metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(pyrrolidinium) hexa­chlorido­stannate: a redetermination

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 September 2018; accepted 2 October 2018; online 19 October 2018)

The crystal structure of the title compound, (C4H10N)2[SnCl6], has been redetermined at 180 K. All atoms were located with higher precision than the previous structure determined at room temperature [Ishida et al. (2000[Ishida, H., Furukawa, Y., Sato, S. & Kashino, S. (2000). J. Mol. Struct. 524, 95-103.]). J Mol. Struct. 524, 95–103]. In the crystal, the SnIV atom is located on a special position of site symmetry 2/m and is coordinated by six Cl atoms in a pseudo-octa­hedral geometry. Of the six Cl atoms, two equivalent axial atoms lie on the mirror plane [Sn—Cl = 2.4281 (6) Å] and the other four equivalent equatorial atoms lie on general positions [Sn—Cl = 2.4285 (4) Å]. The N atom of the pyrrolidinium cation lies on a mirror plane and the other atoms of the cation are disordered over two sites with respect to the mirror plane. Each component of the disordered five-membered rings adopts a twist conformation. The cations and anions are connected via N—H⋯Cl hydrogen bonds, forming a tape-like structure propagating along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Previously, we have reported structural phase transitions of three bis­(pyrrolidinium) hexa­chloro­metalates, namely, 2C4H8NH2+·MCl62− (M = Sn, Te, Pt), by using 35Cl nuclear quadrupole resonance (NQR) and differential scanning calorimetry (DSC). The transitions occur at 150, 159 and 134 K for the stannate, tellurate and platinate, respectively, and their crystal structures at room temperature have been determined by single-crystal X-ray diffraction (Ishida et al., 2000[Ishida, H., Furukawa, Y., Sato, S. & Kashino, S. (2000). J. Mol. Struct. 524, 95-103.]). They are isotypic with each other, belonging to the space group C2/m. The pyrrolidinium cation in these crystals are expected to be rather freely packed because of the large free volume created by the bulky MCl62− anion. The ring conformation of the pseudo-free cation was, however, not determined precisely at room temperature owing to large thermal motion, including disordering of the cation. In the present study, we have redetermined the crystal structure of the title compound at a low temperature (180 K) in the high-temperature phase, in order to obtain precise information on the conformation of the cation and inter­molecular inter­actions in the crystal.

A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 72 hits for salts of pyrrolidinium ion. The salt of the pyrrolidinium ion with a discrete MX6 type anion (M = metal X= halogen) other than 2C4H10N+·MCl62− (M = Sn, Te, Pt) was reported for C4H10N+·SbCl6 (Jakubas et al., 2005[Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Hołderna-Natkeniec, K., Zieliński, P. & Gałązka, M. (2005). Soild State Sci. 7, 381-390.]), in which the cation ring adopts a twist form at 300 K (CSD refcode XAKWEM) but a flat form at 340 K (XAKWEM01) probably due to an averaging of the disordered ring. Although the pyrrolidinium ion is stable in the twist on C2–C3 form in an isolated system (Ishida, 2000[Ishida, H. (2000). Z. Naturforsch. A: Phys. Sci. 55, 665-666.]), different conformations of the cation are observed in crystals, for example, an N-envelope conformation in C4H10N+·Cl (EHACUM; Giglmeier et al., 2009[Giglmeier, H., Kerscher, T., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, o592.]) and C-envelope conformations in C18H16OSi·C4H10N+·C2H3O2 (AJIHUY; Bauer & Strohmann, 2015[Bauer, J. O. & Strohmann, C. (2015). J. Organomet. Chem. 797, 52-56.]) and C4H10N+·C6BrF4O (BIYFUM; Takemura et al., 2014[Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721-6732.]).

In the title compound, Fig. 1[link], the SnIV atom in the SnCl62− anion is located on a special position of site symmetry 2/m and is coordinated by six Cl atoms in a pseudo-octa­hedral geometry. Of the six Cl atoms, two Cl atoms (Cl1 and Cl2) are crystallographically independent; two equivalent axial Cl atoms lie on a mirror plane and four equivalent equatorial Cl atoms lie on general positions. The Sn—Cl bond lengths are experimentally equivalent [Sn1—Cl1 = 2.4281 (6) Å and Sn1—Cl2 = 2.4285 (4) Å]. The N atom of the pyrrolidinium cation lies on a mirror plane and the other atoms of the cation are disordered over two sites about the mirror plane with an occupancy ratio of 0.5:0.5. The puckering parameters [q2 = 0.424 (11) Å and φ2 = 89.2 (19)°] and the torsion angles of the five-membered ring show that the cation adopts a conformation close to the twist on C2—C3 form, as expected from the theoretical calculations for an isolated cation (Ishida, 2000[Ishida, H. (2000). Z. Naturforsch. A: Phys. Sci. 55, 665-666.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The N—H⋯Cl hydrogen bond is shown as a dashed line (Table 1[link]). Only one component is shown for the disordered cation. [Symmetry codes: (iii) x, −y + 1, z; (iv) −x + 1, −y + 1, −z; (v) −x + 1, y, −z.]

In the crystal, the NH2 group of the cation is hydrogen-bonded to the equatorial Cl atoms of the neighbouring anions (N1—H1NA⋯Cl2, N1—H1NB⋯Cl2i and N1—H1NB⋯Cl2ii; symmetry codes as in Table 1[link]), forming a tape-like structure along the b-axis direction (Fig. 2[link]). The anion is surrounded by six cations, four of which are linked to the anions via the N—H⋯Cl hydrogen bonds (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Cl2 0.88 (5) 2.54 (5) 3.365 (2) 156 (5)
N1—H1NB⋯Cl2i 0.89 (4) 2.81 (6) 3.472 (2) 133 (5)
N1—H1NB⋯Cl2ii 0.89 (4) 2.77 (5) 3.365 (2) 126 (4)
Symmetry codes: (i) -x+1, -y, -z; (ii) x, -y, z.
[Figure 2]
Figure 2
A partial packing diagram of the title compound, showing the tape-like structure formed by N—H⋯Cl hydrogen bonds (dashed lines; see Table 1[link]). Only one component is shown for the disordered cation. Displacement ellipsoids are drawn at the 50% probability level and H atoms, except those of the NH2 group, have been omitted. [Symmetry codes: (i) −x + 1, −y, −z; (ii) x, −y, z; (v) −x + 1, y, −z.]
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The N—H⋯Cl hydrogen bonds (Table 1[link]) are shown as dashed lines. Only one component of the disordered cation is shown.

Synthesis and crystallization

The title compound was prepared by adding pyrrolidine to a hydro­chloric acid solution of SnCl4 according to the method described previously (Ishida et al., 2000[Ishida, H., Furukawa, Y., Sato, S. & Kashino, S. (2000). J. Mol. Struct. 524, 95-103.]). Single crystals suitable for X-ray diffraction were obtained from a concentrated hydro­chloric acid solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C4H10N)2[SnCl6]
Mr 475.67
Crystal system, space group Monoclinic, C2/m
Temperature (K) 180
a, b, c (Å) 16.3784 (11), 7.3134 (3), 7.1566 (4)
β (°) 91.205 (2)
V3) 857.04 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.579, 0.786
No. of measured, independent and observed [I > 2σ(I)] reflections 5281, 1343, 1308
Rint 0.038
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.09
No. of reflections 1343
No. of parameters 68
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −1.10
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2009).

Bis(pyrrolidinium) hexachloridostannate top
Crystal data top
(C4H10N)2[SnCl6]F(000) = 468.00
Mr = 475.67Dx = 1.843 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71075 Å
a = 16.3784 (11) ÅCell parameters from 5181 reflections
b = 7.3134 (3) Åθ = 3.1–30.0°
c = 7.1566 (4) ŵ = 2.41 mm1
β = 91.205 (2)°T = 180 K
V = 857.04 (8) Å3Platelet, colorless
Z = 20.20 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
1308 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.038
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.579, Tmax = 0.786k = 109
5281 measured reflectionsl = 1010
1343 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.035P)2 + 0.3195P]
where P = (Fo2 + 2Fc2)/3
1343 reflections(Δ/σ)max = 0.001
68 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.5000000.5000000.0000000.02448 (8)
Cl10.61941 (4)0.5000000.20690 (9)0.03911 (14)
Cl20.56208 (3)0.26144 (5)0.18554 (6)0.03335 (10)
N10.61485 (15)0.0000000.1846 (3)0.0378 (5)
H1NA0.590 (4)0.082 (6)0.113 (7)0.057*0.5
H1NB0.595 (4)0.111 (5)0.163 (7)0.057*0.5
C10.7040 (2)0.015 (5)0.1454 (6)0.054 (3)0.5
H1A0.7186530.1419910.1121020.065*0.5
H1B0.7190810.0672320.0417170.065*0.5
C20.7455 (2)0.0412 (6)0.3229 (7)0.0512 (12)0.5
H2A0.7500380.1759300.3317900.061*0.5
H2B0.8007140.0132620.3346830.061*0.5
C30.6886 (2)0.0348 (6)0.4717 (5)0.0419 (13)0.5
H3A0.6942800.1690650.4842050.050*0.5
H3B0.6991970.0231710.5948430.050*0.5
C40.60557 (18)0.017 (3)0.3925 (4)0.034 (3)0.5
H4A0.5628660.0667580.4376190.041*0.5
H4B0.5911980.1439840.4274170.041*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02747 (11)0.01710 (11)0.02918 (12)0.0000.00770 (7)0.000
Cl10.0362 (3)0.0386 (3)0.0423 (3)0.0000.0047 (2)0.000
Cl20.0398 (2)0.02416 (18)0.0366 (2)0.00185 (14)0.01405 (15)0.00506 (14)
N10.0375 (11)0.0426 (12)0.0334 (10)0.0000.0050 (8)0.000
C10.0469 (16)0.059 (10)0.0573 (18)0.002 (4)0.0289 (14)0.009 (6)
C20.0279 (14)0.047 (3)0.079 (3)0.0078 (14)0.0107 (15)0.0076 (19)
C30.0323 (14)0.044 (4)0.0490 (16)0.0022 (14)0.0033 (12)0.0092 (16)
C40.0279 (11)0.044 (8)0.0313 (10)0.006 (3)0.0072 (8)0.004 (2)
Geometric parameters (Å, º) top
Sn1—Cl1i2.4281 (6)C1—H1A0.9900
Sn1—Cl12.4281 (6)C1—H1B0.9900
Sn1—Cl22.4285 (4)C2—C31.534 (5)
Sn1—Cl2i2.4285 (4)C2—H2A0.9900
Sn1—Cl2ii2.4285 (4)C2—H2B0.9900
Sn1—Cl2iii2.4285 (4)C3—C41.512 (8)
N1—C11.497 (5)C3—H3A0.9900
N1—C41.504 (4)C3—H3B0.9900
N1—H1NA0.883 (19)C4—H4A0.9900
N1—H1NB0.89 (2)C4—H4B0.9900
C1—C21.486 (12)
Cl1i—Sn1—Cl1180.0N1—C1—H1A110.9
Cl1i—Sn1—Cl290.439 (16)C2—C1—H1B110.9
Cl1—Sn1—Cl289.560 (16)N1—C1—H1B110.9
Cl1i—Sn1—Cl2i89.561 (16)H1A—C1—H1B108.9
Cl1—Sn1—Cl2i90.440 (16)C1—C2—C3102.7 (7)
Cl2—Sn1—Cl2i180.000 (18)C1—C2—H2A111.2
Cl1i—Sn1—Cl2ii89.561 (16)C3—C2—H2A111.2
Cl1—Sn1—Cl2ii90.440 (16)C1—C2—H2B111.2
Cl2—Sn1—Cl2ii88.151 (19)C3—C2—H2B111.2
Cl2i—Sn1—Cl2ii91.849 (19)H2A—C2—H2B109.1
Cl1i—Sn1—Cl2iii90.439 (16)C4—C3—C2101.7 (5)
Cl1—Sn1—Cl2iii89.560 (16)C4—C3—H3A111.4
Cl2—Sn1—Cl2iii91.849 (19)C2—C3—H3A111.4
Cl2i—Sn1—Cl2iii88.151 (19)C4—C3—H3B111.4
Cl2ii—Sn1—Cl2iii180.000 (13)C2—C3—H3B111.4
C1—N1—C4108.1 (3)H3A—C3—H3B109.3
C1—N1—H1NA112 (5)N1—C4—C3104.0 (5)
C4—N1—H1NA118 (4)N1—C4—H4A111.0
C1—N1—H1NB105 (5)C3—C4—H4A111.0
C4—N1—H1NB102 (4)N1—C4—H4B111.0
H1NA—N1—H1NB110 (4)C3—C4—H4B111.0
C2—C1—N1104.5 (7)H4A—C4—H4B109.0
C2—C1—H1A110.9
C4—N1—C1—C214 (2)C1—N1—C4—C313 (2)
N1—C1—C2—C336 (2)C2—C3—C4—N134.7 (13)
C1—C2—C3—C443.9 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl20.88 (5)2.54 (5)3.365 (2)156 (5)
N1—H1NB···Cl2iv0.89 (4)2.81 (6)3.472 (2)133 (5)
N1—H1NB···Cl2v0.89 (4)2.77 (5)3.365 (2)126 (4)
Symmetry codes: (iv) x+1, y, z; (v) x, y, z.
 

References

First citationBauer, J. O. & Strohmann, C. (2015). J. Organomet. Chem. 797, 52–56.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiglmeier, H., Kerscher, T., Klüfers, P. & Mayer, P. (2009). Acta Cryst. E65, o592.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshida, H. (2000). Z. Naturforsch. A: Phys. Sci. 55, 665–666.  Google Scholar
First citationIshida, H., Furukawa, Y., Sato, S. & Kashino, S. (2000). J. Mol. Struct. 524, 95–103.  CrossRef Google Scholar
First citationJakubas, R., Bednarska-Bolek, B., Zaleski, J., Medycki, W., Hołderna-Natkeniec, K., Zieliński, P. & Gałązka, M. (2005). Soild State Sci. 7, 381–390.  CrossRef Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721–6732.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds