatively easily cleaved. This may result, other than N2 extrusion reactions, in diazo­nium and quaternary ammonium moieties, in diazo compounds and amines (Baumgarten, 1967[Baumgarten, R. J. (1967). J. Org. Chem. 32, 484-485.]; Schroen & Bräse, 2005[Schroen, M. & Bräse, S. (2005). Tetrahedron, 61, 12186-12192.]), or in diazo compounds and amides (Myers & Raines, 2009[Myers, E. L. & Raines, R. T. (2009). Angew. Chem. Int. Ed. 48, 2359-2363.]) depending on the triazene substitution pattern. By taking advantage of their reactivity, the transformation of organic azides into diazo compounds via triazene inter­mediates has developed into a broad synthetic route to diazo compounds (Myers & Raines, 2009[Myers, E. L. & Raines, R. T. (2009). Angew. Chem. Int. Ed. 48, 2359-2363.]).

[Scheme 1]

In this contribution, we describe the fragmentation of a triazene into diazo and nitrene parts in the coordination sphere of iridium. Recently, we reported on the synthesis of [Ir((4-Cl-C6H4N3)C(dppm)-κ3P,C,N)(dppm-κ2P,P′)]Cl via treatment of [Ir(Cl)(H)(MeCN)(C(dppm)2-κ3P,C,P)] (1) with 1-azido-4-chloro­benzene under an inert atmosphere (Partl et al., 2019[Partl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2019). Acta Cryst. E75, 75-80.]). The triazeneyl­idene­phospho­rane (4-Cl-C6H4N3)C(dppm) unit of this compound is generated via substitution of one phosphine moiety of the carbodi­phospho­rane (CDP) C(dppm)2 of 1 for the organic azide. This substitution reaction results in the formation of a labile IrI inter­mediate, whose coordination sphere features the PCN pincer ligand (4-Cl-C6H4N3)C(dppm) and a monodentate dppm (Partl et al., 2019[Partl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2019). Acta Cryst. E75, 75-80.]). Analogously, a related inter­mediate and product (2) are created by using benzyl azide, rather than 1-azido-4-chloro­benzene, under an inert atmosphere.

When the inter­mediate (in the case of benzyl azide) is brought into contact with air, pale-yellow crystals of compound 3 separate within a few hours. It contains a novel PCP pincer system involving one seven- and one five-membered ring. The difference to the PCP pincer ligand of the starting complex 1 is that the pincer of 3 has an N2 moiety inserted into one P—C bond of the CDP functionality of C(dppm)2. Regarding the reaction mechanism, we propose that first, the IrI center of the inter­mediate is oxidized by atmospheric oxygen. This is presumably followed by a homolytic cleavage of the N2—N3 bond (numbering according to the crystal structure of 3) of (BnN3)C(dppm), producing the diazo­methyl­ene­phospho­rane (dppm)C(N2) involving N1 and N2, and a benzyl­nitrene moiety containing N3.

Via an intra­molecular Staudinger reaction (Staudinger & Meyer, 1919a[Staudinger, H. & Meyer, I. (1919a). Helv. Chim. Acta, 2, 619-635.],b[Staudinger, H. & Meyer, I. (1919b). Helv. Chim. Acta, 2, 635-646.]) of the diazo functionality of (dppm)C(N2) with the pendent phosphine of the monodentate dppm ligand, the phosphazine (dppm)C(N2dppm) is formed and subsequently acts as PCP pincer ligand. In this ligand, the central divalent carbon (Petz & Frenking, 2010[Petz, W. & Frenking, G. (2010). Topics in Organometallic Chemistry, vol. 30, edited by R. Chauvin & Y. Canac, pp. 49-92. Berlin, Heidelberg: Springer.]) of (dppm)C(N2dppm) connects to one tertiary phosphine of the dppm unit, and to a diazo­phospho­rane (Murahashi et al., 2005[Murahashi, T., Clough, C. R., Figueroa, J. S. & Cummins, C. C. (2005). Angew. Chem. Int. Ed. 44, 2560-2563.]). The benzyl­nitrene undergoes a 1,2-hydride shift, thus producing a benzaldimine moiety that remains in the coord­in­ation sphere of iridium. In this context, it is very noteworthy that the scission of the N1—N2 bond occurs in the course of the aforementioned transformation of organic azides into diazo compounds via triazenes (Myers & Raines, 2009[Myers, E. L. & Raines, R. T. (2009). Angew. Chem. Int. Ed. 48, 2359-2363.]).

In a related fragmentation reaction, compound 4 was obtained through treatment of [Ir((BnN3)C(dppm)-κ3P,C,N)(dppm-κ2P,P′)]Cl (2) with hydro­iodic acid. It is apparent that a rupture of the N1—N2 bond (numbering as in the structure of 4) of (BnN3)C(dppm) occurred again, resulting in the formation of a diazo­methyl­ene­phospho­rane (dppm)C(N2) and a benzyl­nitrene part. However, in this case, the diazo functionality remains unchanged, since in contrast to the formation of 3, no free phosphine functionality is available. The benzyl­nitrene unit again undergoes a 1,2-hydride shift and, as a benzaldimine, coordinates to the Ir metal center.

The resonance structures of diazo compounds include ylene and ylide structures, as is the case for phospho­rus ylides. The diazo­methyl­ene­phospho­rane (dppm)C(N2) moiety contains a central divalent carbon (Petz & Frenking, 2010[Petz, W. & Frenking, G. (2010). Topics in Organometallic Chemistry, vol. 30, edited by R. Chauvin & Y. Canac, pp. 49-92. Berlin, Heidelberg: Springer.]), to which a phosphine and an N2 donor are formally attached and which may be considered as a mixed double ylide (Petz & Frenking, 2010[Petz, W. & Frenking, G. (2010). Topics in Organometallic Chemistry, vol. 30, edited by R. Chauvin & Y. Canac, pp. 49-92. Berlin, Heidelberg: Springer.]). Related compounds of the type C(PX(NMe2)2)(N2), X = Cl, Br, were obtained by addition of CX4 to P((NMe2)2)(CH(N2)) (Sotiropoulos et al., 1987[Sotiropoulos, J.-M., Baceiredo, A. & Bertrand, G. (1987). J. Am. Chem. Soc. 109, 4711-4712.]).

2. Structural commentary

The structure of 3 (Fig. 1[link]) shows a six-coordinate monocationic IrIII complex and one chloride counter-ion. The asymmetric unit contains one formula unit and 5.5 mol­ecules of MeCN. Selected bond lengths and bond angles of 3 are given in Table 1[link]. The most significant intra­molecular inter­actions are listed in Table 2[link]. The iridium center is coordinated by the facial PCP pincer system, which involves one seven-membered IrC(N2dppm) ring and one five-membered IrC(dppm) ring. A benzaldimine ligand is positioned trans to the phospho­rus donor of the five-membered ring, the remaining two coordination sites being occupied by chlorido ligands cis to each other. The deviations of the angles C1—Ir1—Cl1 = 170.06 (13)° and N3—Ir1—P1 = 169.02 (11)° from a regular octa­hedral geometry indicate some strain in the pincer system. Both the N1—C1 bond length [1.280 (5) Å] and the N1—N2 bond length [1.445 (5) Å] are typical for a C=N double bond and an N—N single bond, respectively. The P3—N2 bond length [1.586 (4) Å] is in the range of P=N double bonds observed for imino­phospho­ranes (Ireland et al., 2010[Ireland, B. J., Wheaton, C. A. & Hayes, P. G. (2010). Organometallics, 29, 1079-1084.]; Peng et al., 2011[Peng, X., Yuan, Y. & Chen, X. (2011). Acta Cryst. E67, o2683.]; Sun et al., 2011[Sun, H., Ritch, J. S. & Hayes, P. G. (2011). Inorg. Chem. 50, 8063-8072.]). Corresponding bond lengths in other phosphazene systems exhibit values of 1.62–1.64 Å for P—N, 1.36–1.39 Å for N—N and 1.31 Å for C—N. (Bethell et al., 1992[Bethell, D., Brown, M. P., Harding, M. M., Herbert, C. A., Khodaei, M. M., Rios, M. I. & Woolstencroft, K. (1992). Acta Cryst. B48, 683-687.]; Supurgibekov et al., 2011[Supurgibekov, M. B., Zakharova, V. M., Sieler, J. & Nikolaev, V. A. (2011). Tetrahedron Lett. 52, 341-345.]; Galina et al., 2013[Galina, Yu. P., Lobov, A. N., Sultanova, R. M., Spirikhin, L. V., Dokichev, V. A. & Suponitsky, K. Yu. (2013). J. Struct. Chem. 54, 468-470.]; Nikolaev et al., 2016[Nikolaev, V. A., Cantillo, D., Kappe, C. O., Medvedev, J. J., Prakash, G. K. & Supurgibekov, M. B. (2016). Chem. Eur. J. 22, 174-184.]). The P2—C1 bond length [1.836 (4) Å] indicates a single bond. The environment around C1 is strictly planar (sum of the angles amounts to 359.7°). Examination of the C4—N3 bond length within the benzaldimine ligand [1.270 (6) Å] indicates a double bond and is almost identical to that observed in compound 4 [1.267 (8) Å] and a previously reported iridium benzaldimine complex [1.260 (6) Å] involving a phospho­rus donor atom trans to the benzaldimine nitro­gen donor (Albertin et al., 2008[Albertin, G., Antoniutti, S., Baldan, D., Castro, J. & Garcia-Fontán, S. (2008). Inorg. Chem. 47, 742-748.]). The most striking intra­molecular inter­action of 3 is the hydrogen bond N3—H3N⋯N2 [H⋯A 2.15 (5) Å, D—H⋯A 138 (4)°], while other intra­molecular inter­actions involve atoms N1 and Cl1 and the various phenyl rings (Table 2[link]).

Table 1
Selected bond distances (Å) and angles (°) for compounds 3 and 4

3   4  
Ir1—C1 2.044 (4) Ir1—C1 2.150 (6)
Ir1—N3 2.077 (4) Ir1—N1 2.107 (5)
Ir1—P1 2.3090 (12) Ir1—P1 2.3468 (16)
Ir1—P4 2.3151 (11) Ir1—P4 2.3241 (15)
Ir1—Cl1 2.4595 (12) Ir1—P3 2.3536 (15)
Ir1—Cl2 2.4094 (11) Ir1—I1 2.7206 (5)
P2—C1 1.837 (4) P2—C1 1.753 (6)
N1—C1 1.280 (5) N3—C1 1.305 (9)
N1—N2 1.445 (5) N2—N3 1.095 (9)
N3—C4 1.270 (6) N1—C4 1.267 (8)
P3—N2 1.586 (4)    
       
N3—Ir1—P1 169.02 (11) N1—Ir1—P1 170.93 (14)
P4—Ir1—Cl2 176.55 (4) P4—Ir1—I1 165.12 (4)
C1—Ir1—Cl1 170.06 (13) C1—Ir1—P3 170.90 (18)
C1—Ir1—P1 86.06 (12) C1—Ir1—P1 84.37 (17)
       
N1—C1—Ir1 134.2 (3) P4—Ir1—P3 70.80 (5)
N1—C1—P2 109.1 (3) N3—C1—P2 114.8 (5)
P2—C1—Ir1 116.4 (2) N3—C1—Ir1 121.4 (5)
N1—N2—P3 110.3 (3) P2—C1—Ir1 122.9 (3)
C1—N1—N2 117.5 (3) N2—N3—C1 175.8 (7)

Table 2
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2 0.82 (5) 2.15 (5) 2.807 (6) 138 (4)
C208—H208⋯N1 0.93 2.41 3.088 (7) 130
C402—H402⋯N3 0.93 2.56 3.120 (6) 119
C102—H102⋯Cl1 0.93 2.71 3.329 (5) 125
C402—H402⋯Cl1 0.93 2.66 3.428 (5) 140
C412—H412⋯Cl1 0.93 2.60 3.440 (5) 151
C3—H3A⋯Cl3 0.97 2.63 3.563 (5) 162
C105—H105⋯Cl3i 0.93 2.69 3.586 (7) 162
C408—H408⋯Cl3 0.93 2.82 3.533 (6) 134
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the cation of compound 3, with displacement ellipsoids drawn at the 30% probability level and atom labelling. Only the ipso carbon atoms of the dppm phenyl groups are shown, and solvate mol­ecules have been omitted for clarity.

The structure of 4 (Fig. 2[link]) consists of a six-coordinate dicationic IrIII complex, one iodide and one triiodide counter-ion. The asymmetric unit contains one half mol­ecule of di­chloro­methane and iodine and one mol­ecule of methanol. Selected bond lengths and angles of 4 are summarized in Table 1[link]. The most significant intra­molecular inter­actions are listed in Table 3[link]. The iridium center is coordinated by the bidentate ligand (dppm)C(N2), which forms a five-membered chelate ring via one C and one P donor atom. A four-membered ring is formed by a bidentate dppm ligand and is oriented perpendicular to the plane of the five-membered ring with one phospho­rus donor trans to the carbon donor of the five-membered ring. The benzaldimine ligand is located trans to the phospho­rus donor of the five-membered ring, the sixth coordination site is occupied by an iodido ligand. Deviations from the octa­hedral symmetry around the Ir center are mainly due to the strained four-membered ring [P4—Ir1—P3 = 70.80 (5)°] with consequences for the bond angles P4—Ir1–I1 [165.12 (4)°] and C1—Ir1—P3 [170.90 (17)°]. The C1—Ir1—P1 bond angle of the five-membered ring is 84.37 (17)°. The environment around the ylidic carbon C1 is trigonal planar, with the bond angle N3—C1—P2 exhibiting the largest deviation from a regular symmetry [114.8 (5)°]. Both the N3—N2 [1.095 (9) Å] and the N3—C1 [1.305 (9) Å] bond lengths are slightly shorter, compared to the corresponding mean values of ten previously reported structures of diazo compounds [1.121 and 1.323 Å, respectively; Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])]. The P2—C1 bond length [1.753 (6) Å] is shorter than a P—C single bond, but is similar to phospho­rus ylide complexes of iridium (Campos et al., 2013[Campos, J., Peloso, R., Brookhart, M. & Carmona, E. (2013). Organometallics, 32, 3423-3426.]). The most striking intra­molecular inter­action of 4 is an N—H⋯π inter­action N1—H1NCg (Cg being the centroid of phenyl ring C407–C412, H⋯Cg 2.87 (5) Å, N—H⋯Cg 145 (4)°); see Table 3[link]. Other intra­molecular inter­actions involve atoms N2 and I1 (C408—H408⋯N2 and C4—H4⋯I1) given in Table 3[link].

Table 3
Hydrogen-bond geometry (Å, °) for 4[link]

Cg is the centroid of the C407–C412 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NCg 0.86 (2) 2.87 (5) 3.608 (6) 145 (4)
C408—H408⋯N2 0.94 2.57 3.35 (1) 141
C4—H4⋯I1 0.94 2.98 3.45 (1) 112
C2—H2A⋯O1 0.98 2.25 3.19 (2) 160
C2—H2A⋯O1A 0.98 2.28 3.11 (3) 142
C112—H112⋯O1 0.94 2.55 3.41 (3) 154
C212—H212⋯O1A 0.94 2.31 3.20 (4) 159
C3—H3B⋯I2 0.98 3.02 3.89 (1) 149
C106—H106⋯I2Ai 0.94 2.97 3.51 (1) 117
C205—H205⋯Cgii 0.94 2.86 3.749 (9) 159
Symmetry codes: (i) [x, -y-1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view of the mol­ecular structure of the cation of compound 4, with displacement ellipsoids drawn at the 30% probability level and atom labelling. Only the ipso carbon atoms of the dppm phenyl groups are shown, the anions and solvate mol­ecules have been omitted for clarity.

3. Supra­molecular features

In the crystal of 3, the cationic complexes are inter­connected through the chloride anions via essentially C—H⋯Cl3 hydrogen bonds. The most significant hydrogen-bonding inter­actions are given in Table 2[link]. Of these, two stem from phenyl groups and one from a methyl­ene group of the PCP pincer's dppmN2 part (H3A⋯Cl3 2.63 Å). It is worth mentioning that such inter­actions are frequently observed in dppm and related ligands (Jones & Ahrens, 1998[Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307-2308.]). A graphical representation of these inter­actions is given in Fig. 3[link]. Effectively, the C—H⋯Cl3 hydrogen bonds link the cationic complexes, forming chains propagating along the b-axis direction.

[Figure 3]
Figure 3
A view along the a* axis of the crystal packing of 3, highlighting some of the intra- and inter­molecular inter­actions. For clarity, solvate mol­ecules and non-involved H atoms have been omitted, and for uninvolved phenyl moieties, only the ipso carbon atoms are displayed.

In the crystal of 4, solvent inter­actions are centered around atoms O1 and O1A of the methanol mol­ecule viz. two phenyl protons (H112⋯O1 2.55 and H212⋯O1A 2.31 Å) and one dppm methyl­ene moiety (H2A⋯O1 2.25 and H2A⋯O1A 2.28 Å) (Jones & Ahrens, 1998[Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307-2308.]) attach to the oxygen atom of the disordered methanol group via hydrogen bonding (Fig. 4[link]). These and the other most significant inter­molecular inter­actions are given in Table 3[link]. Together with C—H⋯I2(I2A) hydrogen bonds and a C—H⋯π inter­action, a supra­molecular layer is formed lying parallel to the bc plane (Table 3[link]). The iodine hemisolvate coordinates to the iodide anion [I2⋯I3 3.443 (1) Å]. As far as true inter­molecular inter­actions go, iridium-bound iodide moieties appear to bind to each other through weak halogen–halogen inter­actions [I1⋯I1′ 3.890 (1) Å]. Fig. 4[link] displays these inter­actions in graphical fashion.

[Figure 4]
Figure 4
A view along the c axis of the crystal ordering of 4, highlighting some of the inter­molecular inter­actions. For clarity, uninvolved solvate mol­ecules and H atoms have been omitted, and for non-involved phenyl groups, only the ipso carbon atoms are displayed.

4. Synthesis and crystallization

The syntheses of the title compounds are summarized in the reaction scheme. 1H, 13C and 31P NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer (300 MHz) and were referenced against 13C/1H solvent peaks or an external 85% H3PO4 standard, respectively. The phospho­rus atoms in the NMR data are labelled in the same way as in the figures.

Synthesis and crystallization of complex 3: A mixture of [IrCl(cod)]2 (8.5 mg; 0.0125 mmol) and [CH(dppm)2]Cl (Reitsamer et al., 2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]) (20.5 mg; 0.025 mmol) was placed under an inert atmosphere (N2), dissolved in acetone (0.6 ml) and stirred for 3 h. The resulting white precipitate of [IrCl2H(C(dppm)2)] (Partl et al., 2018[Partl, G. J., Nussbaumer, F., Schlapp-Hackl, I., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2018). Acta Cryst. E74, 846-852.]) was separated via centrifugation and deca­ntation. To it, MeCN (0.5 mL) and a solution of BnN3 in CH2Cl2 (0.1 ml; 0.5 mol L−1; 0.050 mmol) were added. After stirring for 1 min, the deep-purple solution was stirred for 2 h under atmospheric conditions, resulting in the slow precipitation of a white product. Colourless to pale-yellow prismatic crystals of 3 were obtained by allowing the purple inter­mediate solution to stand overnight under ambient conditions.

31P{1H}-NMR (CHCl3/MeOH 1:1): δ = 0.7 (P1, dd, JP1P2 = 30.7, JP1P4 = 14.0 Hz); 16.9 (P2, ddd, JP2P3 = 13.6 Hz, JP2P4 = 3.7 Hz); 6.9 (P3, d); −43.1 (P4, dd) ppm. 13C{1H}-NMR (CHCl3/MeOH 1:1): δ =157.9 (C1, dd, JC1P2 = 47.4, JC1P3 = 16.5 Hz) ppm.

Synthesis and crystallization of complex 4: Under an inert atmosphere, a mixture of [IrCl(cod)]2 (8.5 mg; 0.0125 mmol), [CH(dppm)2]Cl (20.5 mg; 0.025 mmol) (Reitsamer et al., 2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]) and MeCN (0.1 ml) was allowed to stir for 3 min. While stirring, MeOH (0.5 ml) and BnN3 in CH2Cl2 (0.1 ml; 0.5 mol/L; 0.050 mmol) were added. After heating to 333 K for 15 min, the volatiles were removed in vacuo. The residue was dissolved in CH2Cl2 and hydro­iodic acid (0.030 ml, 0.31 mmol, 67%) was added whilst stirring. The orange–brown precipitate that formed slowly was separated, washed with water and dried in vacuo. A solution of the residue in CH2Cl2/MeOH 2:1 (0.6 ml) qu­anti­tatively contained an unidentified inter­mediate, which transformed to the product within 1 h. Red prismatic crystals of 4 formed within a few hours, when a solution of the inter­mediate in CH2Cl2/MeOH (5:1) was kept at 254 K for 24 h and subsequently warmed to room temperature.

31P{1H}-NMR (CH2Cl2/MeOH 2:1): δ = −15.8 (P1, ddd, JP1P2 = 16.8, JP1P3 = 15.3, JP1P4 = 13.8 Hz); 37.8 (P2, d); −72.1 (P3, dd, JP3P4 = 28.3 Hz); −62.8 (P4, dd) ppm. 13C{1H}-NMR (CH2Cl2/MeOH 2:1): δ = −3.0 (C1, ddd, JC1P2 = 68.2, JC1P3 = 105.2, JC1P4 = 4.6 Hz) ppm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The aceto­nitrile solvent mol­ecules in the crystal lattice of 3 are severely disordered in position and occupation. At least 5.5 mol­ecules in the asymmetric units were refined. Occupation values were varied to give a reasonable isotropic displacement factor. All C- and N-atoms of solvent mol­ecules were refined isotropically with bond restraints, the hydrogen atoms were omitted. The proton on N3 was freely refined.

Table 4
Experimental details

  3 4
Crystal data
Chemical formula [IrCl2(C58H51N3P4)]Cl·5.5C2H3N [IrI(C26H22N2P2)(C26H22P2)(C6H7N](I)(I3)·0.5I2·CH4O·0.5CH2Cl2
Mr 1438.24 1942.00
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 293 233
a, b, c (Å) 15.8874 (2), 21.0665 (3), 23.2646 (3) 37.2962 (3), 18.7310 (2), 19.2348 (2)
β (°) 106.107 (1) 106.631 (1)
V3) 7480.82 (18) 12875.2 (2)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.02 5.13
Crystal size (mm) 0.31 × 0.08 × 0.04 0.32 × 0.19 × 0.14
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 47352, 13143, 10797 40122, 11285, 10348
Rint 0.049 0.035
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.08 0.041, 0.114, 1.11
No. of reflections 13143 11285
No. of parameters 734 732
No. of restraints 27 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.44 1.30, −2.92
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The hydrogen atom at N1 of 4 was found and refined with a bond restraint of 0.87 (2) Å. The I3 anion (I4–I6) is positionally disordered (ratio roughly 1:1), as is the I anion with a ratio I2:I2A of 9:1. The di­chloro­methane solvent mol­ecule lies near a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. Another disorder occurs for the solvent methanol with a ratio of 1:1. The C and O atoms of methanol were refined isotropically with bond restraints of 1.40 Å. The hydrogen atoms of methanol were calculated, those of di­chloro­methane omitted. All other H atoms were positioned geometrically (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5 Ueq(C).

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Dichlorido(phenylmethanimine-κN)(1,1,3,3,7,7,9,9-octaphenyl-4,5-diaza-1,3λ5,7λ4,9-tetraphosphanona-3,5-dien-6-yl-κ2P1,P9)iridium(III) chloride acetonitrile hemihendecasolvate (3) top
Crystal data top
[IrCl2(C58H51N3P4)]Cl·5.5C2H3NF(000) = 2916
Mr = 1438.24Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.8874 (2) ÅCell parameters from 117075 reflections
b = 21.0665 (3) Åθ = 1.0–26.0°
c = 23.2646 (3) ŵ = 2.02 mm1
β = 106.107 (1)°T = 293 K
V = 7480.82 (18) Å3Prism, colorless
Z = 40.31 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.049
phi– and ω–scansθmax = 25.0°, θmin = 1.7°
47352 measured reflectionsh = 1818
13143 independent reflectionsk = 2525
10797 reflections with I > 2σ(I)l = 2727
Refinement top
Refinement on F227 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0372P)2 + 16.2457P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
13143 reflectionsΔρmax = 0.77 e Å3
734 parametersΔρmin = 0.44 e Å3
Special details top

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen at N3 was found and refined normally with isotropic displacement parameters. The solvent molecules of acetonitrile in the crystal lattice are strongly disordered in position and occupation. At least a sum of 5.5 molecules in the asymmetric units were refined. Occupation values were varied to a more or less reasonable isotropic displacement factor. All C and N-atoms of solvents were isotropically refined with a sum of bond restraints and hydrogen atoms were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.85062 (2)0.50587 (2)0.13892 (2)0.03393 (7)
P10.87793 (8)0.57823 (5)0.21646 (5)0.0379 (3)
P20.72156 (8)0.63106 (5)0.12389 (6)0.0394 (3)
P30.61365 (7)0.41793 (5)0.11211 (5)0.0356 (3)
P40.80771 (7)0.42085 (5)0.18720 (5)0.0347 (3)
Cl10.99975 (8)0.46384 (6)0.15473 (6)0.0479 (3)
Cl20.89854 (8)0.58983 (5)0.08509 (6)0.0481 (3)
Cl30.63193 (10)0.30927 (6)0.28422 (6)0.0627 (4)
N10.6530 (2)0.52482 (16)0.08207 (16)0.0376 (9)
N20.6460 (2)0.45866 (15)0.06499 (16)0.0361 (8)
N30.8199 (3)0.45600 (17)0.05876 (17)0.0375 (9)
H3N0.771 (3)0.440 (2)0.0499 (19)0.034 (13)*
C10.7285 (3)0.54535 (19)0.11152 (19)0.0372 (10)
C20.8197 (3)0.6504 (2)0.1823 (2)0.0416 (11)
H2A0.80410.67540.21290.050*
H2B0.85810.67590.16570.050*
C30.6916 (3)0.4194 (2)0.18611 (19)0.0368 (10)
H3A0.68170.38220.20800.044*
H3B0.67970.45650.20730.044*
C40.8626 (3)0.4518 (2)0.0201 (2)0.0449 (11)
H40.91530.47380.02810.054*
C50.8365 (3)0.4158 (2)0.0357 (2)0.0469 (12)
C60.7747 (3)0.3677 (3)0.0448 (3)0.0602 (14)
H60.74890.35720.01470.072*
C70.7516 (4)0.3353 (3)0.0985 (3)0.0771 (19)
H70.71040.30280.10480.092*
C80.7903 (5)0.3517 (4)0.1427 (3)0.088 (2)
H80.77380.33050.17920.106*
C90.8513 (5)0.3977 (4)0.1343 (3)0.0802 (19)
H90.87710.40800.16450.096*
C100.8752 (4)0.4296 (3)0.0800 (2)0.0596 (14)
H100.91820.46080.07360.072*
C1010.9882 (3)0.6079 (2)0.2502 (2)0.0432 (11)
C1021.0578 (3)0.5652 (3)0.2687 (2)0.0606 (15)
H1021.04820.52190.26290.073*
C1031.1406 (4)0.5878 (3)0.2956 (3)0.0753 (19)
H1031.18670.55920.30830.090*
C1041.1566 (4)0.6511 (3)0.3040 (3)0.0738 (18)
H1041.21300.66570.32200.089*
C1051.0047 (4)0.6722 (3)0.2596 (3)0.0601 (15)
H1050.95900.70130.24840.072*
C1061.0888 (4)0.6930 (3)0.2857 (3)0.0776 (19)
H1061.09970.73630.29090.093*
C1070.8336 (3)0.5665 (2)0.2801 (2)0.0452 (12)
C1080.7437 (4)0.5627 (2)0.2698 (3)0.0522 (13)
H1080.70780.56460.23070.063*
C1090.7058 (4)0.5560 (3)0.3172 (3)0.0666 (16)
H1090.64530.55300.30980.080*
C1100.7584 (5)0.5538 (3)0.3740 (3)0.0745 (18)
H1100.73370.54960.40570.089*
C1110.8474 (5)0.5578 (3)0.3852 (3)0.0743 (18)
H1110.88240.55640.42460.089*
C1120.8872 (4)0.5639 (2)0.3384 (2)0.0568 (14)
H1120.94780.56630.34640.068*
C2010.7162 (3)0.6777 (2)0.0582 (2)0.0460 (12)
C2020.7523 (4)0.7378 (2)0.0635 (3)0.0645 (16)
H2020.78300.75360.10070.077*
C2030.7421 (5)0.7739 (3)0.0128 (3)0.084 (2)
H2030.76540.81470.01590.101*
C2040.6976 (5)0.7503 (3)0.0428 (3)0.0795 (19)
H2040.69240.77460.07700.095*
C2050.6614 (4)0.6915 (3)0.0473 (3)0.0731 (18)
H2050.63060.67600.08460.088*
C2060.6700 (4)0.6548 (2)0.0026 (2)0.0601 (15)
H2060.64470.61470.00080.072*
C2070.6287 (3)0.6555 (2)0.1492 (2)0.0450 (12)
C2080.5559 (4)0.6182 (3)0.1437 (3)0.0749 (19)
H2080.55290.57780.12700.090*
C2090.4863 (4)0.6415 (3)0.1635 (4)0.096 (3)
H2090.43770.61590.16110.116*
C2100.4891 (4)0.7007 (3)0.1861 (3)0.083 (2)
H2100.44260.71580.19920.099*
C2110.5596 (4)0.7381 (3)0.1895 (3)0.081 (2)
H2110.56050.77940.20380.097*
C2120.6299 (4)0.7159 (2)0.1720 (3)0.0646 (16)
H2120.67860.74180.17560.078*
C3010.5921 (3)0.3392 (2)0.0821 (2)0.0420 (11)
C3020.5830 (4)0.3293 (2)0.0220 (2)0.0564 (14)
H3020.59220.36230.00200.068*
C3030.5599 (5)0.2691 (3)0.0021 (3)0.084 (2)
H3030.55530.26160.04230.101*
C3040.5442 (5)0.2211 (3)0.0328 (3)0.084 (2)
H3040.52830.18110.01640.100*
C3050.5516 (4)0.2315 (3)0.0919 (3)0.0765 (19)
H3050.54090.19850.11550.092*
C3060.5747 (4)0.2904 (2)0.1169 (2)0.0570 (14)
H3060.57860.29730.15700.068*
C3070.5123 (3)0.4445 (2)0.1256 (2)0.0407 (11)
C3080.4517 (3)0.4752 (2)0.0794 (2)0.0470 (12)
H3080.46510.48330.04360.056*
C3090.3723 (4)0.4934 (2)0.0862 (3)0.0592 (15)
H3090.33160.51310.05460.071*
C3100.3522 (4)0.4831 (3)0.1387 (3)0.0737 (18)
H3100.29850.49650.14310.088*
C3110.4114 (4)0.4529 (4)0.1852 (3)0.082 (2)
H3110.39760.44570.22100.099*
C3120.4917 (4)0.4331 (3)0.1787 (3)0.0619 (15)
H3120.53150.41230.21000.074*
C4010.8239 (3)0.3406 (2)0.1607 (2)0.0422 (11)
C4020.8774 (4)0.3276 (2)0.1248 (2)0.0549 (13)
H4020.90690.36070.11220.066*
C4030.8882 (4)0.2658 (3)0.1069 (3)0.0736 (18)
H4030.92410.25760.08230.088*
C4040.8451 (5)0.2167 (3)0.1260 (3)0.0783 (19)
H4040.85090.17540.11360.094*
C4050.7938 (4)0.2291 (2)0.1634 (3)0.0701 (17)
H4050.76590.19590.17710.084*
C4060.7832 (4)0.2902 (2)0.1807 (3)0.0546 (13)
H4060.74850.29800.20620.065*
C4070.8643 (3)0.4134 (2)0.2671 (2)0.0427 (11)
C4080.8210 (4)0.4055 (2)0.3110 (2)0.0503 (12)
H4080.76010.40560.30070.060*
C4090.8686 (4)0.3974 (3)0.3701 (2)0.0626 (15)
H4090.83940.39180.39930.075*
C4100.9592 (4)0.3976 (3)0.3860 (3)0.0713 (18)
H4100.99060.39250.42590.086*
C4111.0026 (4)0.4053 (3)0.3439 (3)0.0750 (18)
H4111.06350.40580.35490.090*
C4120.9556 (3)0.4125 (3)0.2837 (2)0.0567 (14)
H4120.98540.41670.25470.068*
N40.9986 (11)0.7744 (9)0.0154 (7)0.242 (8)*0.8
C111.0108 (11)0.7622 (8)0.0658 (7)0.170 (6)*0.8
C121.0126 (7)0.7481 (5)0.1245 (5)0.114 (3)*0.8
N50.8063 (14)0.6958 (9)0.3079 (9)0.240 (8)*0.7
C130.7960 (14)0.6511 (9)0.2805 (9)0.193 (8)*0.7
C140.7862 (10)0.5920 (7)0.2552 (7)0.132 (5)*0.7
N60.1837 (13)0.3904 (10)0.5292 (9)0.245 (9)*0.7
C150.2378 (13)0.3567 (9)0.5377 (8)0.163 (6)*0.7
C160.3195 (16)0.3349 (13)0.5382 (12)0.257 (12)*0.7
N70.0715 (11)0.5571 (8)0.5313 (7)0.212 (6)*0.8
C170.1364 (11)0.5537 (8)0.5404 (7)0.154 (5)*0.8
C180.2271 (12)0.5480 (10)0.5379 (9)0.220 (8)*0.8
N80.8726 (13)0.6302 (9)0.0689 (8)0.125 (6)*0.5
C190.823 (3)0.654 (2)0.1087 (19)0.34 (3)*0.5
C200.776 (2)0.6924 (16)0.1596 (12)0.215 (13)*0.5
N8A0.8369 (14)0.7278 (9)0.1420 (9)0.159 (7)*0.5
C19A0.8575 (13)0.6878 (10)0.1068 (8)0.115 (6)*0.5
C20A0.9118 (15)0.6550 (11)0.0539 (9)0.134 (8)*0.5
N90.3776 (13)0.5841 (10)0.3990 (9)0.172 (7)*0.5
C210.4509 (15)0.5722 (11)0.3647 (10)0.147 (8)*0.5
C220.5442 (15)0.5790 (17)0.3576 (15)0.236 (14)*0.5
N9A0.4319 (17)0.4368 (12)0.4302 (12)0.202 (9)*0.5
C21A0.485 (2)0.4212 (17)0.3857 (14)0.236 (15)*0.5
C22A0.566 (3)0.381 (2)0.3607 (19)0.32 (2)*0.5
N100.6366 (18)0.4471 (13)0.2927 (12)0.228 (11)*0.5
C230.6014 (19)0.3984 (14)0.3021 (14)0.177 (10)*0.5
C240.569 (2)0.3356 (15)0.3187 (17)0.238 (15)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03548 (11)0.02598 (10)0.03721 (11)0.00083 (7)0.00487 (7)0.00162 (7)
P10.0399 (7)0.0288 (6)0.0402 (6)0.0016 (5)0.0033 (5)0.0001 (5)
P20.0404 (7)0.0232 (5)0.0480 (7)0.0019 (5)0.0012 (5)0.0011 (5)
P30.0384 (6)0.0243 (5)0.0412 (6)0.0022 (4)0.0063 (5)0.0004 (5)
P40.0370 (6)0.0256 (5)0.0383 (6)0.0031 (4)0.0050 (5)0.0024 (5)
Cl10.0395 (6)0.0454 (7)0.0552 (7)0.0034 (5)0.0070 (5)0.0033 (5)
Cl20.0501 (7)0.0378 (6)0.0566 (7)0.0046 (5)0.0150 (6)0.0070 (5)
Cl30.0773 (9)0.0441 (7)0.0646 (9)0.0076 (6)0.0165 (7)0.0147 (6)
N10.044 (2)0.0241 (18)0.041 (2)0.0015 (16)0.0062 (18)0.0002 (16)
N20.039 (2)0.0242 (18)0.042 (2)0.0032 (15)0.0064 (17)0.0026 (15)
N30.036 (2)0.034 (2)0.042 (2)0.0035 (17)0.0104 (19)0.0025 (17)
C10.044 (3)0.026 (2)0.038 (2)0.0010 (19)0.005 (2)0.0040 (18)
C20.043 (3)0.027 (2)0.049 (3)0.0036 (19)0.002 (2)0.001 (2)
C30.042 (3)0.026 (2)0.040 (2)0.0016 (18)0.007 (2)0.0028 (18)
C40.042 (3)0.040 (3)0.051 (3)0.004 (2)0.010 (2)0.000 (2)
C50.041 (3)0.048 (3)0.050 (3)0.004 (2)0.011 (2)0.007 (2)
C60.052 (3)0.066 (4)0.064 (4)0.008 (3)0.019 (3)0.016 (3)
C70.061 (4)0.083 (4)0.087 (5)0.015 (3)0.021 (4)0.035 (4)
C80.074 (5)0.115 (6)0.068 (4)0.009 (4)0.007 (4)0.041 (4)
C90.080 (5)0.109 (6)0.059 (4)0.008 (4)0.031 (3)0.021 (4)
C100.053 (3)0.071 (4)0.058 (3)0.000 (3)0.021 (3)0.009 (3)
C1010.042 (3)0.043 (3)0.038 (3)0.004 (2)0.000 (2)0.004 (2)
C1020.050 (3)0.059 (3)0.061 (3)0.003 (3)0.005 (3)0.013 (3)
C1030.052 (4)0.089 (5)0.073 (4)0.011 (3)0.003 (3)0.024 (4)
C1040.045 (3)0.099 (5)0.068 (4)0.014 (3)0.001 (3)0.021 (4)
C1050.051 (3)0.047 (3)0.070 (4)0.008 (2)0.004 (3)0.006 (3)
C1060.072 (4)0.064 (4)0.081 (4)0.024 (3)0.005 (3)0.014 (3)
C1070.066 (3)0.025 (2)0.045 (3)0.003 (2)0.015 (2)0.0015 (19)
C1080.061 (3)0.031 (3)0.066 (3)0.000 (2)0.020 (3)0.001 (2)
C1090.081 (4)0.043 (3)0.089 (5)0.004 (3)0.046 (4)0.002 (3)
C1100.105 (6)0.052 (4)0.081 (5)0.008 (3)0.050 (4)0.008 (3)
C1110.118 (6)0.055 (4)0.052 (3)0.009 (4)0.026 (4)0.003 (3)
C1120.075 (4)0.042 (3)0.052 (3)0.004 (3)0.017 (3)0.000 (2)
C2010.045 (3)0.032 (2)0.052 (3)0.001 (2)0.000 (2)0.006 (2)
C2020.079 (4)0.039 (3)0.065 (4)0.015 (3)0.001 (3)0.012 (3)
C2030.104 (5)0.045 (3)0.091 (5)0.020 (3)0.009 (4)0.023 (3)
C2040.095 (5)0.069 (4)0.062 (4)0.004 (4)0.000 (4)0.025 (3)
C2050.082 (4)0.069 (4)0.054 (4)0.011 (3)0.003 (3)0.014 (3)
C2060.071 (4)0.042 (3)0.055 (3)0.007 (3)0.004 (3)0.006 (2)
C2070.042 (3)0.030 (2)0.059 (3)0.004 (2)0.006 (2)0.001 (2)
C2080.053 (4)0.048 (3)0.122 (6)0.005 (3)0.021 (4)0.030 (3)
C2090.056 (4)0.071 (4)0.173 (8)0.013 (3)0.049 (5)0.046 (5)
C2100.058 (4)0.063 (4)0.127 (6)0.007 (3)0.024 (4)0.036 (4)
C2110.072 (4)0.049 (3)0.112 (5)0.005 (3)0.012 (4)0.032 (3)
C2120.057 (3)0.039 (3)0.096 (5)0.003 (2)0.018 (3)0.020 (3)
C3010.044 (3)0.032 (2)0.047 (3)0.003 (2)0.006 (2)0.005 (2)
C3020.068 (4)0.041 (3)0.060 (3)0.013 (3)0.017 (3)0.010 (2)
C3030.120 (6)0.061 (4)0.075 (4)0.026 (4)0.033 (4)0.032 (3)
C3040.114 (6)0.042 (3)0.094 (5)0.026 (3)0.027 (4)0.026 (3)
C3050.100 (5)0.035 (3)0.083 (5)0.015 (3)0.007 (4)0.002 (3)
C3060.074 (4)0.033 (3)0.057 (3)0.010 (2)0.006 (3)0.001 (2)
C3070.037 (3)0.031 (2)0.051 (3)0.0031 (19)0.009 (2)0.001 (2)
C3080.043 (3)0.041 (3)0.052 (3)0.002 (2)0.005 (2)0.001 (2)
C3090.045 (3)0.054 (3)0.070 (4)0.009 (2)0.002 (3)0.002 (3)
C3100.045 (3)0.086 (4)0.092 (5)0.010 (3)0.022 (3)0.004 (4)
C3110.064 (4)0.112 (6)0.078 (4)0.013 (4)0.031 (4)0.015 (4)
C3120.050 (3)0.078 (4)0.059 (3)0.011 (3)0.017 (3)0.015 (3)
C4010.046 (3)0.032 (2)0.045 (3)0.008 (2)0.006 (2)0.002 (2)
C4020.066 (3)0.032 (3)0.071 (4)0.004 (2)0.027 (3)0.003 (2)
C4030.092 (5)0.047 (3)0.097 (5)0.013 (3)0.052 (4)0.004 (3)
C4040.109 (5)0.027 (3)0.109 (5)0.006 (3)0.046 (4)0.002 (3)
C4050.092 (5)0.031 (3)0.100 (5)0.002 (3)0.047 (4)0.005 (3)
C4060.066 (3)0.028 (2)0.076 (4)0.003 (2)0.030 (3)0.007 (2)
C4070.054 (3)0.026 (2)0.040 (3)0.003 (2)0.001 (2)0.0065 (19)
C4080.054 (3)0.042 (3)0.050 (3)0.002 (2)0.007 (3)0.003 (2)
C4090.085 (4)0.055 (3)0.045 (3)0.003 (3)0.014 (3)0.012 (3)
C4100.085 (5)0.077 (4)0.038 (3)0.000 (3)0.004 (3)0.016 (3)
C4110.060 (4)0.085 (4)0.062 (4)0.001 (3)0.015 (3)0.017 (3)
C4120.053 (3)0.059 (3)0.052 (3)0.003 (3)0.004 (3)0.014 (3)
Geometric parameters (Å, º) top
Ir1—C12.044 (4)C210—C2111.355 (9)
Ir1—N32.077 (4)C211—C2121.372 (8)
Ir1—P12.3090 (12)C301—C3021.381 (7)
Ir1—P42.3151 (11)C301—C3061.384 (7)
Ir1—Cl22.4094 (11)C302—C3031.395 (7)
Ir1—Cl12.4595 (12)C303—C3041.364 (9)
P1—C1011.821 (5)C304—C3051.365 (9)
P1—C1071.825 (5)C305—C3061.375 (7)
P1—C21.842 (4)C307—C3121.383 (7)
P2—C2011.800 (5)C307—C3081.389 (6)
P2—C21.808 (4)C308—C3091.370 (7)
P2—C2071.808 (5)C309—C3101.363 (8)
P2—C11.837 (4)C310—C3111.378 (9)
P3—N21.586 (4)C311—C3121.389 (8)
P3—C3011.795 (4)C401—C4021.375 (7)
P3—C3071.812 (5)C401—C4061.389 (7)
P3—C31.821 (4)C402—C4031.392 (7)
P4—C4071.832 (5)C403—C4041.379 (8)
P4—C31.837 (5)C404—C4051.373 (8)
P4—C4011.842 (5)C405—C4061.374 (7)
N1—C11.280 (5)C407—C4081.392 (7)
N1—N21.445 (5)C407—C4121.394 (7)
N3—H3N0.81 (5)C408—C4091.382 (7)
N3—C41.270 (6)C409—C4101.384 (8)
C4—C51.462 (7)C410—C4111.355 (9)
C5—C101.371 (7)C411—C4121.400 (7)
C5—C61.386 (7)N4—C111.162 (13)
C6—C71.380 (8)C11—C121.391 (13)
C7—C81.382 (10)N5—C131.175 (14)
C8—C91.347 (10)C13—C141.403 (14)
C9—C101.387 (8)N6—C151.172 (14)
C101—C1051.385 (7)C15—C161.380 (15)
C101—C1021.397 (7)N7—C171.112 (13)
C102—C1031.375 (8)C17—C181.432 (13)
C103—C1041.362 (9)N8—C20A0.81 (3)
C104—C1061.365 (9)N8—C191.152 (17)
C105—C1061.377 (8)N8—C19A1.48 (3)
C107—C1081.382 (7)C19—C19A0.88 (6)
C107—C1121.388 (7)C19—C201.456 (17)
C108—C1091.404 (8)C19—C20A1.61 (4)
C109—C1101.354 (9)C19—N8A1.77 (5)
C110—C1111.368 (9)C20—N8A1.20 (4)
C111—C1121.409 (8)C20—C19A1.52 (3)
C201—C2021.382 (7)N8A—C19A1.158 (14)
C201—C2061.383 (7)C19A—C20A1.465 (15)
C202—C2031.373 (8)N9—C211.242 (15)
C203—C2041.385 (9)C21—C221.453 (16)
C204—C2051.356 (8)N9A—C21A1.183 (17)
C205—C2061.371 (7)C21A—C22A1.510 (18)
C207—C2121.376 (7)C22A—C241.36 (5)
C207—C2081.376 (7)C22A—C231.37 (5)
C208—C2091.399 (8)N10—C231.159 (15)
C209—C2101.350 (8)C23—C241.433 (16)
C1—Ir1—N387.68 (17)C208—C207—P2123.3 (4)
C1—Ir1—P186.06 (12)C207—C208—C209119.4 (5)
N3—Ir1—P1169.02 (11)C210—C209—C208120.6 (6)
C1—Ir1—P494.83 (12)C209—C210—C211119.9 (6)
N3—Ir1—P490.96 (11)C210—C211—C212120.8 (5)
P1—Ir1—P498.54 (4)C211—C212—C207120.3 (5)
C1—Ir1—Cl287.06 (12)C302—C301—C306119.8 (4)
N3—Ir1—Cl286.22 (11)C302—C301—P3119.3 (4)
P1—Ir1—Cl284.45 (4)C306—C301—P3120.5 (4)
P4—Ir1—Cl2176.55 (4)C301—C302—C303119.2 (5)
C1—Ir1—Cl1170.06 (13)C304—C303—C302120.3 (6)
N3—Ir1—Cl185.93 (12)C303—C304—C305120.2 (5)
P1—Ir1—Cl198.99 (4)C304—C305—C306120.6 (6)
P4—Ir1—Cl192.87 (4)C305—C306—C301119.8 (5)
Cl2—Ir1—Cl184.94 (4)C312—C307—C308119.1 (5)
C101—P1—C107103.8 (2)C312—C307—P3122.9 (4)
C101—P1—C2102.2 (2)C308—C307—P3117.9 (4)
C107—P1—C2101.6 (2)C309—C308—C307120.3 (5)
C101—P1—Ir1120.89 (16)C310—C309—C308120.7 (5)
C107—P1—Ir1120.87 (15)C309—C310—C311119.9 (6)
C2—P1—Ir1104.20 (15)C310—C311—C312120.1 (6)
C201—P2—C2110.1 (2)C307—C312—C311119.8 (5)
C201—P2—C207105.7 (2)C402—C401—C406118.5 (4)
C2—P2—C207107.6 (2)C402—C401—P4123.6 (4)
C201—P2—C1113.2 (2)C406—C401—P4117.9 (4)
C2—P2—C1105.3 (2)C401—C402—C403121.0 (5)
C207—P2—C1114.9 (2)C404—C403—C402119.5 (6)
N2—P3—C301107.1 (2)C405—C404—C403119.8 (5)
N2—P3—C307115.3 (2)C404—C405—C406120.4 (5)
C301—P3—C307105.6 (2)C405—C406—C401120.8 (5)
N2—P3—C3112.2 (2)C408—C407—C412118.8 (4)
C301—P3—C3112.9 (2)C408—C407—P4123.5 (4)
C307—P3—C3103.6 (2)C412—C407—P4117.6 (4)
C407—P4—C3102.8 (2)C409—C408—C407120.0 (5)
C407—P4—C401100.7 (2)C408—C409—C410120.5 (6)
C3—P4—C401102.3 (2)C411—C410—C409120.4 (5)
C407—P4—Ir1115.50 (15)C410—C411—C412120.0 (6)
C3—P4—Ir1115.85 (14)C407—C412—C411120.3 (6)
C401—P4—Ir1117.40 (16)N4—C11—C12172 (2)
C1—N1—N2117.5 (3)N5—C13—C14171 (3)
N1—N2—P3110.3 (3)N6—C15—C16160 (3)
H3N—N3—C4117 (3)N7—C17—C18167 (2)
H3N—N3—Ir1114 (3)C20A—N8—C19109 (4)
C4—N3—Ir1129.2 (3)C20A—N8—C19A73 (2)
N1—C1—P2109.1 (3)C19—N8—C19A37 (3)
N1—C1—Ir1134.2 (3)C19A—C19—N892 (4)
P2—C1—Ir1116.4 (2)C19A—C19—C2077 (3)
P2—C2—P1111.3 (2)N8—C19—C20169 (6)
P3—C3—P4115.5 (2)C19A—C19—C20A64 (3)
N3—C4—C5126.1 (4)N8—C19—C20A28.5 (18)
C10—C5—C6119.2 (5)C20—C19—C20A141 (5)
C10—C5—C4118.9 (5)C19A—C19—N8A34.6 (18)
C6—C5—C4122.0 (5)N8—C19—N8A127 (5)
C7—C6—C5120.0 (6)C20—C19—N8A42.4 (19)
C6—C7—C8119.2 (6)C20A—C19—N8A99 (3)
C9—C8—C7121.6 (6)N8A—C20—C1983 (3)
C8—C9—C10119.0 (6)N8A—C20—C19A48.5 (13)
C5—C10—C9121.0 (6)C19—C20—C19A34 (2)
C105—C101—C102118.8 (5)C19A—N8A—C2080 (2)
C105—C101—P1121.4 (4)C19A—N8A—C1925.6 (17)
C102—C101—P1119.8 (4)C20—N8A—C1954.7 (16)
C103—C102—C101119.6 (5)C19—C19A—N8A120 (3)
C104—C103—C102121.3 (6)C19—C19A—C20A83 (2)
C103—C104—C106119.3 (6)N8A—C19A—C20A157 (3)
C106—C105—C101119.9 (5)C19—C19A—N851.1 (19)
C104—C106—C105121.1 (6)N8A—C19A—N8170 (2)
C108—C107—C112119.5 (5)C20A—C19A—N832.1 (11)
C108—C107—P1118.6 (4)C19—C19A—C2069 (2)
C112—C107—P1121.8 (4)N8A—C19A—C2051.1 (16)
C107—C108—C109121.1 (5)C20A—C19A—C20152 (2)
C110—C109—C108119.2 (6)N8—C19A—C20120 (2)
C109—C110—C111120.6 (6)N8—C20A—C19A75 (2)
C110—C111—C112121.3 (6)N8—C20A—C1942 (2)
C107—C112—C111118.3 (6)C19A—C20A—C1932.8 (19)
C202—C201—C206120.2 (5)N9—C21—C22143 (2)
C202—C201—P2120.3 (4)N9A—C21A—C22A144 (3)
C206—C201—P2119.4 (4)C24—C22A—C2363 (2)
C203—C202—C201118.9 (5)C24—C22A—C21A122 (4)
C202—C203—C204120.8 (6)C23—C22A—C21A108 (4)
C205—C204—C203119.7 (6)N10—C23—C22A118 (4)
C204—C205—C206120.6 (6)N10—C23—C24170 (4)
C205—C206—C201119.8 (5)C22A—C23—C2458 (2)
C212—C207—C208119.0 (5)C22A—C24—C2359 (2)
C212—C207—P2117.6 (4)
C1—N1—N2—P396.1 (4)C301—P3—C307—C31288.1 (5)
C301—P3—N2—N1172.0 (3)C3—P3—C307—C31230.8 (5)
C307—P3—N2—N154.7 (3)N2—P3—C307—C30829.0 (4)
C3—P3—N2—N163.5 (3)C301—P3—C307—C30889.1 (4)
N2—N1—C1—P2176.7 (3)C3—P3—C307—C308152.0 (4)
N2—N1—C1—Ir13.4 (6)C312—C307—C308—C3090.5 (7)
C201—P2—C1—N175.6 (4)P3—C307—C308—C309176.8 (4)
C2—P2—C1—N1164.1 (3)C307—C308—C309—C3101.5 (8)
C207—P2—C1—N146.0 (4)C308—C309—C310—C3111.3 (10)
C201—P2—C1—Ir199.0 (3)C309—C310—C311—C3120.3 (11)
C2—P2—C1—Ir121.3 (3)C308—C307—C312—C3110.5 (8)
C207—P2—C1—Ir1139.4 (2)P3—C307—C312—C311177.7 (5)
C201—P2—C2—P1132.6 (3)C310—C311—C312—C3070.6 (10)
C207—P2—C2—P1112.7 (3)C407—P4—C401—C402110.3 (5)
C1—P2—C2—P110.2 (3)C3—P4—C401—C402144.0 (4)
C101—P1—C2—P2159.1 (3)Ir1—P4—C401—C40216.0 (5)
C107—P1—C2—P293.8 (3)C407—P4—C401—C40666.2 (4)
Ir1—P1—C2—P232.5 (3)C3—P4—C401—C40639.5 (4)
N2—P3—C3—P435.6 (3)Ir1—P4—C401—C406167.5 (3)
C301—P3—C3—P485.6 (3)C406—C401—C402—C4032.5 (8)
C307—P3—C3—P4160.6 (2)P4—C401—C402—C403178.9 (5)
C407—P4—C3—P3174.1 (2)C401—C402—C403—C4040.6 (10)
C401—P4—C3—P370.0 (3)C402—C403—C404—C4051.4 (11)
Ir1—P4—C3—P359.0 (3)C403—C404—C405—C4061.6 (11)
H3N—N3—C4—C57 (4)C404—C405—C406—C4010.3 (10)
Ir1—N3—C4—C5179.8 (3)C402—C401—C406—C4052.3 (8)
N3—C4—C5—C10161.9 (5)P4—C401—C406—C405179.0 (5)
N3—C4—C5—C618.8 (8)C3—P4—C407—C4082.9 (4)
C10—C5—C6—C71.4 (8)C401—P4—C407—C408102.4 (4)
C4—C5—C6—C7179.4 (5)Ir1—P4—C407—C408130.0 (4)
C5—C6—C7—C80.4 (10)C3—P4—C407—C412179.6 (4)
C6—C7—C8—C91.3 (11)C401—P4—C407—C41274.2 (4)
C7—C8—C9—C100.5 (11)Ir1—P4—C407—C41253.3 (4)
C6—C5—C10—C92.2 (8)C412—C407—C408—C4090.5 (7)
C4—C5—C10—C9178.5 (5)P4—C407—C408—C409177.2 (4)
C8—C9—C10—C51.3 (10)C407—C408—C409—C4100.5 (8)
C107—P1—C101—C10588.5 (5)C408—C409—C410—C4110.5 (9)
C2—P1—C101—C10516.9 (5)C409—C410—C411—C4120.6 (10)
Ir1—P1—C101—C105131.8 (4)C408—C407—C412—C4111.5 (8)
C107—P1—C101—C10289.6 (5)P4—C407—C412—C411178.4 (4)
C2—P1—C101—C102165.0 (4)C410—C411—C412—C4071.6 (9)
Ir1—P1—C101—C10250.1 (5)C20A—N8—C19—C19A8 (7)
C105—C101—C102—C1030.2 (8)C20A—N8—C19—C2028 (33)
P1—C101—C102—C103178.3 (5)C19A—N8—C19—C2020 (27)
C101—C102—C103—C1040.7 (10)C19A—N8—C19—C20A8 (7)
C102—C103—C104—C1060.4 (11)C20A—N8—C19—N8A11 (7)
C102—C101—C105—C1061.4 (9)C19A—N8—C19—N8A2.5 (17)
P1—C101—C105—C106179.5 (5)C19A—C19—C20—N8A0 (5)
C103—C104—C106—C1050.9 (11)N8—C19—C20—N8A21 (32)
C101—C105—C106—C1041.8 (10)C20A—C19—C20—N8A0 (8)
C101—P1—C107—C108160.6 (4)N8—C19—C20—C19A20 (28)
C2—P1—C107—C10854.9 (4)C20A—C19—C20—C19A1 (4)
Ir1—P1—C107—C10859.6 (4)N8A—C19—C20—C19A0 (5)
C101—P1—C107—C11216.6 (4)C19—C20—N8A—C19A0 (3)
C2—P1—C107—C112122.4 (4)C19A—C20—N8A—C190 (3)
Ir1—P1—C107—C112123.2 (4)N8—C19—N8A—C19A4 (3)
C112—C107—C108—C1090.4 (7)C20—C19—N8A—C19A180 (8)
P1—C107—C108—C109177.7 (4)C20A—C19—N8A—C19A1 (4)
C107—C108—C109—C1100.7 (8)C19A—C19—N8A—C20180 (8)
C108—C109—C110—C1110.4 (9)N8—C19—N8A—C20175 (8)
C109—C110—C111—C1120.2 (9)C20A—C19—N8A—C20180 (5)
C108—C107—C112—C1110.2 (7)N8—C19—C19A—N8A176 (2)
P1—C107—C112—C111177.0 (4)C20—C19—C19A—N8A0 (5)
C110—C111—C112—C1070.5 (8)C20A—C19—C19A—N8A179 (4)
C2—P2—C201—C20230.7 (5)N8—C19—C19A—C20A4 (4)
C207—P2—C201—C20285.1 (5)C20—C19—C19A—C20A180 (3)
C1—P2—C201—C202148.2 (4)N8A—C19—C19A—C20A179 (4)
C2—P2—C201—C206154.1 (4)C20—C19—C19A—N8176 (5)
C207—P2—C201—C20690.1 (5)C20A—C19—C19A—N84 (4)
C1—P2—C201—C20636.6 (5)N8A—C19—C19A—N8176 (2)
C206—C201—C202—C2030.6 (9)N8—C19—C19A—C20176 (5)
P2—C201—C202—C203175.7 (5)C20A—C19—C19A—C20180 (3)
C201—C202—C203—C2041.0 (11)N8A—C19—C19A—C200 (5)
C202—C203—C204—C2051.8 (12)C20—N8A—C19A—C190 (6)
C203—C204—C205—C2061.2 (11)C20—N8A—C19A—C20A178 (6)
C204—C205—C206—C2010.3 (10)C19—N8A—C19A—C20A178 (11)
C202—C201—C206—C2051.2 (9)C19—N8A—C19A—C200 (6)
P2—C201—C206—C205176.4 (5)C20A—N8—C19A—C19172 (7)
C201—P2—C207—C21268.6 (5)C19—N8—C19A—C20A172 (7)
C2—P2—C207—C21248.9 (5)C20A—N8—C19A—C20176 (3)
C1—P2—C207—C212165.8 (4)C19—N8—C19A—C204 (6)
C201—P2—C207—C208107.7 (5)N8A—C20—C19A—C19180 (6)
C2—P2—C207—C208134.7 (5)C19—C20—C19A—N8A180 (6)
C1—P2—C207—C20817.9 (6)N8A—C20—C19A—C20A179 (5)
C212—C207—C208—C2092.4 (10)C19—C20—C19A—C20A1 (5)
P2—C207—C208—C209178.7 (6)N8A—C20—C19A—N8177 (3)
C207—C208—C209—C2102.1 (12)C19—C20—C19A—N83 (5)
C208—C209—C210—C2110.2 (13)C19—N8—C20A—C19A5 (4)
C209—C210—C211—C2122.1 (12)C19A—N8—C20A—C195 (4)
C210—C211—C212—C2071.7 (11)C19—C19A—C20A—N86 (5)
C208—C207—C212—C2110.6 (9)N8A—C19A—C20A—N8175 (6)
P2—C207—C212—C211177.1 (5)C20—C19A—C20A—N87 (6)
N2—P3—C301—C30216.6 (5)N8A—C19A—C20A—C19178 (9)
C307—P3—C301—C302106.8 (4)N8—C19A—C20A—C196 (5)
C3—P3—C301—C302140.7 (4)C20—C19A—C20A—C191 (5)
N2—P3—C301—C306170.8 (4)C19A—C19—C20A—N8171 (8)
C307—P3—C301—C30665.8 (5)C20—C19—C20A—N8172 (10)
C3—P3—C301—C30646.8 (5)N8A—C19—C20A—N8171 (6)
C306—C301—C302—C3032.7 (8)N8—C19—C20A—C19A171 (8)
P3—C301—C302—C303175.3 (5)C20—C19—C20A—C19A1 (4)
C301—C302—C303—C3041.8 (10)N8A—C19—C20A—C19A0 (2)
C302—C303—C304—C3050.5 (12)N9A—C21A—C22A—C24123 (7)
C303—C304—C305—C3060.2 (11)N9A—C21A—C22A—C23167 (6)
C304—C305—C306—C3011.2 (10)C24—C22A—C23—N10170 (4)
C302—C301—C306—C3052.4 (8)C21A—C22A—C23—N1073 (5)
P3—C301—C306—C305174.9 (5)C21A—C22A—C23—C24117 (5)
N2—P3—C307—C312153.8 (4)C21A—C22A—C24—C2396 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N20.82 (5)2.15 (5)2.807 (6)138 (4)
C208—H208···N10.932.413.088 (7)130
C402—H402···N30.932.563.120 (6)119
C102—H102···Cl10.932.713.329 (5)125
C402—H402···Cl10.932.663.428 (5)140
C412—H412···Cl10.932.603.440 (5)151
C3—H3A···Cl30.972.633.563 (5)162
C105—H105···Cl3i0.932.693.586 (7)162
C408—H408···Cl30.932.823.533 (6)134
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
(4-Diazo-1,1,3,3,-tetraphenyl-1,3λ4-diphosphabut-4-yl-κP1)iodido[methylenebis(diphenylphosphine)-κ2P,P'](phenylmethanimine-κN)iridium(III) iodide–triiodide–dichloromethane–iodine–methanol (2/2/1/1/2) (4) top
Crystal data top
[IrI(C26H22N2P2)(C26H22P2)(C6H7N]I·I3·0.5I2·CH4O·0.5CH2Cl2F(000) = 7312
Mr = 1942.00Dx = 2.004 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 37.2962 (3) ÅCell parameters from 93745 reflections
b = 18.7310 (2) Åθ = 1.0–27.0°
c = 19.2348 (2) ŵ = 5.13 mm1
β = 106.631 (1)°T = 233 K
V = 12875.2 (2) Å3Prism, red
Z = 80.32 × 0.19 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.035
phi– and ω–scansθmax = 25.0°, θmin = 2.0°
40122 measured reflectionsh = 4443
11285 independent reflectionsk = 2222
10348 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.049P)2 + 158.7648P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.087
11285 reflectionsΔρmax = 1.30 e Å3
732 parametersΔρmin = 2.92 e Å3
Special details top

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces, in good approximation, semi-empirical absorption correction methods (programs such as SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen at atom at N1 was found and refined isotropically with a bond restraint of 87 pm. The I3- anion (I4–I6) is approx. 1:1 positionally disordered, as is the I- anion with an I2:I2A ratio of 9:1. The solvent dichloromethane lies nearby a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. A further disorder occurs for the solvent methanol with ratio 1:1. C- and O-atoms of methanol were refined isotropically with bond restraints of 140 pm. Hydrogen atoms at dichloromethane were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.11639 (2)0.74873 (2)0.26275 (2)0.02540 (8)
I10.04230 (2)0.71763 (2)0.20983 (2)0.03876 (12)
I30.24552 (2)0.80905 (4)0.04188 (4)0.0793 (2)
I20.23487 (3)0.96021 (5)0.13591 (5)0.0582 (2)0.9
I40.13471 (7)0.81381 (13)0.23669 (10)0.0861 (6)0.5
I50.08532 (19)0.7555 (3)0.3728 (3)0.0512 (7)0.5
I60.03254 (16)0.7100 (3)0.5087 (3)0.0634 (9)0.5
I2A0.2335 (2)0.9909 (4)0.1530 (5)0.0579 (19)0.1
I4A0.14566 (8)0.77918 (11)0.22728 (11)0.0848 (6)0.5
I5A0.0893 (2)0.7472 (4)0.3638 (4)0.0752 (19)0.5
I6A0.03306 (18)0.7104 (3)0.4957 (3)0.0895 (17)0.5
P10.13493 (4)0.63702 (9)0.22985 (9)0.0321 (3)
P20.12819 (5)0.60579 (9)0.37883 (9)0.0358 (4)
P30.12112 (4)0.81498 (9)0.16178 (8)0.0309 (3)
P40.17512 (4)0.80175 (9)0.28981 (8)0.0293 (3)
N10.09804 (14)0.8404 (3)0.3061 (3)0.0291 (11)
H1N0.1117 (15)0.877 (2)0.305 (3)0.026 (16)*
N20.1250 (2)0.7681 (4)0.4709 (3)0.0557 (18)
N30.12187 (17)0.7344 (3)0.4229 (3)0.0423 (14)
C10.11981 (18)0.6975 (3)0.3644 (3)0.0326 (13)
C20.15339 (19)0.5866 (4)0.3141 (4)0.0389 (15)
H2A0.15170.53540.30320.047*
H2B0.17990.59860.33540.047*
C30.17213 (17)0.8208 (4)0.1954 (3)0.0337 (13)
H3A0.18470.78460.17390.040*
H3B0.18160.86840.18880.040*
C40.07356 (18)0.8478 (3)0.3397 (4)0.0362 (14)
H40.05900.80760.34300.043*
C50.0662 (2)0.9138 (4)0.3734 (4)0.0449 (17)
C60.0811 (2)0.9795 (4)0.3619 (5)0.062 (2)
H60.09520.98370.32860.075*
C70.0750 (3)1.0382 (6)0.4001 (8)0.094 (4)
H70.08521.08260.39330.113*
C80.0542 (4)1.0324 (8)0.4475 (8)0.111 (6)
H80.05021.07300.47290.133*
C90.0396 (4)0.9702 (9)0.4584 (6)0.103 (5)
H90.02560.96760.49190.123*
C100.0445 (3)0.9091 (6)0.4213 (5)0.068 (3)
H100.03340.86570.42820.081*
C1010.17337 (19)0.6296 (4)0.1891 (4)0.0389 (15)
C1020.1660 (2)0.6367 (4)0.1145 (4)0.0505 (18)
H1020.14130.64460.08590.061*
C1030.1942 (3)0.6324 (5)0.0818 (5)0.065 (2)
H1030.18870.63670.03120.077*
C1040.2310 (2)0.6215 (5)0.1238 (5)0.067 (3)
H1040.25060.62010.10210.080*
C1050.2381 (2)0.6129 (5)0.1966 (5)0.067 (2)
H1050.26280.60420.22470.080*
C1060.2102 (2)0.6166 (4)0.2304 (4)0.0503 (18)
H1060.21580.61050.28090.060*
C1070.09997 (19)0.5787 (4)0.1706 (4)0.0404 (15)
C1080.0778 (2)0.6075 (4)0.1047 (4)0.0474 (17)
H1080.07900.65650.09510.057*
C1090.0540 (2)0.5625 (5)0.0535 (5)0.063 (2)
H1090.03950.58160.00910.075*
C1100.0516 (2)0.4922 (5)0.0670 (6)0.068 (3)
H1100.03570.46240.03230.081*
C1110.0726 (3)0.4647 (5)0.1316 (6)0.072 (3)
H1110.07040.41590.14100.086*
C1120.0972 (2)0.5069 (4)0.1844 (5)0.0519 (19)
H1120.11160.48670.22830.062*
C2010.1573 (2)0.5867 (4)0.4688 (4)0.0430 (16)
C2020.1415 (2)0.5952 (5)0.5260 (4)0.057 (2)
H2020.11620.60840.51660.068*
C2030.1632 (3)0.5843 (6)0.5964 (5)0.071 (3)
H2030.15270.59050.63500.085*
C2040.2000 (3)0.5643 (6)0.6103 (5)0.070 (3)
H2040.21470.55680.65840.084*
C2050.2151 (2)0.5554 (6)0.5550 (5)0.071 (3)
H2050.24040.54170.56530.085*
C2060.1944 (2)0.5660 (5)0.4832 (5)0.059 (2)
H2060.20520.55930.44520.071*
C2070.08725 (19)0.5514 (4)0.3634 (4)0.0399 (15)
C2080.0521 (2)0.5804 (4)0.3541 (4)0.0455 (17)
H2080.04880.63010.35370.055*
C2090.0217 (2)0.5345 (5)0.3453 (5)0.056 (2)
H2090.00230.55350.33860.068*
C2100.0265 (2)0.4626 (5)0.3464 (5)0.063 (2)
H2100.00560.43250.34050.076*
C2110.0607 (3)0.4338 (4)0.3558 (6)0.072 (3)
H2110.06350.38390.35550.086*
C2120.0920 (2)0.4776 (4)0.3661 (5)0.062 (2)
H2120.11600.45750.37470.074*
C3010.10947 (19)0.7897 (4)0.0665 (3)0.0362 (14)
C3020.0724 (2)0.7742 (4)0.0291 (4)0.0451 (17)
H3020.05380.77390.05350.054*
C3030.0632 (3)0.7592 (5)0.0438 (4)0.055 (2)
H3030.03830.74930.06960.066*
C3040.0905 (3)0.7588 (5)0.0795 (4)0.063 (2)
H3040.08420.74720.12910.075*
C3050.1264 (3)0.7750 (5)0.0435 (4)0.063 (2)
H3050.14480.77510.06830.076*
C3060.1364 (2)0.7917 (4)0.0309 (4)0.0477 (18)
H3060.16120.80390.05580.057*
C3070.10216 (19)0.9046 (4)0.1558 (4)0.0377 (15)
C3080.0669 (2)0.9158 (4)0.1655 (4)0.0453 (17)
H3080.05310.87690.17510.054*
C3090.0520 (3)0.9853 (5)0.1609 (5)0.064 (2)
H3090.02840.99300.16810.077*
C3100.0719 (3)1.0414 (5)0.1460 (6)0.080 (3)
H3100.06211.08780.14350.096*
C3110.1069 (3)1.0301 (5)0.1342 (6)0.071 (3)
H3110.12031.06900.12330.085*
C3120.1217 (2)0.9624 (4)0.1386 (4)0.0495 (18)
H3120.14500.95500.12990.059*
C4010.21967 (18)0.7613 (4)0.3329 (4)0.0362 (14)
C4020.22359 (19)0.7185 (4)0.3947 (4)0.0411 (15)
H4020.20300.71020.41270.049*
C4030.2585 (2)0.6886 (5)0.4288 (5)0.061 (2)
H4030.26160.66040.47050.073*
C4040.2883 (2)0.7001 (5)0.4016 (6)0.071 (3)
H4040.31170.67920.42440.085*
C4050.2841 (2)0.7413 (5)0.3419 (6)0.069 (3)
H4050.30470.74910.32380.083*
C4060.2497 (2)0.7725 (4)0.3070 (5)0.0516 (19)
H4060.24720.80120.26580.062*
C4070.17832 (16)0.8864 (3)0.3373 (3)0.0305 (13)
C4080.17667 (19)0.8850 (4)0.4097 (4)0.0403 (15)
H4080.17410.84130.43190.048*
C4090.1788 (2)0.9477 (4)0.4478 (4)0.0500 (18)
H4090.17830.94650.49630.060*
C4100.1816 (2)1.0119 (4)0.4157 (5)0.056 (2)
H4100.18231.05460.44170.068*
C4110.1834 (2)1.0139 (4)0.3462 (5)0.0527 (19)
H4110.18551.05810.32460.063*
C4120.18208 (19)0.9513 (4)0.3065 (4)0.0427 (16)
H4120.18380.95340.25870.051*
O10.1679 (7)0.4193 (12)0.3071 (17)0.102 (6)*0.5
H10.17830.42720.27510.153*0.5
C110.1643 (12)0.3480 (15)0.314 (2)0.161 (15)*0.5
H11A0.18690.32920.34770.241*0.5
H11B0.16020.32520.26730.241*0.5
H11C0.14320.33840.33280.241*0.5
O1A0.1721 (9)0.4273 (16)0.3540 (17)0.164 (11)*0.5
H1A0.18670.40080.38360.246*0.5
C11A0.1680 (13)0.403 (2)0.2844 (18)0.126 (16)*0.5
H11D0.16370.44260.25110.189*0.5
H11E0.14680.37020.27050.189*0.5
H11F0.19050.37750.28290.189*0.5
C120.0153 (9)0.1878 (19)0.240 (3)0.143 (13)0.5
Cl10.00000.2759 (3)0.25000.136 (2)
Cl20.0099 (3)0.1265 (5)0.2798 (6)0.148 (4)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02273 (13)0.02864 (14)0.02459 (13)0.00078 (8)0.00637 (9)0.00107 (8)
I10.0262 (2)0.0431 (3)0.0455 (2)0.00481 (17)0.00787 (17)0.00686 (19)
I30.0753 (4)0.0922 (5)0.0786 (4)0.0076 (4)0.0351 (4)0.0119 (4)
I20.0637 (5)0.0537 (5)0.0638 (5)0.0096 (5)0.0289 (3)0.0017 (4)
I40.1132 (16)0.0966 (15)0.0474 (8)0.0265 (13)0.0213 (8)0.0073 (10)
I50.0682 (13)0.0416 (13)0.0479 (9)0.0051 (12)0.0232 (8)0.0029 (12)
I60.0571 (15)0.0670 (19)0.0634 (11)0.0164 (13)0.0131 (9)0.0131 (12)
I2A0.052 (3)0.045 (4)0.081 (6)0.003 (4)0.026 (4)0.019 (4)
I4A0.1442 (19)0.0694 (11)0.0533 (9)0.0075 (11)0.0484 (11)0.0041 (9)
I5A0.095 (3)0.0558 (19)0.095 (4)0.0038 (14)0.059 (3)0.0079 (14)
I6A0.0633 (18)0.083 (3)0.112 (4)0.0089 (16)0.0100 (19)0.030 (2)
P10.0299 (8)0.0315 (8)0.0352 (8)0.0026 (6)0.0098 (7)0.0034 (7)
P20.0325 (9)0.0353 (9)0.0392 (9)0.0002 (7)0.0097 (7)0.0080 (7)
P30.0290 (8)0.0380 (9)0.0242 (7)0.0001 (6)0.0051 (6)0.0023 (6)
P40.0239 (8)0.0355 (8)0.0272 (7)0.0018 (6)0.0051 (6)0.0028 (6)
N10.026 (3)0.028 (3)0.032 (3)0.001 (2)0.006 (2)0.000 (2)
N20.087 (5)0.058 (4)0.021 (3)0.022 (4)0.013 (3)0.005 (3)
N30.042 (3)0.048 (3)0.039 (3)0.007 (3)0.014 (3)0.007 (3)
C10.036 (3)0.031 (3)0.031 (3)0.001 (3)0.009 (3)0.001 (3)
C20.034 (4)0.038 (4)0.044 (4)0.004 (3)0.010 (3)0.004 (3)
C30.028 (3)0.044 (4)0.030 (3)0.001 (3)0.009 (2)0.001 (3)
C40.035 (3)0.031 (3)0.040 (3)0.000 (3)0.008 (3)0.000 (3)
C50.042 (4)0.051 (4)0.037 (4)0.009 (3)0.004 (3)0.009 (3)
C60.054 (5)0.044 (5)0.081 (6)0.006 (4)0.007 (4)0.022 (4)
C70.082 (8)0.054 (6)0.125 (10)0.010 (5)0.005 (7)0.037 (6)
C80.102 (10)0.099 (10)0.110 (10)0.038 (8)0.005 (8)0.068 (9)
C90.107 (10)0.130 (12)0.075 (7)0.049 (9)0.031 (7)0.035 (8)
C100.070 (6)0.082 (6)0.055 (5)0.023 (5)0.025 (4)0.012 (5)
C1010.040 (4)0.037 (4)0.046 (4)0.002 (3)0.022 (3)0.006 (3)
C1020.046 (4)0.053 (4)0.057 (5)0.015 (3)0.023 (4)0.009 (4)
C1030.073 (6)0.073 (6)0.060 (5)0.021 (5)0.039 (5)0.026 (4)
C1040.055 (5)0.083 (6)0.078 (6)0.020 (5)0.046 (5)0.018 (5)
C1050.045 (5)0.077 (6)0.082 (6)0.016 (4)0.022 (4)0.004 (5)
C1060.043 (4)0.059 (5)0.054 (4)0.005 (3)0.020 (3)0.011 (4)
C1070.038 (4)0.035 (4)0.047 (4)0.005 (3)0.010 (3)0.013 (3)
C1080.049 (4)0.047 (4)0.043 (4)0.000 (3)0.007 (3)0.010 (3)
C1090.046 (5)0.082 (6)0.054 (5)0.003 (4)0.003 (4)0.030 (5)
C1100.047 (5)0.065 (6)0.083 (7)0.003 (4)0.006 (4)0.041 (5)
C1110.060 (6)0.035 (4)0.119 (9)0.004 (4)0.024 (6)0.024 (5)
C1120.045 (4)0.034 (4)0.073 (5)0.004 (3)0.010 (4)0.008 (4)
C2010.039 (4)0.041 (4)0.044 (4)0.003 (3)0.004 (3)0.013 (3)
C2020.046 (4)0.079 (6)0.044 (4)0.002 (4)0.013 (3)0.018 (4)
C2030.067 (6)0.096 (7)0.046 (5)0.002 (5)0.009 (4)0.019 (5)
C2040.060 (6)0.083 (7)0.057 (5)0.002 (5)0.000 (4)0.030 (5)
C2050.042 (5)0.098 (7)0.065 (6)0.008 (5)0.002 (4)0.037 (5)
C2060.043 (4)0.076 (6)0.057 (5)0.008 (4)0.012 (4)0.023 (4)
C2070.035 (4)0.036 (4)0.047 (4)0.003 (3)0.008 (3)0.008 (3)
C2080.044 (4)0.043 (4)0.052 (4)0.002 (3)0.016 (3)0.009 (3)
C2090.033 (4)0.061 (5)0.072 (5)0.003 (3)0.010 (4)0.016 (4)
C2100.050 (5)0.049 (5)0.086 (6)0.020 (4)0.014 (4)0.009 (4)
C2110.070 (6)0.033 (4)0.115 (8)0.009 (4)0.032 (6)0.010 (5)
C2120.053 (5)0.038 (4)0.094 (7)0.002 (4)0.021 (5)0.016 (4)
C3010.040 (4)0.038 (4)0.027 (3)0.006 (3)0.005 (3)0.006 (3)
C3020.046 (4)0.051 (4)0.033 (3)0.006 (3)0.003 (3)0.002 (3)
C3030.060 (5)0.065 (5)0.032 (4)0.013 (4)0.002 (4)0.002 (3)
C3040.089 (7)0.068 (6)0.028 (4)0.015 (5)0.012 (4)0.004 (4)
C3050.080 (6)0.080 (6)0.034 (4)0.005 (5)0.021 (4)0.000 (4)
C3060.054 (5)0.059 (5)0.030 (3)0.003 (4)0.012 (3)0.007 (3)
C3070.041 (4)0.033 (3)0.036 (3)0.005 (3)0.006 (3)0.006 (3)
C3080.039 (4)0.047 (4)0.048 (4)0.008 (3)0.008 (3)0.008 (3)
C3090.055 (5)0.060 (5)0.078 (6)0.023 (4)0.017 (4)0.011 (5)
C3100.088 (8)0.049 (5)0.097 (8)0.021 (5)0.020 (6)0.017 (5)
C3110.079 (7)0.042 (5)0.084 (7)0.007 (4)0.013 (5)0.018 (4)
C3120.046 (4)0.042 (4)0.055 (4)0.000 (3)0.006 (3)0.010 (3)
C4010.024 (3)0.043 (4)0.037 (3)0.002 (3)0.000 (3)0.001 (3)
C4020.034 (4)0.049 (4)0.035 (3)0.002 (3)0.001 (3)0.001 (3)
C4030.048 (5)0.062 (5)0.056 (5)0.005 (4)0.010 (4)0.005 (4)
C4040.036 (5)0.076 (6)0.086 (7)0.012 (4)0.007 (4)0.006 (5)
C4050.032 (4)0.087 (7)0.090 (7)0.008 (4)0.021 (4)0.009 (5)
C4060.033 (4)0.054 (4)0.066 (5)0.002 (3)0.011 (3)0.014 (4)
C4070.023 (3)0.031 (3)0.034 (3)0.005 (2)0.002 (2)0.001 (3)
C4080.040 (4)0.040 (4)0.038 (3)0.007 (3)0.005 (3)0.001 (3)
C4090.051 (4)0.058 (5)0.038 (4)0.002 (4)0.007 (3)0.010 (3)
C4100.054 (5)0.048 (4)0.060 (5)0.007 (4)0.006 (4)0.018 (4)
C4110.051 (5)0.037 (4)0.064 (5)0.009 (3)0.007 (4)0.003 (4)
C4120.038 (4)0.046 (4)0.039 (4)0.006 (3)0.004 (3)0.005 (3)
C120.09 (2)0.13 (3)0.23 (4)0.001 (18)0.07 (2)0.02 (3)
Cl10.166 (6)0.076 (3)0.128 (4)0.0000.020 (4)0.000
Cl20.146 (8)0.101 (5)0.163 (9)0.009 (5)0.012 (6)0.021 (5)
Geometric parameters (Å, º) top
Ir1—N12.107 (5)C205—C2061.392 (12)
Ir1—C12.150 (6)C205—H2050.9400
Ir1—P42.3241 (15)C206—H2060.9400
Ir1—P12.3468 (16)C207—C2081.381 (10)
Ir1—P32.3536 (16)C207—C2121.394 (10)
Ir1—I12.7206 (5)C208—C2091.394 (11)
I3—I3i2.8121 (16)C208—H2080.9400
I4—I52.946 (5)C209—C2101.356 (12)
I5—I62.913 (7)C209—H2090.9400
I4A—I5A2.917 (7)C210—C2111.350 (13)
I5A—I6A2.876 (9)C210—H2100.9400
P1—C1011.826 (7)C211—C2121.392 (12)
P1—C1071.828 (7)C211—H2110.9400
P1—C21.831 (7)C212—H2120.9400
P2—C11.753 (6)C301—C3061.369 (10)
P2—C2071.788 (7)C301—C3021.396 (10)
P2—C2011.796 (7)C302—C3031.374 (11)
P2—C21.797 (7)C302—H3020.9400
P3—C3071.813 (7)C303—C3041.381 (13)
P3—C3011.820 (6)C303—H3030.9400
P3—C31.829 (6)C304—C3051.353 (14)
P4—C4011.798 (7)C304—H3040.9400
P4—C4071.816 (6)C305—C3061.407 (11)
P4—C31.823 (6)C305—H3050.9400
N1—C41.267 (8)C306—H3060.9400
N1—H1N0.86 (2)C307—C3081.395 (10)
N2—N31.095 (9)C307—C3121.397 (10)
N3—C11.305 (9)C308—C3091.409 (11)
C2—H2A0.9800C308—H3080.9400
C2—H2B0.9800C309—C3101.364 (14)
C3—H3A0.9800C309—H3090.9400
C3—H3B0.9800C310—C3111.404 (15)
C4—C51.459 (9)C310—H3100.9400
C4—H40.9400C311—C3121.376 (12)
C5—C61.393 (12)C311—H3110.9400
C5—C101.394 (12)C312—H3120.9400
C6—C71.378 (14)C401—C4061.366 (10)
C6—H60.9400C401—C4021.406 (10)
C7—C81.36 (2)C402—C4031.395 (10)
C7—H70.9400C402—H4020.9400
C8—C91.33 (2)C403—C4041.376 (14)
C8—H80.9400C403—H4030.9400
C9—C101.389 (15)C404—C4051.355 (14)
C9—H90.9400C404—H4040.9400
C10—H100.9400C405—C4061.396 (12)
C101—C1021.387 (10)C405—H4050.9400
C101—C1061.396 (10)C406—H4060.9400
C102—C1031.375 (11)C407—C4121.378 (9)
C102—H1020.9400C407—C4081.412 (9)
C103—C1041.394 (13)C408—C4091.374 (10)
C103—H1030.9400C408—H4080.9400
C104—C1051.357 (13)C409—C4101.369 (12)
C104—H1040.9400C409—H4090.9400
C105—C1061.380 (11)C410—C4111.358 (12)
C105—H1050.9400C410—H4100.9400
C106—H1060.9400C411—C4121.392 (11)
C107—C1121.381 (10)C411—H4110.9400
C107—C1081.406 (10)C412—H4120.9400
C108—C1091.403 (11)O1—C111.353 (19)
C108—H1080.9400O1—H10.8300
C109—C1101.351 (14)C11—H11A0.9700
C109—H1090.9400C11—H11B0.9700
C110—C1111.365 (15)C11—H11C0.9700
C110—H1100.9400O1A—C11A1.382 (19)
C111—C1121.402 (12)O1A—H1A0.8300
C111—H1110.9400C11A—H11D0.9700
C112—H1120.9400C11A—H11E0.9700
C201—C2061.386 (11)C11A—H11F0.9700
C201—C2021.397 (11)C12—C12ii1.30 (6)
C202—C2031.379 (11)C12—Cl21.42 (4)
C202—H2020.9400C12—Cl2ii1.47 (3)
C203—C2041.374 (14)C12—Cl11.77 (4)
C203—H2030.9400Cl1—C12ii1.77 (4)
C204—C2051.349 (14)Cl2—Cl2ii1.174 (17)
C204—H2040.9400Cl2—C12ii1.47 (3)
N1—Ir1—C186.8 (2)C202—C203—H203119.9
N1—Ir1—P487.44 (14)C205—C204—C203120.0 (8)
C1—Ir1—P4100.39 (18)C205—C204—H204120.0
N1—Ir1—P1170.93 (14)C203—C204—H204120.0
C1—Ir1—P184.37 (17)C204—C205—C206121.7 (8)
P4—Ir1—P196.31 (6)C204—C205—H205119.2
N1—Ir1—P390.39 (14)C206—C205—H205119.2
C1—Ir1—P3170.90 (18)C201—C206—C205118.5 (8)
P4—Ir1—P370.80 (5)C201—C206—H206120.7
P1—Ir1—P398.63 (6)C205—C206—H206120.7
N1—Ir1—I184.97 (14)C208—C207—C212120.0 (7)
C1—Ir1—I191.96 (17)C208—C207—P2122.1 (5)
P4—Ir1—I1165.12 (4)C212—C207—P2117.8 (6)
P1—Ir1—I193.11 (4)C207—C208—C209118.8 (7)
P3—Ir1—I196.44 (4)C207—C208—H208120.6
I6—I5—I4174.7 (3)C209—C208—H208120.6
I6A—I5A—I4A177.7 (3)C210—C209—C208120.8 (8)
C101—P1—C107101.2 (3)C210—C209—H209119.6
C101—P1—C2101.5 (3)C208—C209—H209119.6
C107—P1—C2105.3 (3)C211—C210—C209120.9 (8)
C101—P1—Ir1120.8 (2)C211—C210—H210119.6
C107—P1—Ir1119.2 (2)C209—C210—H210119.6
C2—P1—Ir1106.6 (2)C210—C211—C212120.4 (8)
C1—P2—C207115.2 (3)C210—C211—H211119.8
C1—P2—C201112.2 (3)C212—C211—H211119.8
C207—P2—C201107.3 (3)C211—C212—C207119.1 (8)
C1—P2—C2101.0 (3)C211—C212—H212120.4
C207—P2—C2111.3 (3)C207—C212—H212120.4
C201—P2—C2109.7 (3)C306—C301—C302120.5 (6)
C307—P3—C301101.6 (3)C306—C301—P3119.9 (5)
C307—P3—C3108.3 (3)C302—C301—P3119.3 (5)
C301—P3—C3107.2 (3)C303—C302—C301119.2 (8)
C307—P3—Ir1114.9 (2)C303—C302—H302120.4
C301—P3—Ir1129.9 (2)C301—C302—H302120.4
C3—P3—Ir193.2 (2)C302—C303—C304120.4 (8)
C401—P4—C407102.6 (3)C302—C303—H303119.8
C401—P4—C3109.0 (3)C304—C303—H303119.8
C407—P4—C3107.8 (3)C305—C304—C303120.4 (8)
C401—P4—Ir1127.6 (2)C305—C304—H304119.8
C407—P4—Ir1114.1 (2)C303—C304—H304119.8
C3—P4—Ir194.3 (2)C304—C305—C306120.4 (9)
C4—N1—Ir1130.8 (4)C304—C305—H305119.8
C4—N1—H1N116 (4)C306—C305—H305119.8
Ir1—N1—H1N112 (4)C301—C306—C305119.0 (8)
N2—N3—C1175.8 (7)C301—C306—H306120.5
N3—C1—P2114.8 (5)C305—C306—H306120.5
N3—C1—Ir1121.4 (5)C308—C307—C312119.5 (7)
P2—C1—Ir1122.9 (3)C308—C307—P3119.7 (5)
P2—C2—P1111.8 (3)C312—C307—P3120.8 (6)
P2—C2—H2A109.3C307—C308—C309120.0 (7)
P1—C2—H2A109.3C307—C308—H308120.0
P2—C2—H2B109.3C309—C308—H308120.0
P1—C2—H2B109.3C310—C309—C308119.7 (9)
H2A—C2—H2B107.9C310—C309—H309120.1
P4—C3—P395.8 (3)C308—C309—H309120.1
P4—C3—H3A112.6C309—C310—C311120.5 (9)
P3—C3—H3A112.6C309—C310—H310119.8
P4—C3—H3B112.6C311—C310—H310119.8
P3—C3—H3B112.6C312—C311—C310120.2 (8)
H3A—C3—H3B110.1C312—C311—H311119.9
N1—C4—C5125.0 (6)C310—C311—H311119.9
N1—C4—H4117.5C311—C312—C307120.1 (8)
C5—C4—H4117.5C311—C312—H312120.0
C6—C5—C10119.6 (8)C307—C312—H312120.0
C6—C5—C4123.0 (7)C406—C401—C402119.9 (6)
C10—C5—C4117.3 (8)C406—C401—P4120.8 (6)
C7—C6—C5119.1 (11)C402—C401—P4119.2 (5)
C7—C6—H6120.5C403—C402—C401118.9 (7)
C5—C6—H6120.5C403—C402—H402120.5
C8—C7—C6120.5 (12)C401—C402—H402120.5
C8—C7—H7119.8C404—C403—C402120.3 (8)
C6—C7—H7119.8C404—C403—H403119.8
C9—C8—C7121.0 (10)C402—C403—H403119.8
C9—C8—H8119.5C405—C404—C403120.1 (8)
C7—C8—H8119.5C405—C404—H404120.0
C8—C9—C10121.4 (13)C403—C404—H404120.0
C8—C9—H9119.3C404—C405—C406121.0 (9)
C10—C9—H9119.3C404—C405—H405119.5
C9—C10—C5118.4 (11)C406—C405—H405119.5
C9—C10—H10120.8C401—C406—C405119.8 (8)
C5—C10—H10120.8C401—C406—H406120.1
C102—C101—C106118.5 (6)C405—C406—H406120.1
C102—C101—P1119.2 (5)C412—C407—C408118.6 (6)
C106—C101—P1122.3 (5)C412—C407—P4123.7 (5)
C103—C102—C101121.0 (8)C408—C407—P4117.7 (5)
C103—C102—H102119.5C409—C408—C407119.9 (7)
C101—C102—H102119.5C409—C408—H408120.1
C102—C103—C104119.9 (8)C407—C408—H408120.1
C102—C103—H103120.0C410—C409—C408120.7 (7)
C104—C103—H103120.0C410—C409—H409119.6
C105—C104—C103119.1 (7)C408—C409—H409119.6
C105—C104—H104120.5C411—C410—C409119.9 (7)
C103—C104—H104120.5C411—C410—H410120.0
C104—C105—C106121.9 (8)C409—C410—H410120.0
C104—C105—H105119.1C410—C411—C412120.9 (7)
C106—C105—H105119.1C410—C411—H411119.5
C105—C106—C101119.6 (8)C412—C411—H411119.5
C105—C106—H106120.2C407—C412—C411119.9 (7)
C101—C106—H106120.2C407—C412—H412120.0
C112—C107—C108119.3 (7)C411—C412—H412120.0
C112—C107—P1122.8 (6)C11—O1—H1109.3
C108—C107—P1117.6 (5)O1—C11—H11A109.4
C109—C108—C107119.6 (8)O1—C11—H11B109.7
C109—C108—H108120.2H11A—C11—H11B109.5
C107—C108—H108120.2O1—C11—H11C109.3
C110—C109—C108120.9 (9)H11A—C11—H11C109.5
C110—C109—H109119.6H11B—C11—H11C109.5
C108—C109—H109119.6C11A—O1A—H1A109.6
C109—C110—C111119.4 (8)O1A—C11A—H11D109.6
C109—C110—H110120.3O1A—C11A—H11E109.4
C111—C110—H110120.3H11D—C11A—H11E109.5
C110—C111—C112122.2 (8)O1A—C11A—H11F109.4
C110—C111—H111118.9H11D—C11A—H11F109.5
C112—C111—H111118.9H11E—C11A—H11F109.5
C107—C112—C111118.6 (8)C12ii—C12—Cl265 (2)
C107—C112—H112120.7C12ii—C12—Cl2ii61.6 (17)
C111—C112—H112120.7Cl2—C12—Cl2ii47.9 (13)
C206—C201—C202119.8 (7)C12ii—C12—Cl168.4 (9)
C206—C201—P2122.7 (6)Cl2—C12—Cl1126 (2)
C202—C201—P2117.5 (6)Cl2ii—C12—Cl1123.6 (19)
C203—C202—C201119.7 (8)C12—Cl1—C12ii43.1 (19)
C203—C202—H202120.2Cl2ii—Cl2—C1267.9 (18)
C201—C202—H202120.2Cl2ii—Cl2—C12ii64.2 (18)
C204—C203—C202120.3 (9)C12—Cl2—C12ii54 (2)
C204—C203—H203119.9
C207—P2—C1—N397.2 (6)C1—P2—C207—C212173.0 (6)
C201—P2—C1—N326.0 (6)C201—P2—C207—C21261.2 (8)
C2—P2—C1—N3142.8 (5)C2—P2—C207—C21258.8 (7)
C207—P2—C1—Ir193.5 (4)C212—C207—C208—C2092.0 (12)
C201—P2—C1—Ir1143.2 (4)P2—C207—C208—C209177.4 (6)
C2—P2—C1—Ir126.5 (4)C207—C208—C209—C2100.5 (13)
C1—P2—C2—P137.8 (4)C208—C209—C210—C2110.2 (15)
C207—P2—C2—P185.0 (4)C209—C210—C211—C2121.3 (17)
C201—P2—C2—P1156.4 (4)C210—C211—C212—C2072.7 (16)
C101—P1—C2—P2162.8 (4)C208—C207—C212—C2113.0 (14)
C107—P1—C2—P292.0 (4)P2—C207—C212—C211178.7 (8)
Ir1—P1—C2—P235.6 (4)C307—P3—C301—C306101.7 (6)
C401—P4—C3—P3152.6 (3)C3—P3—C301—C30611.8 (7)
C407—P4—C3—P396.7 (3)Ir1—P3—C301—C306121.4 (5)
Ir1—P4—C3—P320.3 (3)C307—P3—C301—C30273.1 (6)
C307—P3—C3—P497.6 (3)C3—P3—C301—C302173.4 (6)
C301—P3—C3—P4153.6 (3)Ir1—P3—C301—C30263.8 (6)
Ir1—P3—C3—P420.0 (3)C306—C301—C302—C3031.4 (11)
Ir1—N1—C4—C5173.5 (5)P3—C301—C302—C303176.2 (6)
N1—C4—C5—C611.2 (11)C301—C302—C303—C3040.7 (12)
N1—C4—C5—C10166.2 (7)C302—C303—C304—C3051.8 (14)
C10—C5—C6—C72.1 (13)C303—C304—C305—C3060.7 (14)
C4—C5—C6—C7175.3 (8)C302—C301—C306—C3052.4 (11)
C5—C6—C7—C81.0 (16)P3—C301—C306—C305177.2 (6)
C6—C7—C8—C90 (2)C304—C305—C306—C3011.4 (13)
C7—C8—C9—C101 (2)C301—P3—C307—C30897.5 (6)
C8—C9—C10—C51.9 (18)C3—P3—C307—C308149.8 (5)
C6—C5—C10—C92.5 (13)Ir1—P3—C307—C30847.1 (6)
C4—C5—C10—C9175.0 (8)C301—P3—C307—C31279.7 (6)
C107—P1—C101—C10247.5 (7)C3—P3—C307—C31233.0 (7)
C2—P1—C101—C102155.9 (6)Ir1—P3—C307—C312135.6 (5)
Ir1—P1—C101—C10286.7 (6)C312—C307—C308—C3092.7 (11)
C107—P1—C101—C106132.1 (6)P3—C307—C308—C309179.9 (6)
C2—P1—C101—C10623.7 (7)C307—C308—C309—C3100.9 (13)
Ir1—P1—C101—C10693.7 (6)C308—C309—C310—C3110.9 (16)
C106—C101—C102—C1031.2 (12)C309—C310—C311—C3120.8 (16)
P1—C101—C102—C103179.2 (7)C310—C311—C312—C3071.0 (14)
C101—C102—C103—C1040.7 (14)C308—C307—C312—C3112.7 (12)
C102—C103—C104—C1052.2 (15)P3—C307—C312—C311180.0 (7)
C103—C104—C105—C1061.9 (16)C407—P4—C401—C40689.6 (7)
C104—C105—C106—C1010.1 (14)C3—P4—C401—C40624.6 (7)
C102—C101—C106—C1051.6 (12)Ir1—P4—C401—C406136.1 (6)
P1—C101—C106—C105178.8 (7)C407—P4—C401—C40289.3 (6)
C101—P1—C107—C11291.0 (7)C3—P4—C401—C402156.5 (5)
C2—P1—C107—C11214.3 (7)Ir1—P4—C401—C40245.0 (7)
Ir1—P1—C107—C112133.9 (6)C406—C401—C402—C4030.4 (11)
C101—P1—C107—C10882.3 (6)P4—C401—C402—C403178.5 (6)
C2—P1—C107—C108172.4 (6)C401—C402—C403—C4040.9 (12)
Ir1—P1—C107—C10852.9 (6)C402—C403—C404—C4050.9 (15)
C112—C107—C108—C1091.5 (11)C403—C404—C405—C4060.3 (16)
P1—C107—C108—C109172.0 (6)C402—C401—C406—C4050.2 (12)
C107—C108—C109—C1101.0 (13)P4—C401—C406—C405179.1 (7)
C108—C109—C110—C1110.3 (14)C404—C405—C406—C4010.3 (15)
C109—C110—C111—C1121.2 (15)C401—P4—C407—C412108.3 (6)
C108—C107—C112—C1110.7 (12)C3—P4—C407—C4126.7 (6)
P1—C107—C112—C111172.5 (6)Ir1—P4—C407—C412110.0 (5)
C110—C111—C112—C1070.7 (14)C401—P4—C407—C40872.0 (6)
C1—P2—C201—C206106.7 (7)C3—P4—C407—C408173.0 (5)
C207—P2—C201—C206125.8 (7)Ir1—P4—C407—C40869.7 (5)
C2—P2—C201—C2064.8 (8)C412—C407—C408—C4090.1 (10)
C1—P2—C201—C20271.6 (7)P4—C407—C408—C409179.6 (6)
C207—P2—C201—C20255.9 (7)C407—C408—C409—C4101.5 (11)
C2—P2—C201—C202176.9 (6)C408—C409—C410—C4111.8 (13)
C206—C201—C202—C2031.2 (13)C409—C410—C411—C4120.6 (13)
P2—C201—C202—C203177.2 (7)C408—C407—C412—C4111.3 (10)
C201—C202—C203—C2040.7 (15)P4—C407—C412—C411178.4 (6)
C202—C203—C204—C2050.1 (16)C410—C411—C412—C4071.0 (11)
C203—C204—C205—C2060.1 (17)Cl2—C12—Cl1—C12ii30.7 (15)
C202—C201—C206—C2051.0 (13)Cl2ii—C12—Cl1—C12ii28.6 (14)
P2—C201—C206—C205177.2 (7)C12ii—C12—Cl2—Cl2ii73 (3)
C204—C205—C206—C2010.4 (15)Cl1—C12—Cl2—Cl2ii105 (3)
C1—P2—C207—C20811.5 (7)Cl2ii—C12—Cl2—C12ii73 (3)
C201—P2—C207—C208114.3 (6)Cl1—C12—Cl2—C12ii31.6 (14)
C2—P2—C207—C208125.7 (6)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C407–C412 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cg0.86 (2)2.87 (5)3.608 (6)145 (4)
C408—H408···N20.942.573.35 (1)141
C4—H4···I10.942.983.45 (1)112
C2—H2A···O10.982.253.19 (2)160
C2—H2A···O1A0.982.283.11 (3)142
C112—H112···O10.942.553.41 (3)154
C212—H212···O1A0.942.313.20 (4)159
C3—H3B···I20.983.023.89 (1)149
C106—H106···I2Aiii0.942.973.51 (1)117
C205—H205···Cgiv0.942.863.749 (9)159
Symmetry codes: (iii) x, y1, z1/2; (iv) x+1/2, y+3/2, z+1.
Selected bond distances (Å) and angles (°) for compounds 3 and 4 top
34
Ir1—C12.044 (4)Ir1—C12.150 (6)
Ir1—N32.077 (4)Ir1—N12.107 (5)
Ir1—P12.3090 (12)Ir1—P12.3468 (16)
Ir1—P42.3151 (11)Ir1—P42.3241 (15)
Ir1—Cl12.4595 (12)Ir1—P32.3536 (15)
Ir1—Cl22.4094 (11)Ir1—I12.7206 (5)
P2—C11.837 (4)P2—C11.753 (6)
N1—C11.280 (5)N3—C11.305 (9)
N1—N21.445 (5)N2—N31.095 (9)
N3—C41.270 (6)N1—C41.267 (8)
P3—N21.586 (4)
N3—Ir1—P1169.02 (11)N1—Ir1—P1170.93 (14)
P4—Ir1—Cl2176.55 (4)P4—Ir1—I1165.12 (4)
C1—Ir1—Cl1170.06 (13)C1—Ir1—P3170.90 (18)
C1—Ir1—P186.06 (12)C1—Ir1—P184.37 (17)
N1—C1—Ir1134.2 (3)P4—Ir1—P370.80 (5)
N1—C1—P2109.1 (3)N3—C1—P2114.8 (5)
P2—C1—Ir1116.4 (2)N3—C1—Ir1121.4 (5)
N1—N2—P3110.3 (3)P2—C1—Ir1122.9 (3)
C1—N1—N2117.5 (3)N2—N3—C1175.8 (7)
 

Acknowledgements

GJP thanks Dr Inge Schlapp-Hackl for technical assistance.

References

First citationAlbertin, G., Antoniutti, S., Baldan, D., Castro, J. & Garcia-Fontán, S. (2008). Inorg. Chem. 47, 742–748.  CrossRef CAS Google Scholar
First citationBaumgarten, R. J. (1967). J. Org. Chem. 32, 484–485.  CrossRef CAS Google Scholar
First citationBethell, D., Brown, M. P., Harding, M. M., Herbert, C. A., Khodaei, M. M., Rios, M. I. & Woolstencroft, K. (1992). Acta Cryst. B48, 683–687.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCampos, J., Peloso, R., Brookhart, M. & Carmona, E. (2013). Organometallics, 32, 3423–3426.  CrossRef CAS Google Scholar
First citationGalina, Yu. P., Lobov, A. N., Sultanova, R. M., Spirikhin, L. V., Dokichev, V. A. & Suponitsky, K. Yu. (2013). J. Struct. Chem. 54, 468–470.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIreland, B. J., Wheaton, C. A. & Hayes, P. G. (2010). Organometallics, 29, 1079–1084.  CrossRef CAS Google Scholar
First citationJones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307–2308.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurahashi, T., Clough, C. R., Figueroa, J. S. & Cummins, C. C. (2005). Angew. Chem. Int. Ed. 44, 2560–2563.  CrossRef CAS Google Scholar
First citationMyers, E. L. & Raines, R. T. (2009). Angew. Chem. Int. Ed. 48, 2359–2363.  CrossRef CAS Google Scholar
First citationNikolaev, V. A., Cantillo, D., Kappe, C. O., Medvedev, J. J., Prakash, G. K. & Supurgibekov, M. B. (2016). Chem. Eur. J. 22, 174–184.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPartl, G. J., Nussbaumer, F., Schlapp-Hackl, I., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2018). Acta Cryst. E74, 846–852.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPartl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2019). Acta Cryst. E75, 75–80.  CrossRef IUCr Journals Google Scholar
First citationPeng, X., Yuan, Y. & Chen, X. (2011). Acta Cryst. E67, o2683.  CrossRef IUCr Journals Google Scholar
First citationPetz, W. & Frenking, G. (2010). Topics in Organometallic Chemistry, vol. 30, edited by R. Chauvin & Y. Canac, pp. 49–92. Berlin, Heidelberg: Springer.  Google Scholar
First citationReitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503–3514.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchroen, M. & Bräse, S. (2005). Tetrahedron, 61, 12186–12192.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSotiropoulos, J.-M., Baceiredo, A. & Bertrand, G. (1987). J. Am. Chem. Soc. 109, 4711–4712.  CrossRef CAS Google Scholar
First citationStaudinger, H. & Meyer, I. (1919a). Helv. Chim. Acta, 2, 619–635.  CrossRef CAS Google Scholar
First citationStaudinger, H. & Meyer, I. (1919b). Helv. Chim. Acta, 2, 635–646.  CrossRef CAS Google Scholar
First citationSun, H., Ritch, J. S. & Hayes, P. G. (2011). Inorg. Chem. 50, 8063–8072.  CrossRef CAS Google Scholar
First citationSupurgibekov, M. B., Zakharova, V. M., Sieler, J. & Nikolaev, V. A. (2011). Tetrahedron Lett. 52, 341–345.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds