research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of two imidazo[1,2-a]pyridine derivatives: N-tert-butyl-2-(4-meth­­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Misrimal Navajee Munoth Jain Engineering College, Chennai 600 097, India, bOrganic & Bio-organic Chemistry Laboratory, Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 October 2018; accepted 22 November 2018; online 30 November 2018)

In the title imidazo[1,2-a]pyridine derivatives, N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine, C19H23N3O, (I), and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine, C19H24N4, (II), the 4-meth­oxy­phenyl ring in (I) and the 4-(di­methyl­amino)­phenyl ring in (II) are inclined to the respective imidazole rings by 26.69 (9) and 31.35 (10)°. In the crystal of (I), mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the [001] direction. The chains are linked by C—H⋯π inter­actions, forming layers parallel to the (010) plane. In (II), the crystal packing also features N—H⋯N hydrogen bonds, which together with C—H⋯N hydrogen bonds link mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯π inter­actions to form layers parallel to the (100) plane. Inversion-related layers are linked by offset ππ inter­actions [inter­centroid distance = 3.577 (1) Å]. The inter­molecular inter­actions of both compounds were analyzed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

1. Chemical context

Imidazoles are heterocyclic compounds which show important pharmacological and biochemical properties. They exhibit anti-fungal (Banfi et al., 2006[Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76-84.]), anti-bacterial (Jackson et al., 2000[Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.]), anti-tumour (Dooley et al., 1992[Dooley, S. W., Jarvis, W. R., Martone, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257-259.]; Cui et al., 2003[Cui, B., Zheng, B. L., He, K. & Zheng, Q. Y. (2003). J. Nat. Prod. 66, 1101-1103.]), anti-protozoal (Biftu et al., 2006[Biftu, T., Feng, D., Fisher, M., Liang, G. B., Qian, X., Scribner, A., Dennis, R., Lee, S., Liberator, P. A., Brown, C., Gurnett, A., Leavitt, P. S., Thompson, D., Mathew, J., Misura, A., Samaras, S., Tamas, T., Sina, J. F., McNulty, K. A., McKnight, C. G., Schmatz, D. M. & Wyvratt, M. (2006). Bioorg. Med. Chem. Lett. 16, 2479-2483.]), anti-herpes (Gudmundsson & Johns, 2007[Gudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735-2739.]), anti-inflammatory (Rupert et al., 2003[Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347-350.]), anti-ulcerative, anti-hypertensive, anti-histaminic and anti-helminthic properties (Spasov et al., 1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]). They also exhibit different therapeutic (Silvestre et al., 1998[Silvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598-601.]; Lhassani et al., 1999[Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271-274.]; Ertl et al., 2000[Ertl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714-3717.]) and fluorescence properties (Kawai et al., 2001[Kawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23-32.]; Abdullah, 2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]). Imidazo[1,2-a]pyridines have been shown to be highly active against human cytomegalovirus and varicella-zoster virus (Gueffier et al., 1998[Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108-5112.]; Mavel et al., 2002[Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941-946.]). In the present study, we report the synthesis, the single crystal X-ray diffraction studies, and Hirshfeld surface analysis of two new novel imidazole derivatives, N-tert-butyl-2-(4-meth­oxy­phen­yl)-5-methyl­imidazo[1,2-a]pyridin-3-amine, (I)[link], and N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyridin-3-amine, (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link], and that of compound (II)[link] in Fig. 2[link]. The overall conformation of the two mol­ecules is similar, as shown in the structural overlap drawing, Fig. 3[link]. In compound (I)[link], the imidazole ring system is planar with an r.m.s deviation of 0.062 Å and a maximum deviation of 0.071 (2) Å for atom C1. In compound (II)[link], the imidazole ring system is planar with an r.m.s deviation of 0.029 Å and a maximum deviation of 0.031 (2) Å for atom N2. In (I)[link] the pyridine ring (N2/C1–C5) of the imidazole ring system makes a dihedral angle of 4.91 (11)° with the five-membered ring (N2/N3/C5–C7), while the corresponding angle in (II)[link] is 2.90 (13)°. In both compounds, the difference in endocyclic angles [129.27 (19)° for bond angle C4—C5—N3 and 132.33 (17)° for bond angle C1—N2—C6 in compound (I)[link], and 131.1 (2) and 130.4 (2)°, respectively, in compound (II)] of the imidazole ring systems are due to the merging of five- and six-membered rings and the strain is taken up by angular distortion rather than by bond length distortion.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A structural overlap view of mol­ecules (I)[link] and (II)[link].

The dihedral angle between the pyridine (N2/C1–C5) and the benzene (C8–C13) rings is 25.04 (10)° in (I)[link] and 31.11 (12) ° in (II)[link]. In (I)[link] the meth­oxy group (C11/O1/C14) lies in the plane of the benzene ring (C8–C13) to which it is attached, with a dihedral angle of 0.6 (2)°. In (II)[link] the di­methyl­amine group (N4/C14/C15) also lies close to the plane of the benzene ring (C8–C13) with a dihedral angle of 1.42 (19)°. The dihedral angle between atoms N1/C16/C18 and the imidazole ring mean plane is 80.28 (19)° in (I)[link] and 84.6 (2)° in (II)[link]. The sum of the bond angles around atom N2 is 359.87 ° in (I)[link], and the sums around atoms N2 and N4 in (II)[link] are 359.85 and 360.0°, respectively, indicating sp2 hybridization. In compound (I)[link] the torsion angles C10—C9—C8—C7 and C18—C16—N1—C6 are −178.9 (2) and 170.52 (18)°, respectively, while the corresponding torsion angles in compound (II)[link] are −177.9 (2) and 179.4 (2)°, respectively. This shows that for both compounds the imidazole ring is (−) anti­periplanar with the benzene ring and (+) anti­periplanar with the side-chain atoms N1, C16 and C18.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by N1—H1A⋯N3i hydrogen bonds (Table 1[link]), forming C(8) chains propagating along the c-axis direction, as shown in Fig. 4[link]. The chains are linked by C—H⋯π inter­actions, forming layers lying parallel to the ac plane (Fig. 4[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg4 is the centroid of the imidazole ring system N2/N3/C1–C7.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.84 (2) 2.41 (2) 3.226 (2) 163.6 (19)
C14—H14ACg4ii 0.96 2.93 3.862 (3) 165
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link] viewed along the b axis, showing the inter­molecular N—H⋯N hydrogen bonds as dashed lines (Table 1[link]). The C—H⋯π inter­actions are also represented by cyan dashed lines (Table 1[link]).

In the crystal of (II)[link], mol­ecules are linked by N1—H1A⋯N3i and C13—H13⋯N3i hydrogen bonds (Table 2[link]), forming chains propagating along the [001] direction, as shown in Fig. 5[link]. The chains are also linked by C—H⋯π inter­actions, forming layers lying parallel to the bc plane (Fig. 5[link], Table 2[link]). Inversion-related layers are linked by offset ππ inter­actions involving the pyridine ring of the imidazole ring system: Cg2⋯Cg2iii = 3.577 (1) Å, Cg2 is the centroid of the pyridine ring (N2/C1–C5), α = 0.0 (1)°, β = 22.3°, inter­planar distance = 3.309 (1) Å, offset = 1.357 Å; symmetry code (iii) −x + 1, −y + 1, −z + 1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 is the centroid of benzene ring C8–C13.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 (3) 2.56 (3) 3.412 (3) 167 (2)
C13—H13⋯N3i 0.93 2.57 3.467 (3) 161
C19—H19BCg3ii 0.96 2.87 3.829 (4) 174
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y-1, z.
[Figure 5]
Figure 5
The crystal packing of compound (II)[link] viewed along the a axis, showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds and C—H⋯π inter­actions as dashed lines (Table 2[link]).

4. Hirshfeld Surface Analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compounds, using the software CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]). The bright-red spots on the Hirshfeld surface mapped over dnorm [Fig. 6[link](a) and 7(a)], show the presence of N—H⋯N and C—H⋯ N inter­actions with neighbouring mol­ecules. The surfaces mapped over the electrostatic potential are illustrated in Fig. 6[link](b) and 7(b), while Fig. 6[link](c) and 7(c) show the inter­molecular contacts. The presence of red and blue triangles on the shape index map [Fig. 7[link](d)], indicates the presence of ππ stacking inter­actions in compound (II)[link], and their absence in Fig. 6[link](d) shows that such inter­actions are absent in compound (I)[link]. The large flat region in Fig. 7[link](e), shown on the curvature map, confirms the presence of C—H⋯π inter­actions in compound (II)[link]. The fragment patches on the Hirshfeld surface [Figs. 6[link](f) and 7(f)[link]] show the coordination environments of the mol­ecules. The complete two-dimensional fingerprint plots are shown in Fig. 8[link](a) and 9(a). The H⋯H, C⋯H, N⋯H, C⋯N, H⋯O and C⋯C inter­actions are illustrated in Fig. 8[link](b)–8(e) for (I)[link] and Fig. 9[link](b)–9(e) for (II)[link]. The H⋯H inter­actions make the largest contributions [Fig. 8[link](b) and 9(b)] to the overall Hirshfeld surfaces [68.3% for compound (I)[link] and 71.6% for compound (II)]. The C⋯H inter­actions appear as two wings in the fingerprint plot [Fig. 8[link](c) and 9(c)], showing a contribution of 18.2% for compound (I)[link] and 17.7% for compound (II)[link] of the Hirshfeld surfaces. The contribution from the N⋯H contacts, corresponding to C—H⋯N inter­actions, is represented by a pair of sharp spikes with a contribution of 7.1% for compound (I)[link] and 8.2% for compound (II)[link] of the Hirshfeld surfaces [Fig. 8[link](d) and 9(d)]. The H⋯O contacts have a contribution of 5.4% of the Hirshfeld surface for compound (I)[link]. The C⋯C contacts, which refers to ππ inter­actions, contribute 1.8% of the Hirshfeld surfaces for compound (II)[link]. This can be seen in the shape of a butterfly at de = di 1.7Å [Fig. 9[link](e)].

[Figure 6]
Figure 6
View of the Hirshfeld surface for compound (I)[link], mapped over: (a) dnorm; (b) electrostatic potential; (c) inter­molecular contacts; (d) shape index; (e) curvature; (f) fragment patches.
[Figure 7]
Figure 7
View of the Hirshfeld surface for compound (II)[link], mapped over: (a) dnorm; (b) electrostatic potential; (c) inter­molecular contacts; (d) shape index; (e) curvature; (f) fragment patches.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for compound (I)[link]: (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) C⋯·H contacts; (d) H⋯ N contacts; (e) H⋯O contacts.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for compound (II)[link]: (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) H⋯C contacts; (d) N⋯ H contacts; (e) C⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 29 hits for substructure imidazo[1,2-a]pyridin-3-amine and 16 hits for 5-methyl imidazo[1,2-a]pyridin-3-amine. Two compounds, (5-methyl­imidazo-[1,2-a]pyridin-2-yl)methanol (CSD refcode PONVUL; Elaatiaoui et al., 2014[Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189-o1190.]), and ethyl 5-methyl­imidazo[1,2-a]pyridine-2-carboxyl­ate (DUSWOE; Yao et al., 2010[Yao, J., Wang, L., Guo, B., An, K. & Guan, J. (2010). Acta Cryst. E66, o1999.]) are close analogues of compound (I)[link]. A third compound, (E)-2-phenyl-N-(thio­phen-2-yl­methyl­idene)-imidazo[1,2-a]pyridin-3-amine (OLEBOY; Elaatiaoui et al., 2016[Elaatiaoui, A., Elkalai, F., Benchat, N., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160723.]), is a close analogue of compound (II)[link]. The crystal packing of compounds (I)[link] and (II)[link] are stabilized by N—H⋯N, C—H⋯N and C—H⋯π inter­actions, but the above mentioned crystal structures exhibit in general C—H⋯O, O—H⋯N and ππ inter­actions.

An inter­esting pyrazine analogue of compound (II)[link] has been reported, i.e. N-tert-butyl-2-[4-(di­methyl­amino)­phen­yl]imidazo[1,2-a]pyrazin-3-amine (WIGKOO; Fatima et al., 2013[Fatima, Z., Srinivasan, T., Koorathota, S., Thennarasu, S. & Velmurugan, D. (2013). Acta Cryst. E69, o612-o613.]). Here the pyrazine and benzene rings are inclined to each other by 16.96 (7)°, compared to the corresponding dihedral angle of 31.11 (12)° involving the pyridine and benzene rings in (II)[link]. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains along [010], which in turn are linked by C—H⋯N hydrogen bonds forming layers parallel to the ab plane. This is very similar to the crystal-packing arrangement observed for compound (II)[link].

6. Synthesis and crystallization

Compound (I)

5-Methyl-2-amino­pyridine (10 mmol) and 4-meth­oxy­benzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that had formed was filtered off and purified further using silica-gel column chromatography to give a white solid in 60% yield.

Compound (II)

2-Amino­pyridine (10 mmol) and 4-(di­methyl­amino) benzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that formed was filtered off and purified further using silica-gel column chromatography to give a yellow solid (yield 0.282 g, 91%).

Spectroscopic data: NMR spectra were recorded on a Bruker 400 MHz NMR spectrophotometer in CdCl3 and chemical shifts were recorded in parts per million relative to tetra­methyl­silane (TMS), used as an inter­nal standard.

Compound (I)

1H NMR (400 MHz, CDCl3) δ = 8.57 (ddd, J = 4.9, 1.8, 0.9, 1H), 8.14 (dt, J = 8.0, 1.0, 1H), 7.77 (td, J = 7.7, 1.8, 1H), 7.40 (d, J = 9.0, 1H), 7.16 (ddd, J = 7.5, 4.9, 1.2, 1H), 7.01 (dd, J = 9.0, 6.7, 1H), 6.46–6.41 (m, 1H), 4.99 (s, 1H), 2.96 (s, 3H), 0.93 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 155.31, 148.37, 142.86, 138.16, 137.65, 137.35, 136.54, 130.34, 124.28, 121.80, 121.79, 115.58, 113.91, 105.48, 57.20, 28.97, 20.21.

Compound (II)

1H NMR (CDCl3, 500 MHz): dH 1.05 [s, 9H, –C(CH3)3], 2.97 [s, 6H, Ar-N(CH3)2], 6.69 (t, 1H, -Ar-H), 6.77 (d, 2H, J = 8.40 Hz, –Ar-H), 7.17 (t, 1H, –Ar-H, –Ar-H), 7.53 (d, 1H, J = 8.40 Hz, –Ar-H), 7.8 (d, 2H, J = 4.5 Hz, –Ar-H), 8.19 (d, 1H, J = 8.40 Hz, –Ar-H). ESI–MS: calculated for C19H24N4 [M + H]+ 308.2007; found: 308.27.

Crystals of compounds (I)[link] and (II)[link], suitable for X-ray diffraction analysis, were obtained by slow evaporation from ethyl alcohol (EtOH) solution at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C19H23N3O C19H24N4
Mr 309.40 308.42
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 9.2357 (7), 15.6388 (12), 11.984 (1) 34.9185 (14), 8.4656 (5), 11.8361 (6)
β (°) 93.998 (3) 91.061 (5)
V3) 1726.7 (2) 3498.2 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.15 × 0.15 × 0.10 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..])
Tmin, Tmax 0.552, 0.746 0.697, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 16458, 3208, 2109 32313, 3259, 1834
Rint 0.044 0.071
(sin θ/λ)max−1) 0.606 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.03 0.049, 0.159, 1.02
No. of reflections 3208 3259
No. of parameters 218 218
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.13 0.22, −0.18
Computer programs: APEX2, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: APEX2/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (I); SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010). for (II).

N-tert-Butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine (I) top
Crystal data top
C19H23N3OF(000) = 664
Mr = 309.40Dx = 1.190 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2357 (7) ÅCell parameters from 3732 reflections
b = 15.6388 (12) Åθ = 2.6–29.2°
c = 11.984 (1) ŵ = 0.08 mm1
β = 93.998 (3)°T = 296 K
V = 1726.7 (2) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3208 independent reflections
Radiation source: fine-focus sealed tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scanθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.552, Tmax = 0.746k = 1818
16458 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6929P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3208 reflectionsΔρmax = 0.15 e Å3
218 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02423 (18)0.88980 (13)0.62308 (14)0.0800 (6)
N10.58139 (18)0.64812 (11)0.72686 (14)0.0385 (4)
H1A0.560 (2)0.6854 (13)0.7736 (17)0.045 (6)*
N20.71475 (16)0.66024 (10)0.55928 (13)0.0381 (4)
N30.55442 (18)0.72815 (11)0.43982 (13)0.0417 (4)
C10.8497 (2)0.62484 (14)0.59167 (19)0.0480 (6)
C20.9389 (2)0.60796 (16)0.5092 (2)0.0618 (7)
H21.0281990.5824740.5281130.074*
C30.9016 (3)0.62747 (17)0.3962 (2)0.0633 (7)
H30.9634930.6118420.3417170.076*
C40.7768 (2)0.66868 (14)0.36672 (18)0.0524 (6)
H40.7543190.6843940.2926870.063*
C50.6809 (2)0.68762 (13)0.44948 (16)0.0401 (5)
C60.5944 (2)0.68161 (12)0.61971 (15)0.0345 (5)
C70.5016 (2)0.72552 (12)0.54407 (15)0.0361 (5)
C80.3630 (2)0.76695 (12)0.56396 (15)0.0367 (5)
C90.2546 (2)0.77465 (15)0.47894 (17)0.0516 (6)
H90.2700360.7522230.4088810.062*
C100.1244 (2)0.81454 (16)0.49472 (18)0.0574 (6)
H100.0534590.8184600.4359300.069*
C110.0997 (2)0.84844 (15)0.59730 (18)0.0512 (6)
C120.2067 (2)0.84190 (15)0.68339 (18)0.0540 (6)
H120.1909650.8645670.7532490.065*
C130.3361 (2)0.80227 (14)0.66681 (17)0.0463 (5)
H130.4071870.7990210.7256000.056*
C140.1377 (3)0.8996 (2)0.5385 (2)0.0848 (9)
H14A0.1700480.8442510.5125680.127*
H14B0.1029940.9314470.4773490.127*
H14C0.2170110.9296360.5682950.127*
C150.8957 (3)0.61354 (19)0.7129 (2)0.0712 (8)
H15A0.9921410.5903530.7202470.107*
H15B0.8301160.5751010.7461820.107*
H15C0.8944050.6679130.7499530.107*
C160.4969 (2)0.56772 (13)0.73775 (17)0.0478 (5)
C170.3348 (3)0.58040 (18)0.7103 (3)0.0830 (9)
H17A0.3180200.5969910.6333440.124*
H17B0.2996960.6243130.7574290.124*
H17C0.2845890.5278950.7227690.124*
C180.5237 (3)0.53949 (16)0.85894 (19)0.0676 (7)
H18A0.4912350.5833420.9073980.101*
H18B0.6255740.5296850.8753370.101*
H18C0.4711740.4876450.8705580.101*
C190.5532 (3)0.50019 (15)0.6600 (2)0.0712 (8)
H19A0.6545180.4903420.6792150.107*
H19B0.5402470.5197620.5840770.107*
H19C0.5004090.4479130.6678620.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0547 (10)0.1337 (17)0.0507 (11)0.0372 (11)0.0036 (8)0.0104 (11)
N10.0478 (10)0.0425 (10)0.0246 (9)0.0031 (8)0.0024 (7)0.0012 (8)
N20.0392 (9)0.0403 (9)0.0346 (10)0.0010 (7)0.0019 (7)0.0022 (7)
N30.0473 (10)0.0488 (10)0.0290 (9)0.0023 (8)0.0035 (7)0.0027 (8)
C10.0412 (12)0.0509 (13)0.0513 (14)0.0026 (10)0.0018 (10)0.0050 (11)
C20.0425 (13)0.0714 (17)0.0720 (18)0.0081 (12)0.0084 (12)0.0068 (14)
C30.0550 (15)0.0765 (17)0.0612 (17)0.0001 (13)0.0240 (13)0.0099 (14)
C40.0582 (15)0.0613 (15)0.0392 (13)0.0063 (12)0.0147 (11)0.0027 (11)
C50.0472 (12)0.0430 (11)0.0307 (11)0.0073 (10)0.0058 (9)0.0019 (9)
C60.0374 (10)0.0398 (11)0.0263 (10)0.0045 (9)0.0019 (8)0.0040 (8)
C70.0416 (11)0.0407 (11)0.0257 (10)0.0025 (9)0.0001 (8)0.0006 (9)
C80.0400 (11)0.0428 (11)0.0267 (10)0.0002 (9)0.0013 (8)0.0032 (9)
C90.0536 (13)0.0747 (16)0.0256 (11)0.0113 (12)0.0037 (10)0.0055 (11)
C100.0494 (13)0.0846 (17)0.0363 (13)0.0130 (12)0.0114 (10)0.0019 (12)
C110.0428 (12)0.0695 (15)0.0410 (13)0.0112 (11)0.0000 (10)0.0011 (11)
C120.0516 (13)0.0801 (16)0.0300 (12)0.0137 (12)0.0002 (10)0.0098 (11)
C130.0457 (12)0.0609 (14)0.0307 (12)0.0066 (10)0.0090 (9)0.0043 (10)
C140.0514 (15)0.127 (3)0.074 (2)0.0277 (16)0.0128 (14)0.0110 (18)
C150.0511 (14)0.097 (2)0.0626 (17)0.0198 (14)0.0146 (12)0.0050 (15)
C160.0568 (13)0.0468 (12)0.0386 (12)0.0101 (11)0.0062 (10)0.0059 (10)
C170.0623 (17)0.0747 (18)0.109 (2)0.0249 (14)0.0135 (16)0.0225 (17)
C180.097 (2)0.0635 (16)0.0422 (14)0.0124 (14)0.0028 (13)0.0133 (12)
C190.112 (2)0.0494 (14)0.0506 (15)0.0149 (15)0.0056 (14)0.0033 (12)
Geometric parameters (Å, º) top
O1—C111.368 (3)C10—C111.372 (3)
O1—C141.414 (3)C10—H100.9300
N1—C61.400 (2)C11—C121.382 (3)
N1—C161.490 (3)C12—C131.373 (3)
N1—H1A0.84 (2)C12—H120.9300
N2—C11.394 (3)C13—H130.9300
N2—C51.398 (2)C14—H14A0.9600
N2—C61.409 (2)C14—H14B0.9600
N3—C51.327 (2)C14—H14C0.9600
N3—C71.373 (2)C15—H15A0.9600
C1—C21.355 (3)C15—H15B0.9600
C1—C151.495 (3)C15—H15C0.9600
C2—C31.407 (3)C16—C181.522 (3)
C2—H20.9300C16—C191.523 (3)
C3—C41.346 (3)C16—C171.523 (3)
C3—H30.9300C17—H17A0.9600
C4—C51.407 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C6—C71.385 (3)C18—H18A0.9600
C7—C81.469 (3)C18—H18B0.9600
C8—C91.383 (3)C18—H18C0.9600
C8—C131.389 (3)C19—H19A0.9600
C9—C101.380 (3)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C11—O1—C14118.61 (19)C13—C12—H12119.7
C6—N1—C16118.36 (16)C11—C12—H12119.7
C6—N1—H1A112.9 (14)C12—C13—C8121.27 (19)
C16—N1—H1A112.4 (14)C12—C13—H13119.4
C1—N2—C5121.38 (17)C8—C13—H13119.4
C1—N2—C6132.33 (17)O1—C14—H14A109.5
C5—N2—C6106.16 (15)O1—C14—H14B109.5
C5—N3—C7105.83 (16)H14A—C14—H14B109.5
C2—C1—N2116.8 (2)O1—C14—H14C109.5
C2—C1—C15122.6 (2)H14A—C14—H14C109.5
N2—C1—C15120.36 (19)H14B—C14—H14C109.5
C1—C2—C3122.6 (2)C1—C15—H15A109.5
C1—C2—H2118.7C1—C15—H15B109.5
C3—C2—H2118.7H15A—C15—H15B109.5
C4—C3—C2120.3 (2)C1—C15—H15C109.5
C4—C3—H3119.9H15A—C15—H15C109.5
C2—C3—H3119.9H15B—C15—H15C109.5
C3—C4—C5119.0 (2)N1—C16—C18106.10 (17)
C3—C4—H4120.5N1—C16—C19109.17 (18)
C5—C4—H4120.5C18—C16—C19110.05 (19)
N3—C5—N2111.49 (16)N1—C16—C17112.57 (18)
N3—C5—C4129.27 (19)C18—C16—C17109.6 (2)
N2—C5—C4119.23 (19)C19—C16—C17109.3 (2)
C7—C6—N1134.20 (17)C16—C17—H17A109.5
C7—C6—N2104.80 (15)C16—C17—H17B109.5
N1—C6—N2120.27 (17)H17A—C17—H17B109.5
N3—C7—C6111.55 (17)C16—C17—H17C109.5
N3—C7—C8120.23 (17)H17A—C17—H17C109.5
C6—C7—C8128.23 (17)H17B—C17—H17C109.5
C9—C8—C13117.03 (18)C16—C18—H18A109.5
C9—C8—C7120.86 (17)C16—C18—H18B109.5
C13—C8—C7122.08 (18)H18A—C18—H18B109.5
C10—C9—C8122.11 (19)C16—C18—H18C109.5
C10—C9—H9118.9H18A—C18—H18C109.5
C8—C9—H9118.9H18B—C18—H18C109.5
C11—C10—C9119.9 (2)C16—C19—H19A109.5
C11—C10—H10120.0C16—C19—H19B109.5
C9—C10—H10120.0H19A—C19—H19B109.5
O1—C11—C10125.4 (2)C16—C19—H19C109.5
O1—C11—C12115.63 (19)H19A—C19—H19C109.5
C10—C11—C12119.0 (2)H19B—C19—H19C109.5
C13—C12—C11120.7 (2)
C5—N2—C1—C28.4 (3)N1—C6—C7—N3166.5 (2)
C6—N2—C1—C2176.4 (2)N2—C6—C7—N33.3 (2)
C5—N2—C1—C15166.7 (2)N1—C6—C7—C814.0 (4)
C6—N2—C1—C158.5 (3)N2—C6—C7—C8176.20 (18)
N2—C1—C2—C32.2 (3)N3—C7—C8—C929.4 (3)
C15—C1—C2—C3172.7 (2)C6—C7—C8—C9151.2 (2)
C1—C2—C3—C43.7 (4)N3—C7—C8—C13148.62 (19)
C2—C3—C4—C53.5 (4)C6—C7—C8—C1330.8 (3)
C7—N3—C5—N21.7 (2)C13—C8—C9—C100.8 (3)
C7—N3—C5—C4176.8 (2)C7—C8—C9—C10178.9 (2)
C1—N2—C5—N3172.63 (17)C8—C9—C10—C110.3 (4)
C6—N2—C5—N33.7 (2)C14—O1—C11—C100.2 (4)
C1—N2—C5—C48.7 (3)C14—O1—C11—C12179.3 (2)
C6—N2—C5—C4174.96 (18)C9—C10—C11—O1179.6 (2)
C3—C4—C5—N3179.1 (2)C9—C10—C11—C120.0 (4)
C3—C4—C5—N22.5 (3)O1—C11—C12—C13179.5 (2)
C16—N1—C6—C775.4 (3)C10—C11—C12—C130.1 (4)
C16—N1—C6—N293.2 (2)C11—C12—C13—C80.6 (4)
C1—N2—C6—C7171.71 (19)C9—C8—C13—C120.9 (3)
C5—N2—C6—C74.1 (2)C7—C8—C13—C12179.0 (2)
C1—N2—C6—N116.7 (3)C6—N1—C16—C18170.52 (18)
C5—N2—C6—N1167.46 (17)C6—N1—C16—C1952.0 (2)
C5—N3—C7—C61.1 (2)C6—N1—C16—C1769.6 (3)
C5—N3—C7—C8178.47 (17)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the imidazole ring system N2/N3/C1–C7.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.84 (2)2.41 (2)3.226 (2)163.6 (19)
C14—H14A···Cg4ii0.962.933.862 (3)165
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.
N-tert-Butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine (II) top
Crystal data top
C19H24N4F(000) = 1328
Mr = 308.42Dx = 1.171 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 34.9185 (14) ÅCell parameters from 4941 reflections
b = 8.4656 (5) Åθ = 2.3–21.5°
c = 11.8361 (6) ŵ = 0.07 mm1
β = 91.061 (5)°T = 296 K
V = 3498.2 (3) Å3Block, brown
Z = 80.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3259 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω and φ scanθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 4242
Tmin = 0.697, Tmax = 0.745k = 1010
32313 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0675P)2 + 2.4598P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3259 reflectionsΔρmax = 0.22 e Å3
218 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58246 (6)0.2712 (2)0.25418 (17)0.0442 (6)
H1A0.5872 (7)0.328 (3)0.196 (2)0.059 (8)*
N20.55040 (5)0.3250 (2)0.42684 (15)0.0409 (5)
N30.58530 (6)0.5154 (2)0.50989 (15)0.0438 (5)
N40.72538 (7)0.8380 (3)0.2431 (2)0.0757 (8)
C10.52002 (7)0.2237 (3)0.4153 (2)0.0508 (7)
H10.5170190.1625950.3504590.061*
C20.49463 (8)0.2134 (3)0.4987 (2)0.0571 (7)
H20.4738390.1453230.4910980.068*
C30.49907 (8)0.3043 (3)0.5975 (2)0.0582 (7)
H30.4815260.2946500.6552710.070*
C40.52893 (7)0.4063 (3)0.6088 (2)0.0534 (7)
H40.5318690.4664080.6740890.064*
C50.55533 (7)0.4205 (3)0.52145 (18)0.0421 (6)
C60.57963 (7)0.3602 (3)0.35289 (18)0.0393 (6)
C70.60021 (6)0.4794 (3)0.40559 (18)0.0401 (6)
C80.63292 (7)0.5687 (3)0.36299 (18)0.0402 (6)
C90.66073 (7)0.6297 (3)0.4354 (2)0.0497 (7)
H90.6589730.6105510.5124510.060*
C100.69081 (8)0.7177 (3)0.3970 (2)0.0553 (7)
H100.7088540.7566650.4486150.066*
C110.69492 (7)0.7499 (3)0.2825 (2)0.0508 (7)
C120.66718 (7)0.6877 (3)0.2090 (2)0.0508 (7)
H120.6690890.7054570.1318020.061*
C130.63701 (7)0.6006 (3)0.24861 (19)0.0462 (6)
H130.6188070.5619030.1973710.055*
C140.75347 (10)0.8995 (5)0.3193 (3)0.1142 (15)
H14A0.7416020.9717270.3704440.171*
H14B0.7727530.9540370.2775960.171*
H14C0.7650610.8145070.3612500.171*
C150.72835 (11)0.8749 (5)0.1261 (3)0.1039 (13)
H15A0.7276240.7790980.0826730.156*
H15B0.7520670.9288620.1135080.156*
H15C0.7073470.9415160.1032640.156*
C160.60865 (8)0.1322 (3)0.25466 (19)0.0507 (7)
C170.64993 (10)0.1807 (4)0.2766 (4)0.1032 (13)
H17A0.6573790.2567830.2209810.155*
H17B0.6661770.0895250.2720390.155*
H17C0.6523670.2265310.3505380.155*
C180.60542 (11)0.0597 (4)0.1387 (2)0.0899 (12)
H18A0.5797870.0218090.1259220.135*
H18B0.6230860.0267450.1332990.135*
H18C0.6113170.1378320.0828420.135*
C190.59690 (11)0.0154 (4)0.3429 (3)0.0996 (13)
H19A0.5971120.0658230.4155390.149*
H19B0.6145090.0716690.3441100.149*
H19C0.5715740.0225130.3253940.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0602 (14)0.0398 (12)0.0327 (12)0.0071 (10)0.0018 (10)0.0009 (9)
N20.0434 (12)0.0376 (11)0.0417 (11)0.0020 (10)0.0017 (9)0.0031 (9)
N30.0492 (12)0.0451 (12)0.0372 (11)0.0053 (10)0.0044 (9)0.0036 (9)
N40.0694 (17)0.0800 (19)0.0784 (18)0.0236 (15)0.0188 (14)0.0092 (14)
C10.0549 (16)0.0452 (15)0.0524 (16)0.0078 (13)0.0015 (13)0.0073 (12)
C20.0529 (17)0.0563 (17)0.0623 (17)0.0120 (14)0.0069 (14)0.0029 (14)
C30.0564 (17)0.0631 (18)0.0556 (17)0.0070 (15)0.0144 (13)0.0000 (14)
C40.0596 (17)0.0574 (17)0.0434 (14)0.0049 (15)0.0107 (12)0.0057 (13)
C50.0490 (15)0.0422 (14)0.0350 (13)0.0032 (12)0.0017 (11)0.0043 (11)
C60.0462 (14)0.0375 (13)0.0343 (12)0.0014 (11)0.0017 (11)0.0019 (10)
C70.0438 (14)0.0400 (13)0.0365 (13)0.0026 (11)0.0020 (10)0.0013 (11)
C80.0437 (14)0.0388 (13)0.0384 (13)0.0017 (12)0.0037 (10)0.0016 (11)
C90.0542 (16)0.0538 (16)0.0411 (14)0.0058 (14)0.0017 (12)0.0010 (12)
C100.0514 (16)0.0569 (17)0.0575 (17)0.0098 (14)0.0015 (13)0.0036 (13)
C110.0501 (16)0.0431 (15)0.0596 (17)0.0023 (13)0.0114 (13)0.0004 (13)
C120.0621 (17)0.0482 (15)0.0426 (14)0.0011 (14)0.0128 (13)0.0041 (12)
C130.0516 (16)0.0464 (15)0.0407 (14)0.0017 (13)0.0015 (11)0.0005 (11)
C140.082 (3)0.131 (4)0.129 (3)0.059 (3)0.003 (2)0.019 (3)
C150.107 (3)0.115 (3)0.092 (3)0.034 (2)0.043 (2)0.006 (2)
C160.0687 (18)0.0412 (14)0.0422 (14)0.0131 (13)0.0054 (12)0.0005 (11)
C170.074 (2)0.082 (3)0.154 (4)0.029 (2)0.012 (2)0.021 (2)
C180.145 (3)0.071 (2)0.0538 (18)0.040 (2)0.0069 (19)0.0116 (16)
C190.150 (3)0.066 (2)0.084 (2)0.046 (2)0.043 (2)0.0315 (19)
Geometric parameters (Å, º) top
N1—C61.395 (3)C10—C111.393 (3)
N1—C161.491 (3)C10—H100.9300
N1—H1A0.86 (3)C11—C121.393 (4)
N2—C11.369 (3)C12—C131.375 (3)
N2—C61.389 (3)C12—H120.9300
N2—C51.389 (3)C13—H130.9300
N3—C51.329 (3)C14—H14A0.9600
N3—C71.383 (3)C14—H14B0.9600
N4—C111.387 (3)C14—H14C0.9600
N4—C141.419 (4)C15—H15A0.9600
N4—C151.425 (4)C15—H15B0.9600
C1—C21.342 (4)C15—H15C0.9600
C1—H10.9300C16—C191.500 (4)
C2—C31.406 (4)C16—C181.506 (4)
C2—H20.9300C16—C171.516 (4)
C3—C41.358 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.403 (3)C17—H17C0.9600
C4—H40.9300C18—H18A0.9600
C6—C71.381 (3)C18—H18B0.9600
C7—C81.467 (3)C18—H18C0.9600
C8—C91.383 (3)C19—H19A0.9600
C8—C131.390 (3)C19—H19B0.9600
C9—C101.372 (3)C19—H19C0.9600
C9—H90.9300
C6—N1—C16118.45 (19)C13—C12—C11121.2 (2)
C6—N1—H1A112.8 (17)C13—C12—H12119.4
C16—N1—H1A108.6 (17)C11—C12—H12119.4
C1—N2—C6130.4 (2)C12—C13—C8121.9 (2)
C1—N2—C5121.9 (2)C12—C13—H13119.0
C6—N2—C5107.55 (18)C8—C13—H13119.0
C5—N3—C7105.59 (18)N4—C14—H14A109.5
C11—N4—C14120.6 (3)N4—C14—H14B109.5
C11—N4—C15121.0 (3)H14A—C14—H14B109.5
C14—N4—C15118.4 (3)N4—C14—H14C109.5
C2—C1—N2119.2 (2)H14A—C14—H14C109.5
C2—C1—H1120.4H14B—C14—H14C109.5
N2—C1—H1120.4N4—C15—H15A109.5
C1—C2—C3120.8 (3)N4—C15—H15B109.5
C1—C2—H2119.6H15A—C15—H15B109.5
C3—C2—H2119.6N4—C15—H15C109.5
C4—C3—C2120.1 (2)H15A—C15—H15C109.5
C4—C3—H3119.9H15B—C15—H15C109.5
C2—C3—H3119.9N1—C16—C19110.3 (2)
C3—C4—C5119.7 (2)N1—C16—C18106.4 (2)
C3—C4—H4120.1C19—C16—C18110.4 (3)
C5—C4—H4120.1N1—C16—C17111.6 (2)
N3—C5—N2110.80 (19)C19—C16—C17109.3 (3)
N3—C5—C4131.1 (2)C18—C16—C17108.7 (3)
N2—C5—C4118.1 (2)C16—C17—H17A109.5
C7—C6—N2104.74 (19)C16—C17—H17B109.5
C7—C6—N1136.7 (2)H17A—C17—H17B109.5
N2—C6—N1118.4 (2)C16—C17—H17C109.5
C6—C7—N3111.3 (2)H17A—C17—H17C109.5
C6—C7—C8128.5 (2)H17B—C17—H17C109.5
N3—C7—C8120.1 (2)C16—C18—H18A109.5
C9—C8—C13116.5 (2)C16—C18—H18B109.5
C9—C8—C7121.5 (2)H18A—C18—H18B109.5
C13—C8—C7122.0 (2)C16—C18—H18C109.5
C10—C9—C8122.1 (2)H18A—C18—H18C109.5
C10—C9—H9119.0H18B—C18—H18C109.5
C8—C9—H9119.0C16—C19—H19A109.5
C9—C10—C11121.5 (2)C16—C19—H19B109.5
C9—C10—H10119.3H19A—C19—H19B109.5
C11—C10—H10119.3C16—C19—H19C109.5
N4—C11—C10121.7 (2)H19A—C19—H19C109.5
N4—C11—C12121.5 (2)H19B—C19—H19C109.5
C10—C11—C12116.8 (2)
C6—N2—C1—C2178.1 (2)C5—N3—C7—C60.7 (3)
C5—N2—C1—C21.4 (4)C5—N3—C7—C8177.1 (2)
N2—C1—C2—C30.5 (4)C6—C7—C8—C9150.6 (2)
C1—C2—C3—C41.2 (4)N3—C7—C8—C932.0 (3)
C2—C3—C4—C50.0 (4)C6—C7—C8—C1331.5 (4)
C7—N3—C5—N20.4 (2)N3—C7—C8—C13145.9 (2)
C7—N3—C5—C4178.6 (3)C13—C8—C9—C100.2 (4)
C1—N2—C5—N3175.9 (2)C7—C8—C9—C10177.9 (2)
C6—N2—C5—N31.4 (3)C8—C9—C10—C110.1 (4)
C1—N2—C5—C42.5 (3)C14—N4—C11—C100.4 (4)
C6—N2—C5—C4179.9 (2)C15—N4—C11—C10177.6 (3)
C3—C4—C5—N3176.3 (3)C14—N4—C11—C12179.6 (3)
C3—C4—C5—N21.8 (4)C15—N4—C11—C123.2 (4)
C1—N2—C6—C7175.3 (2)C9—C10—C11—N4179.6 (3)
C5—N2—C6—C71.7 (2)C9—C10—C11—C120.4 (4)
C1—N2—C6—N17.4 (4)N4—C11—C12—C13179.9 (2)
C5—N2—C6—N1175.56 (19)C10—C11—C12—C130.8 (4)
C16—N1—C6—C781.8 (4)C11—C12—C13—C80.8 (4)
C16—N1—C6—N294.4 (3)C9—C8—C13—C120.3 (4)
N2—C6—C7—N31.6 (3)C7—C8—C13—C12178.3 (2)
N1—C6—C7—N3175.0 (2)C6—N1—C16—C1959.6 (3)
N2—C6—C7—C8176.1 (2)C6—N1—C16—C18179.4 (2)
N1—C6—C7—C87.4 (4)C6—N1—C16—C1762.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of benzene ring C8–C13.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.86 (3)2.56 (3)3.412 (3)167 (2)
C13—H13···N3i0.932.573.467 (3)161
C19—H19B···Cg3ii0.962.873.829 (4)174
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y1, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBanfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBiftu, T., Feng, D., Fisher, M., Liang, G. B., Qian, X., Scribner, A., Dennis, R., Lee, S., Liberator, P. A., Brown, C., Gurnett, A., Leavitt, P. S., Thompson, D., Mathew, J., Misura, A., Samaras, S., Tamas, T., Sina, J. F., McNulty, K. A., McKnight, C. G., Schmatz, D. M. & Wyvratt, M. (2006). Bioorg. Med. Chem. Lett. 16, 2479–2483.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA..  Google Scholar
First citationCui, B., Zheng, B. L., He, K. & Zheng, Q. Y. (2003). J. Nat. Prod. 66, 1101–1103.  CrossRef Google Scholar
First citationDooley, S. W., Jarvis, W. R., Martone, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257–259.  CrossRef PubMed CAS Web of Science Google Scholar
First citationElaatiaoui, A., Elkalai, F., Benchat, N., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160723.  Google Scholar
First citationElaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190.  CrossRef IUCr Journals Google Scholar
First citationErtl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714–3717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatima, Z., Srinivasan, T., Koorathota, S., Thennarasu, S. & Velmurugan, D. (2013). Acta Cryst. E69, o612–o613.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735–2739.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108–5112.  CrossRef Google Scholar
First citationJackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationLhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946.  CrossRef Google Scholar
First citationRupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598–601.  CrossRef CAS Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, J., Wang, L., Guo, B., An, K. & Guan, J. (2010). Acta Cryst. E66, o1999.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds