research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two stilbazole derivatives: bis­­{(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium} tetra­iodido­cadmium(II) and (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium 4-meth­­oxy­benzene­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Loyola College (Autonomous), Chennai - 600 034, India, bDepartment of Physics, St.Joseph's College (Autonomous), Trichi - 600 002, India, and cDepartment of Physics, Sacred Heart College (Autonomous), Tirupattur - 600 601, India
*Correspondence e-mail: psagayaraj@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 November 2018; accepted 26 November 2018; online 30 November 2018)

The title mol­ecular salts, (C18H23N2)2[CdI4], (I), and C18H23N2+·C7H7O4S·H2O, (II), are stilbazole, or 4-styryl­pyridine, derivatives. The cation, (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium, has a methyl group attached to pyridine ring and a diethyl amine group attached to the benzene ring. The asymmetric unit of salt (I), comprises one cationic mol­ecule and half a CdI4 dianion. The Cd atom is situated on a twofold rotation axis and has a slightly distorted tetra­hedral coordination sphere. In (II), the anion consists of a 4-meth­oxy­benzene­sulfonate and it crystallizes as a monohydrate. In both salts, the cations adopt an E configuration with respect to the C=C bond and the pyridine and benzene rings are inclined to each other by 10.7 (4)° in (I) and 4.6 (2)° in (II). In the crystals of both salts, the packing is consolidated by offset ππ stacking inter­actions involving the pyridinium and benzene rings, with centroid–centroid distances of 3.627 (4) Å in (I) and 3.614 (3) Å in (II). In the crystal of (II), a pair of 4-meth­oxy­benzene­sulfonate anions are bridged by Owater—H⋯Osulfonate hydrogen bonds, forming loops with an R24(8) motif. These four-membered units are then linked to the cations by a number of C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane.

1. Chemical context

Stilbene-based compounds have been reported to possess a wide range of biological applications including anti­bacterial (Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]) and anti­oxidant (Frombaum et al., 2012[Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269-276.]) activities. The anti­bacterial activities of a series of pyridine stilbene benzene­sulfonates have been studied against both gram-positive and gram-negative bacteria (Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]). Pyridine and its derivatives play an important role in drugs including anti­viral, anti­fungal, anti­bacterial, anti-inflammatory, anti­microbial, anti­cancer, anti­oxidant and anti­diabetic agents (Ghattas et al., 2017[Ghattas, A.-E.-B. A. G., Khodairy, A., Moustafa, H. M., Hussein, B. R. M., Farghaly, M. M. & Aboelez, M. O. (2017). Pharma. Chem. J. , 30, 652-660.]). They have a variety of biological activities and a number of such compounds are in clinical use (Altaf et al., 2015[Altaf, A. A., Shahzad, A., Gul, Z., Rasool, N., Badshah, A., Lal, B. & Khan, E. (2015). J. Drug Design Med. Chem. 1, 1-11.]). The anti­bacterial activity of pyridinium derivatives have also been studied (Chanawanno et al., 2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]). The title salts, bis­[(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium] tetra­iodido­cadmate (I)[link] and (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium 4-meth­oxy­benzene­sulfonate monohydrate (II)[link] were tested for the level of cytotoxicity and anti­cancer analysis on normal VERO and MCF-7 cells. From an MTT assay it was found that the reported compounds have IC50 values of 31.2 µg mL−1 and 125 µg mL−1, respectively, against MCF-7 cell lines, whereas the IC50 value of crystals against normal VERO cells was found to be 1000 µg mL−1. This shows that both compounds exhibit very good anti­cancer activity, which implies that they may be suitable for biomedical applications.

[Scheme 1]

2. Structural commentary

The title mol­ecular salts consist of the same cationic stilbazole derivative, (E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium. Their mol­ecular structures are illustrated in Fig. 1[link] for (I)[link] and Fig. 2[link] for (II)[link]. Salt (I)[link] crystallizes with one 4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium cation and half a [CdI4]2− anion in the asymmetric unit, the cadmium atom being located on a twofold rotation axis. The cadmium atom is surrounded by four iodine atoms with a slightly distorted tetra­hedral coordination sphere. In salt (II)[link], the anion is 4-meth­oxy­benzene­sulfonate and it crystallizes as a monohydrate. In the cations of both salts, the configuration about the C7=C8 bond is E, with the C4—C7=C8—C9 torsion angle being 179.6 (6) ° in (I)[link] and 178.7 (4)° in (II)[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure of salt (I)[link], with the atom labelling. Displacement ellipsoids drawn at the 30% probability level. [symmetry code: (i) −x, y, −z + [{1\over 2}].]
[Figure 2]
Figure 2
The mol­ecular structure of salt (II)[link], with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The dihedral angles between the mean planes of the pyridinium (N1/C2–C6) and benzene (C9–C14) rings are 10.7 (4) and 4.6 (2)° in (I)[link] and (II)[link], respectively. The C1—N1—C6—C5 torsion angles are −179.9 (7) and 179.1 (4)°, in (I)[link] and (II)[link], respectively, indicating that the methyl substituent (atom C1) at N1 is coplanar with the pyridine ring. The nitro­gen atom (N2) deviates from the benzene ring (C9–C14) plane by 0.023 (7) and 0.079 (3) Å in (I)[link] and (II)[link], respectively. The two ethyl units are orthogonal to the benzene ring, as indicated by torsion angle C17—C18—N2—C12, which is 89.1 (8)° in (I)[link] and −81.7 (5)° in (II)[link]. The title salts exhibit structural similarities with related structures, as described in the Database survey below.

3. Supra­molecular features

In the crystal of (I)[link], pairs of cations are arranged head-to-tail and the only significant inter­molecular inter­actions present are offset ππ inter­actions (Fig. 3[link]). These involve the benzene (C9–C14; centroid Cg2) and pyridine (N1/C2–C6; centroid Cg1) rings [Cg2⋯Cg1i = 3.627 (4) Å, α = 10.7 (4)°, β = 25.0°, inter­planar distances are 3.287 (3) and 3.503 (3) Å, offset = 0.941 Å, symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1].

[Figure 3]
Figure 3
The crystal packing of salt (I)[link], viewed along the b axis, showing the ππ inter­actions as double-headed blue arrows. For clarity, all of the H atoms have omitted.

In the crystal of (II)[link], a pair of 4-meth­oxy­benzene­sulfonate anions are bridged by Owater—H⋯Osulfonate hydrogen bonds, forming loops with an R42(8) graph-set motif (Table 1[link] and Fig. 4[link]). These four-membered units are then linked to the cations by a number of C—H⋯O hydrogen bonds, forming slabs lying parallel to the ab plane (Table 1[link] and Fig. 4[link]). Within the slabs there are offset ππ inter­actions present involving adjacent cations [Cg2⋯Cg1ii = 3.614 (3) Å, α = 4.6 (2)°, β = 15.5°, inter­planar distances are 3.425 (2) and 3.484 (2) Å, offset = 0.963 Å, symmetry code: (ii) x − 1, y, z].

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.85 2.06 2.891 (6) 165
O5—H5B⋯O3i 0.85 2.06 2.882 (6) 162
C3—H14⋯O5ii 0.93 2.49 3.394 (6) 163
C6—H17⋯O4iii 0.93 2.33 3.247 (6) 169
C7—H12⋯O2iv 0.93 2.58 3.476 (6) 162
C19—H19A⋯O2ii 0.96 2.53 3.423 (6) 155
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
The crystal packing of salt (II)[link], viewed along the b-axis, showing the hydrogen bonds (Table 1[link]) as dashed lines. Only the H atoms (grey balls) involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, latest update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for salts containing the title cation, 4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridin-1-ium, gave 12 hits; atomic coordinates are available for only 10 compounds. In the triiodide salt (CSD refcode EWUDUV; Tan et al., 2004[Tan, X.-J., Sun, S.-X., Yu, W.-T., Xing, D.-X., Wang, Y.-G. & Qi, C.-G. (2004). Acta Cryst. E60, o1054-o1056.]), the pyridinium and benzene rings are inclined to each other by ca 4.08°, while in the tetra­phenyl­borate salt (QECXON; Li et al., 2012[Li, D.-D., Li, R. & Li, S.-L. (2012). Acta Cryst. E68, o2694.]), the same dihedral angle is ca 14.33°, and in the iodide dihydrate salt (WOWGOE; Wang et al., 2000[Wang, X.-M., Zhou, Y.-F., Yu, W.-T., Wang, C., Fang, Q., Jiang, M.-H., Lei, H. & Wang, H.-W. (2000). J. Mater. Chem. 10, 2698-2703.]) it is ca 8.77°. The corresponding dihedral angle in salt (I)[link] is 10.7 (4)°. In the crystals of these compounds, ππ stacking inter­actions dominate, as in the crystal of (I)[link].

There is only one salt reported with the title cation and a sulfonate anion, namely the p-toluene­sulfonate monohydrate salt (IBOWIG; Zhou et al., 2004[Zhou, H.-P., Hao, F.-Y., Zhang, J.-Z., Zhao, Z.-Z., Dong, M.-L., Wu, J.-Y., Tian, Y.-P. & Fun, K.-F. (2004). Wuji Huaxue Xuebao, 20, 1165.]). Here the dihedral angle between the pyridinium and benzene rings in the cation is ca 6.88°, compared to 4.6 (2)° in salt (II)[link]. The crystal packing is very similar to that of salt (II)[link]: a pair of water mol­ecules bridge a pair of p-toluene­sulfonate anions via O—H⋯O hydrogen bonds, forming an R42(8) ring motif; these four-membered units are linked to the cations by C—H⋯O hydrogen bonds, forming a network structure.

5. Synthesis and crystallization

Compound (I)

(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl-pyridinium-iodide (0.788 g, 2 mmol) and cadmium iodide (0.732 g, 2 mmol) were dissolved in a composite solvent, 2:1 ratio of aceto­nitrile and double-distilled water. The mixture was stirred well at 343 K and then allowed to cool naturally to room temperature. The solution was filtered and the filtrate left for the solvent to slowly evaporate at room temperature. After 3–4 weeks, dark-brown block-like crystals of compound (I)[link] were obtained.

Compound (II)

(E)-4-[4-(di­ethyl­amino)­styr­yl]-1-methyl­pyridinium iodide (0.7885 g, 2 mmol) was mixed with sodium 4-meth­oxy­benzene­sulfonate (0.418 g, 2 mmol) in distilled water and heated at 373 K for 30 min. The mixture immediately yielded a grey precipitate of sodium iodide. After stirring the mixture for 30 min, the sodium iodide precipitate was removed. The filtrate was left to slowly evaporate and gave a deep-red solid. Red block-like crystals of compound (II)[link], suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in methanol after 2-3 weeks.

6. Refinement

Crystal data, data collection and structure refinement details for salts (I)[link], and (II)[link] are summarized in Table 2[link]. The hydrogen atoms were located in difference electron-density maps. During refinement they were placed in idealized positions and allowed to ride on the parent atoms: C—H = 0.93–0.97Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms. The rotation angles for the methyl groups were optimized by least-squares. In compound (II)[link], the hydrogen atoms of the water mol­ecule were treated as riding with d(O—H) = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

  (I) (II)
Crystal data
Chemical formula (C18H23N2)2[CdI4] C18H23N2+·C7H7O4S·H2O
Mr 1154.77 472.59
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 296 296
a, b, c (Å) 21.6649 (18), 14.9748 (12), 14.9744 (11) 8.2481 (6), 9.7963 (9), 15.5409 (14)
α, β, γ (°) 90, 123.621 (2), 90 94.283 (5), 101.647 (5), 99.112 (5)
V3) 4045.4 (6) 1206.93 (18)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.62 0.17
Crystal size (mm) 0.15 × 0.15 × 0.10 0.38 × 0.30 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.613, 0.713 0.940, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 37329, 5003, 2802 25709, 4253, 2396
Rint 0.070 0.167
(sin θ/λ)max−1) 0.666 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.091, 1.02 0.080, 0.161, 1.07
No. of reflections 5003 4253
No. of parameters 207 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.23, −0.87 0.30, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Bis{(E)-4-[4-(diethylamino)styryl]-1-methylpyridin-1-ium} tetraiodidocadmium(II) (I) top
Crystal data top
(C18H23N2)2[CdI4]F(000) = 2200
Mr = 1154.77Dx = 1.896 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 y cCell parameters from 5003 reflections
a = 21.6649 (18) Åθ = 1.9–28.3°
b = 14.9748 (12) ŵ = 3.62 mm1
c = 14.9744 (11) ÅT = 296 K
β = 123.621 (2)°Block, brown
V = 4045.4 (6) Å30.15 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5003 independent reflections
Radiation source: fine-focus sealed tube2802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω and φ scanθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2828
Tmin = 0.613, Tmax = 0.713k = 1919
37329 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0128P)2 + 39.5734P]
where P = (Fo2 + 2Fc2)/3
5003 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.87 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1450 (5)0.3509 (5)0.0481 (6)0.075 (2)
H1A0.16690.39540.02790.112*
H1B0.09410.36600.01870.112*
H1C0.14740.29380.02100.112*
C20.2429 (4)0.2922 (5)0.2212 (6)0.0576 (19)
H20.25680.25560.18490.069*
C30.2816 (4)0.2883 (4)0.3292 (6)0.0539 (18)
H30.32210.25010.36570.065*
C40.2626 (4)0.3397 (4)0.3867 (5)0.0456 (16)
C50.2005 (4)0.3962 (5)0.3255 (6)0.0563 (18)
H50.18470.43200.35980.068*
C60.1639 (4)0.3987 (5)0.2171 (6)0.0568 (18)
H60.12340.43650.17790.068*
C70.3041 (4)0.3361 (4)0.5024 (6)0.0536 (18)
H70.34670.30110.53760.064*
C80.2859 (4)0.3792 (4)0.5622 (6)0.0533 (18)
H80.24330.41390.52470.064*
C90.3236 (4)0.3796 (4)0.6780 (6)0.0509 (17)
C100.3910 (4)0.3350 (5)0.7473 (6)0.0554 (18)
H100.41430.30500.71930.067*
C110.4228 (4)0.3355 (5)0.8562 (6)0.0575 (19)
H110.46780.30630.90050.069*
C120.3896 (4)0.3791 (4)0.9033 (5)0.0476 (16)
C130.3215 (4)0.4221 (4)0.8322 (6)0.0534 (18)
H130.29710.45090.85920.064*
C140.2905 (4)0.4221 (5)0.7236 (6)0.0549 (18)
H140.24580.45170.67900.066*
C150.4916 (4)0.3359 (5)1.0878 (6)0.065 (2)
H15A0.49710.28331.05500.078*
H15B0.49270.31681.15060.078*
C160.5558 (5)0.3987 (6)1.1222 (7)0.094 (3)
H16A0.55640.41531.06080.142*
H16B0.60140.36941.17380.142*
H16C0.55010.45121.15370.142*
C170.3302 (4)0.3824 (6)1.0656 (7)0.080 (2)
H17A0.28890.36940.99430.120*
H17B0.31410.41961.10110.120*
H17C0.35010.32781.10490.120*
C180.3893 (4)0.4305 (5)1.0603 (6)0.066 (2)
H18A0.36840.48511.01940.079*
H18B0.42920.44701.13240.079*
N10.1855 (3)0.3468 (4)0.1655 (5)0.0519 (14)
N20.4199 (3)0.3780 (4)1.0116 (5)0.0603 (16)
Cd10.00000.51199 (4)0.25000.04358 (18)
I10.10734 (3)0.62756 (3)0.26682 (4)0.05415 (14)
I20.05786 (3)0.40088 (4)0.07160 (4)0.06612 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.095 (6)0.063 (5)0.070 (5)0.007 (5)0.047 (5)0.014 (4)
C20.063 (5)0.042 (4)0.085 (6)0.008 (4)0.052 (5)0.003 (4)
C30.056 (4)0.042 (4)0.073 (5)0.006 (3)0.041 (4)0.004 (4)
C40.049 (4)0.029 (3)0.061 (4)0.005 (3)0.031 (4)0.003 (3)
C50.063 (5)0.056 (5)0.061 (5)0.004 (4)0.041 (4)0.008 (4)
C60.053 (4)0.049 (4)0.078 (5)0.004 (3)0.042 (4)0.002 (4)
C70.057 (5)0.033 (4)0.076 (5)0.003 (3)0.041 (4)0.006 (3)
C80.048 (4)0.044 (4)0.071 (5)0.004 (3)0.035 (4)0.006 (4)
C90.043 (4)0.043 (4)0.067 (5)0.000 (3)0.031 (4)0.009 (3)
C100.055 (5)0.055 (5)0.070 (5)0.001 (4)0.043 (4)0.003 (4)
C110.048 (4)0.050 (4)0.077 (5)0.008 (3)0.036 (4)0.004 (4)
C120.046 (4)0.041 (4)0.054 (4)0.000 (3)0.027 (4)0.002 (3)
C130.050 (4)0.046 (4)0.063 (5)0.012 (3)0.031 (4)0.009 (3)
C140.048 (4)0.049 (4)0.064 (5)0.007 (3)0.028 (4)0.009 (4)
C150.058 (5)0.062 (5)0.064 (5)0.017 (4)0.027 (4)0.013 (4)
C160.060 (6)0.096 (7)0.104 (7)0.001 (5)0.031 (5)0.004 (6)
C170.070 (6)0.091 (7)0.091 (6)0.004 (5)0.052 (5)0.004 (5)
C180.061 (5)0.067 (5)0.057 (5)0.012 (4)0.025 (4)0.004 (4)
N10.056 (4)0.045 (4)0.061 (4)0.008 (3)0.037 (3)0.006 (3)
N20.049 (4)0.067 (4)0.062 (4)0.011 (3)0.030 (3)0.001 (3)
Cd10.0366 (4)0.0423 (4)0.0472 (4)0.0000.0202 (3)0.000
I10.0507 (3)0.0489 (3)0.0651 (3)0.0079 (2)0.0335 (2)0.0002 (2)
I20.0539 (3)0.0672 (4)0.0688 (3)0.0091 (3)0.0287 (3)0.0258 (3)
Geometric parameters (Å, º) top
C1—N11.468 (9)C11—H110.9300
C1—H1A0.9600C12—N21.371 (8)
C1—H1B0.9600C12—C131.409 (9)
C1—H1C0.9600C13—C141.373 (9)
C2—N11.328 (8)C13—H130.9300
C2—C31.349 (9)C14—H140.9300
C2—H20.9300C15—N21.467 (8)
C3—C41.377 (9)C15—C161.513 (10)
C3—H30.9300C15—H15A0.9700
C4—C51.414 (9)C15—H15B0.9700
C4—C71.445 (9)C16—H16A0.9600
C5—C61.356 (9)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—N11.349 (8)C17—C181.508 (10)
C6—H60.9300C17—H17A0.9600
C7—C81.328 (9)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.452 (9)C18—N21.458 (9)
C8—H80.9300C18—H18A0.9700
C9—C141.388 (9)C18—H18B0.9700
C9—C101.407 (9)Cd1—I2i2.7871 (6)
C10—C111.374 (9)Cd1—I22.7871 (6)
C10—H100.9300Cd1—I1i2.7960 (6)
C11—C121.416 (9)Cd1—I12.7961 (6)
N1—C1—H1A109.5C12—C13—H13119.5
N1—C1—H1B109.5C13—C14—C9122.4 (7)
H1A—C1—H1B109.5C13—C14—H14118.8
N1—C1—H1C109.5C9—C14—H14118.8
H1A—C1—H1C109.5N2—C15—C16112.0 (6)
H1B—C1—H1C109.5N2—C15—H15A109.2
N1—C2—C3121.6 (7)C16—C15—H15A109.2
N1—C2—H2119.2N2—C15—H15B109.2
C3—C2—H2119.2C16—C15—H15B109.2
C2—C3—C4121.5 (7)H15A—C15—H15B107.9
C2—C3—H3119.2C15—C16—H16A109.5
C4—C3—H3119.2C15—C16—H16B109.5
C3—C4—C5115.8 (6)H16A—C16—H16B109.5
C3—C4—C7121.7 (6)C15—C16—H16C109.5
C5—C4—C7122.5 (6)H16A—C16—H16C109.5
C6—C5—C4120.6 (6)H16B—C16—H16C109.5
C6—C5—H5119.7C18—C17—H17A109.5
C4—C5—H5119.7C18—C17—H17B109.5
N1—C6—C5120.8 (7)H17A—C17—H17B109.5
N1—C6—H6119.6C18—C17—H17C109.5
C5—C6—H6119.6H17A—C17—H17C109.5
C8—C7—C4124.7 (7)H17B—C17—H17C109.5
C8—C7—H7117.6N2—C18—C17113.8 (6)
C4—C7—H7117.6N2—C18—H18A108.8
C7—C8—C9128.8 (7)C17—C18—H18A108.8
C7—C8—H8115.6N2—C18—H18B108.8
C9—C8—H8115.6C17—C18—H18B108.8
C14—C9—C10117.5 (7)H18A—C18—H18B107.7
C14—C9—C8119.3 (6)C2—N1—C6119.8 (6)
C10—C9—C8123.2 (7)C2—N1—C1120.6 (6)
C11—C10—C9120.4 (7)C6—N1—C1119.6 (6)
C11—C10—H10119.8C12—N2—C18122.2 (6)
C9—C10—H10119.8C12—N2—C15122.2 (6)
C10—C11—C12122.3 (7)C18—N2—C15114.9 (6)
C10—C11—H11118.8I2i—Cd1—I2106.69 (3)
C12—C11—H11118.8I2i—Cd1—I1i111.478 (16)
N2—C12—C13121.0 (6)I2—Cd1—I1i111.895 (15)
N2—C12—C11122.7 (6)I2i—Cd1—I1111.894 (15)
C13—C12—C11116.3 (6)I2—Cd1—I1111.476 (16)
C14—C13—C12121.0 (7)I1i—Cd1—I1103.52 (3)
C14—C13—H13119.5
N1—C2—C3—C41.3 (11)C11—C12—C13—C140.9 (10)
C2—C3—C4—C50.2 (10)C12—C13—C14—C90.7 (11)
C2—C3—C4—C7179.6 (6)C10—C9—C14—C130.3 (10)
C3—C4—C5—C60.7 (10)C8—C9—C14—C13177.4 (6)
C7—C4—C5—C6178.8 (6)C3—C2—N1—C61.5 (10)
C4—C5—C6—N10.5 (11)C3—C2—N1—C1179.0 (7)
C3—C4—C7—C8175.3 (6)C5—C6—N1—C20.6 (10)
C5—C4—C7—C85.3 (10)C5—C6—N1—C1179.9 (7)
C4—C7—C8—C9179.6 (6)C13—C12—N2—C188.3 (10)
C7—C8—C9—C14173.2 (7)C11—C12—N2—C18173.6 (7)
C7—C8—C9—C103.7 (11)C13—C12—N2—C15178.4 (6)
C14—C9—C10—C111.1 (10)C11—C12—N2—C153.6 (10)
C8—C9—C10—C11178.0 (6)C17—C18—N2—C1289.1 (8)
C9—C10—C11—C120.9 (11)C17—C18—N2—C15100.2 (8)
C10—C11—C12—N2178.3 (7)C16—C15—N2—C1285.9 (9)
C10—C11—C12—C130.1 (10)C16—C15—N2—C1884.8 (8)
N2—C12—C13—C14179.1 (7)
Symmetry code: (i) x, y, z+1/2.
4-{2-[4-(Diethylamino)phenyl]ethenyl}-1-methylpyridin-1-ium 4-methoxybenzene-1-sulfonate monohydrate (II) top
Crystal data top
C18H23N2+·C7H7O4S·H2OZ = 2
Mr = 472.59F(000) = 504
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 8.2481 (6) ÅCell parameters from 4253 reflections
b = 9.7963 (9) Åθ = 3.0–25.0°
c = 15.5409 (14) ŵ = 0.17 mm1
α = 94.283 (5)°T = 296 K
β = 101.647 (5)°Block, red
γ = 99.112 (5)°0.38 × 0.30 × 0.18 mm
V = 1206.93 (18) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4253 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.167
ω and φ scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.940, Tmax = 0.969k = 1111
25709 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.3526P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4253 reflectionsΔρmax = 0.30 e Å3
306 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.8223 (5)0.6523 (6)0.4728 (3)0.0666 (16)
H16A1.86910.57250.45750.100*
H16B1.83680.66720.53590.100*
H16C1.87880.73270.45220.100*
C21.5563 (5)0.7352 (5)0.4278 (3)0.0565 (14)
H151.61370.82360.45190.068*
C31.3901 (5)0.7177 (5)0.3904 (3)0.0505 (13)
H141.33550.79380.38930.061*
C41.3003 (5)0.5865 (5)0.3536 (3)0.0360 (11)
C51.3915 (5)0.4783 (5)0.3598 (3)0.0444 (12)
H181.33670.38830.33790.053*
C61.5597 (5)0.5008 (5)0.3973 (3)0.0466 (12)
H171.61800.42680.39940.056*
C71.1240 (5)0.5583 (5)0.3109 (3)0.0409 (11)
H121.07410.46560.29430.049*
C81.0267 (5)0.6531 (5)0.2931 (3)0.0400 (11)
H111.07700.74550.31090.048*
C90.8504 (5)0.6276 (5)0.2488 (3)0.0346 (10)
C100.7625 (5)0.7379 (4)0.2380 (3)0.0392 (11)
H90.81970.82770.25850.047*
C110.5938 (5)0.7186 (4)0.1981 (3)0.0377 (11)
H60.54040.79510.19140.045*
C120.5027 (5)0.5848 (4)0.1678 (3)0.0342 (10)
C130.5919 (5)0.4738 (4)0.1788 (3)0.0375 (11)
H70.53540.38350.15920.045*
C140.7586 (5)0.4953 (4)0.2173 (3)0.0368 (11)
H80.81300.41920.22280.044*
C150.2459 (5)0.6762 (5)0.1087 (3)0.0469 (12)
H2A0.28450.75250.15570.056*
H2B0.12650.64580.10440.056*
C160.2708 (7)0.7292 (5)0.0234 (3)0.0673 (15)
H1A0.38780.76560.02820.101*
H1B0.20630.80160.01090.101*
H1C0.23430.65450.02360.101*
C170.2467 (6)0.3604 (5)0.0164 (3)0.0712 (16)
H3A0.19960.41550.02750.107*
H3B0.18480.26690.00450.107*
H3C0.36220.35980.01460.107*
C180.2363 (5)0.4213 (5)0.1064 (3)0.0510 (13)
H4A0.11930.42310.10700.061*
H4B0.27650.36100.14960.061*
C190.9837 (5)0.9933 (6)0.8722 (3)0.0708 (17)
H19A0.99360.91360.83510.106*
H19B1.07601.01140.92270.106*
H19C0.98541.07260.83950.106*
C200.6835 (5)0.9375 (4)0.8384 (3)0.0351 (10)
C210.5389 (5)0.9182 (4)0.8707 (3)0.0396 (11)
H210.54540.92660.93130.048*
C220.3847 (5)0.8864 (4)0.8129 (3)0.0393 (11)
H220.28730.87150.83490.047*
C230.3731 (5)0.8764 (4)0.7233 (3)0.0348 (10)
C240.5190 (6)0.8983 (5)0.6920 (3)0.0495 (12)
H240.51210.89180.63130.059*
C250.6738 (5)0.9292 (5)0.7482 (3)0.0467 (12)
H250.77100.94440.72610.056*
N11.6404 (4)0.6282 (4)0.4310 (2)0.0452 (10)
N20.3330 (4)0.5618 (4)0.1330 (2)0.0407 (9)
O10.8308 (3)0.9673 (3)0.90069 (18)0.0489 (8)
O20.0530 (4)0.7905 (4)0.6988 (2)0.0754 (11)
O30.1484 (4)0.9579 (4)0.6101 (3)0.0907 (14)
O40.1904 (4)0.7254 (4)0.5852 (2)0.0862 (13)
O50.1888 (5)0.9840 (5)0.4312 (3)0.0791 (12)
H5A0.19150.96780.48440.119*
H5B0.09030.99510.40700.119*
S10.17473 (14)0.83367 (13)0.64771 (8)0.0441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.110 (5)0.057 (3)0.013 (3)0.004 (2)0.013 (3)
C20.040 (3)0.057 (4)0.064 (3)0.000 (2)0.003 (2)0.004 (3)
C30.038 (3)0.047 (3)0.066 (3)0.012 (2)0.007 (2)0.005 (3)
C40.031 (2)0.049 (3)0.031 (2)0.008 (2)0.0116 (19)0.006 (2)
C50.041 (3)0.050 (3)0.040 (3)0.010 (2)0.008 (2)0.003 (2)
C60.043 (3)0.068 (4)0.032 (3)0.023 (3)0.009 (2)0.002 (2)
C70.031 (2)0.053 (3)0.038 (3)0.008 (2)0.0069 (19)0.001 (2)
C80.037 (2)0.046 (3)0.038 (3)0.002 (2)0.011 (2)0.007 (2)
C90.032 (2)0.043 (3)0.029 (2)0.007 (2)0.0075 (18)0.004 (2)
C100.039 (2)0.029 (3)0.046 (3)0.002 (2)0.007 (2)0.002 (2)
C110.036 (2)0.032 (3)0.047 (3)0.013 (2)0.009 (2)0.004 (2)
C120.033 (2)0.038 (3)0.032 (2)0.007 (2)0.0063 (18)0.007 (2)
C130.037 (2)0.028 (3)0.045 (3)0.0047 (19)0.006 (2)0.006 (2)
C140.039 (2)0.037 (3)0.037 (3)0.014 (2)0.007 (2)0.006 (2)
C150.037 (2)0.049 (3)0.056 (3)0.016 (2)0.007 (2)0.003 (3)
C160.091 (4)0.057 (4)0.060 (4)0.033 (3)0.013 (3)0.015 (3)
C170.080 (4)0.060 (4)0.060 (4)0.005 (3)0.007 (3)0.000 (3)
C180.040 (3)0.048 (3)0.062 (3)0.011 (2)0.003 (2)0.007 (3)
C190.035 (3)0.104 (5)0.066 (4)0.000 (3)0.007 (2)0.003 (3)
C200.037 (2)0.030 (3)0.037 (3)0.0075 (19)0.004 (2)0.006 (2)
C210.044 (3)0.041 (3)0.034 (3)0.010 (2)0.008 (2)0.002 (2)
C220.035 (2)0.039 (3)0.043 (3)0.007 (2)0.007 (2)0.005 (2)
C230.041 (2)0.029 (3)0.035 (3)0.0110 (19)0.0020 (19)0.006 (2)
C240.060 (3)0.058 (3)0.032 (3)0.012 (2)0.009 (2)0.008 (2)
C250.041 (3)0.053 (3)0.046 (3)0.004 (2)0.010 (2)0.010 (2)
N10.0282 (19)0.066 (3)0.041 (2)0.011 (2)0.0063 (17)0.003 (2)
N20.0310 (18)0.033 (2)0.055 (2)0.0067 (16)0.0003 (16)0.0042 (18)
O10.0372 (17)0.060 (2)0.0427 (19)0.0038 (15)0.0012 (14)0.0009 (16)
O20.0422 (19)0.102 (3)0.073 (3)0.0049 (19)0.0002 (18)0.002 (2)
O30.084 (3)0.063 (3)0.108 (3)0.019 (2)0.032 (2)0.032 (2)
O40.057 (2)0.106 (3)0.078 (3)0.031 (2)0.0189 (18)0.047 (2)
O50.071 (2)0.094 (3)0.088 (3)0.035 (2)0.032 (2)0.025 (3)
S10.0407 (7)0.0404 (8)0.0454 (7)0.0147 (5)0.0075 (5)0.0015 (6)
Geometric parameters (Å, º) top
C1—N11.484 (5)C15—H2B0.9700
C1—H16A0.9600C16—H1A0.9600
C1—H16B0.9600C16—H1B0.9600
C1—H16C0.9600C16—H1C0.9600
C2—N11.344 (6)C17—C181.503 (6)
C2—C31.354 (6)C17—H3A0.9600
C2—H150.9300C17—H3B0.9600
C3—C41.395 (6)C17—H3C0.9600
C3—H140.9300C18—N21.461 (5)
C4—C51.393 (5)C18—H4A0.9700
C4—C71.445 (5)C18—H4B0.9700
C5—C61.367 (5)C19—O11.411 (5)
C5—H180.9300C19—H19A0.9600
C6—N11.332 (5)C19—H19B0.9600
C6—H170.9300C19—H19C0.9600
C7—C81.329 (5)C20—O11.367 (4)
C7—H120.9300C20—C211.377 (5)
C8—C91.452 (5)C20—C251.383 (6)
C8—H110.9300C21—C221.375 (5)
C9—C141.392 (5)C21—H210.9300
C9—C101.395 (5)C22—C231.372 (5)
C10—C111.381 (5)C22—H220.9300
C10—H90.9300C23—C241.379 (6)
C11—C121.399 (5)C23—S11.779 (4)
C11—H60.9300C24—C251.368 (6)
C12—N21.371 (5)C24—H240.9300
C12—C131.409 (5)C25—H250.9300
C13—C141.360 (5)O2—S11.434 (4)
C13—H70.9300O3—S11.418 (3)
C14—H80.9300O4—S11.423 (3)
C15—N21.457 (5)O5—H5A0.8498
C15—C161.500 (6)O5—H5B0.8501
C15—H2A0.9700
N1—C1—H16A109.5C15—C16—H1C109.5
N1—C1—H16B109.5H1A—C16—H1C109.5
H16A—C1—H16B109.5H1B—C16—H1C109.5
N1—C1—H16C109.5C18—C17—H3A109.5
H16A—C1—H16C109.5C18—C17—H3B109.5
H16B—C1—H16C109.5H3A—C17—H3B109.5
N1—C2—C3121.8 (4)C18—C17—H3C109.5
N1—C2—H15119.1H3A—C17—H3C109.5
C3—C2—H15119.1H3B—C17—H3C109.5
C2—C3—C4120.6 (4)N2—C18—C17114.1 (4)
C2—C3—H14119.7N2—C18—H4A108.7
C4—C3—H14119.7C17—C18—H4A108.7
C5—C4—C3115.8 (4)N2—C18—H4B108.7
C5—C4—C7119.7 (4)C17—C18—H4B108.7
C3—C4—C7124.5 (4)H4A—C18—H4B107.6
C6—C5—C4121.7 (4)O1—C19—H19A109.5
C6—C5—H18119.1O1—C19—H19B109.5
C4—C5—H18119.1H19A—C19—H19B109.5
N1—C6—C5120.3 (4)O1—C19—H19C109.5
N1—C6—H17119.9H19A—C19—H19C109.5
C5—C6—H17119.9H19B—C19—H19C109.5
C8—C7—C4125.8 (4)O1—C20—C21115.6 (4)
C8—C7—H12117.1O1—C20—C25124.2 (4)
C4—C7—H12117.1C21—C20—C25120.1 (4)
C7—C8—C9126.9 (4)C22—C21—C20119.8 (4)
C7—C8—H11116.6C22—C21—H21120.1
C9—C8—H11116.6C20—C21—H21120.1
C14—C9—C10116.4 (4)C23—C22—C21120.8 (4)
C14—C9—C8123.3 (4)C23—C22—H22119.6
C10—C9—C8120.3 (4)C21—C22—H22119.6
C11—C10—C9122.5 (4)C22—C23—C24118.8 (4)
C11—C10—H9118.8C22—C23—S1121.3 (3)
C9—C10—H9118.8C24—C23—S1119.9 (3)
C10—C11—C12120.5 (4)C25—C24—C23121.5 (4)
C10—C11—H6119.8C25—C24—H24119.3
C12—C11—H6119.8C23—C24—H24119.3
N2—C12—C11121.7 (4)C24—C25—C20119.1 (4)
N2—C12—C13121.3 (4)C24—C25—H25120.5
C11—C12—C13116.9 (4)C20—C25—H25120.5
C14—C13—C12121.7 (4)C6—N1—C2119.9 (4)
C14—C13—H7119.2C6—N1—C1120.3 (4)
C12—C13—H7119.2C2—N1—C1119.9 (4)
C13—C14—C9122.1 (4)C12—N2—C15121.1 (3)
C13—C14—H8118.9C12—N2—C18121.6 (3)
C9—C14—H8118.9C15—N2—C18116.6 (3)
N2—C15—C16114.5 (4)C20—O1—C19118.6 (3)
N2—C15—H2A108.6H5A—O5—H5B109.4
C16—C15—H2A108.6O3—S1—O4113.3 (3)
N2—C15—H2B108.6O3—S1—O2111.9 (2)
C16—C15—H2B108.6O4—S1—O2113.0 (2)
H2A—C15—H2B107.6O3—S1—C23105.6 (2)
C15—C16—H1A109.5O4—S1—C23105.90 (19)
C15—C16—H1B109.5O2—S1—C23106.5 (2)
H1A—C16—H1B109.5
N1—C2—C3—C40.1 (7)C22—C23—C24—C250.1 (7)
C2—C3—C4—C51.2 (7)S1—C23—C24—C25179.0 (4)
C2—C3—C4—C7178.7 (4)C23—C24—C25—C200.5 (7)
C3—C4—C5—C61.9 (6)O1—C20—C25—C24179.9 (4)
C7—C4—C5—C6178.0 (4)C21—C20—C25—C241.5 (7)
C4—C5—C6—N11.5 (7)C5—C6—N1—C20.2 (6)
C5—C4—C7—C8173.2 (4)C5—C6—N1—C1179.1 (4)
C3—C4—C7—C86.7 (7)C3—C2—N1—C60.5 (7)
C4—C7—C8—C9178.7 (4)C3—C2—N1—C1179.8 (4)
C7—C8—C9—C140.9 (7)C11—C12—N2—C1513.1 (6)
C7—C8—C9—C10177.3 (4)C13—C12—N2—C15170.1 (4)
C14—C9—C10—C110.2 (6)C11—C12—N2—C18176.2 (4)
C8—C9—C10—C11178.5 (4)C13—C12—N2—C180.6 (6)
C9—C10—C11—C121.1 (6)C16—C15—N2—C1277.0 (5)
C10—C11—C12—N2175.9 (4)C16—C15—N2—C1894.1 (5)
C10—C11—C12—C131.1 (6)C17—C18—N2—C1281.7 (5)
N2—C12—C13—C14176.7 (4)C17—C18—N2—C1589.4 (5)
C11—C12—C13—C140.3 (6)C21—C20—O1—C19177.8 (4)
C12—C13—C14—C90.6 (6)C25—C20—O1—C190.9 (6)
C10—C9—C14—C130.6 (6)C22—C23—S1—O3108.6 (4)
C8—C9—C14—C13177.6 (4)C24—C23—S1—O372.3 (4)
O1—C20—C21—C22179.3 (4)C22—C23—S1—O4131.0 (4)
C25—C20—C21—C222.0 (6)C24—C23—S1—O448.1 (4)
C20—C21—C22—C231.3 (6)C22—C23—S1—O210.4 (4)
C21—C22—C23—C240.3 (6)C24—C23—S1—O2168.6 (4)
C21—C22—C23—S1179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.852.062.891 (6)165
O5—H5B···O3i0.852.062.882 (6)162
C3—H14···O5ii0.932.493.394 (6)163
C6—H17···O4iii0.932.333.247 (6)169
C7—H12···O2iv0.932.583.476 (6)162
C19—H19A···O2ii0.962.533.423 (6)155
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge Dr P. K. Sudadevi Antharjanam, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

Funding information

PA acknowledges the University Grants Commission, New Delhi, India for MANF (Ref. No: F1–17.1/2017–18/MANF-2017–18-KER-83185), funding this research work. The authors acknowledge the DST–SERB (SR/S2/LOP-29/2013) India, for funding this research work.

References

First citationAltaf, A. A., Shahzad, A., Gul, Z., Rasool, N., Badshah, A., Lal, B. & Khan, E. (2015). J. Drug Design Med. Chem. 1, 1–11.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269–276.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhattas, A.-E.-B. A. G., Khodairy, A., Moustafa, H. M., Hussein, B. R. M., Farghaly, M. M. & Aboelez, M. O. (2017). Pharma. Chem. J. , 30, 652–660.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, D.-D., Li, R. & Li, S.-L. (2012). Acta Cryst. E68, o2694.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, X.-J., Sun, S.-X., Yu, W.-T., Xing, D.-X., Wang, Y.-G. & Qi, C.-G. (2004). Acta Cryst. E60, o1054–o1056.  CrossRef IUCr Journals Google Scholar
First citationWang, X.-M., Zhou, Y.-F., Yu, W.-T., Wang, C., Fang, Q., Jiang, M.-H., Lei, H. & Wang, H.-W. (2000). J. Mater. Chem. 10, 2698–2703.  CrossRef Google Scholar
First citationZhou, H.-P., Hao, F.-Y., Zhang, J.-Z., Zhao, Z.-Z., Dong, M.-L., Wu, J.-Y., Tian, Y.-P. & Fun, K.-F. (2004). Wuji Huaxue Xuebao, 20, 1165.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds