research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A resonance-assisted intra­molecular hydrogen bond in compounds containing 2-hy­dr­oxy-3,5-di­nitro­benzoic acid and its various deprotonated forms: redetermination of several related structures

CROSSMARK_Color_square_no_text.svg

aInstitute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 July 2018; accepted 15 August 2018; online 24 August 2018)

A large number of structural determinations of compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I) and its various deprotonated forms, 2-hy­droxy-3,5-di­nitro­benzoate (II) or 2-carb­oxy-4,6-di­nitro­phenolate (III), are biased. The reason for the bias follows from incorrectly applied constraints or restraints on the bridging hydrogen, which is involved in the intra­molecular hydrogen bond between the neighbouring carb­oxy­lic/carboxyl­ate and oxo/hy­droxy groups. This hydrogen bond belongs to the category of resonance-assisted hydrogen bonds. The present article suggests corrections for the following structure determinations that have been published in Acta Crystallographica: DUJZAK, JEVNAA, LUDFUL, NUQVEB, QIQJAD, SAFGUD, SEDKET, TIYZIM, TUJPEV, VABZIJ, WADXOR, YAXPOE [refcodes are taken from the Cambridge Structural Database [CSD; Groom et al. (2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Acta Cryst. B72, 171–179]. The structural features of the title mol­ecules in all the retrieved structures, together with structures that contain 3,5-di­nitro-2-oxidobenzoate (IV), are discussed. Attention is paid to the localization of the above-mentioned bridging hydrogen, which can be situated closer to the O atom of the carboxyl­ate/carb­oxy­lic group or that of the hy­droxy/oxo group. In some cases, it is disordered between the two O atoms. The position of the bridging hydrogen seems to be dependent on the pKa(base) although with exceptions. A stronger basicity enhances the probability of the presence of a phenolate (III). The present article examines the problem of the refinement of such a bridging hydrogen as well as that of the hydrogen atoms involved in the hy­droxy and primary and secondary amine groups. It appears that the best model, in many cases, is obtained by fixing the hydrogen-atom position found in the difference electron-density map while refining its isotropic displacement parameter.

1. Chemical context

2-Hy­droxy-3,5-di­nitro­benzoic acid (I; alternatively 3,5-di­nitro­salicylic acid, DNSA), 2-hy­droxy-3,5-di­nitro­benzoate (II; alternatively 3,5-di­nitro­salicylate), 2-carb­oxy-4,6-di­nitro­phenolate (III) and 3,5-di­nitro-2-oxidobenzoate (IV), are mol­ecules that have inter­esting structural and chemical features. Such mol­ecules have been studied because of the proton transfer from the carb­oxy­lic group, which is dependent on its environment (e.g. Smith et al., 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]). Thus, three deprotonated forms of mol­ecule I have been observed. The last one, IV, is deprived of all of the hydrogen atoms while the others differ in the localization of the hydrogen atom involved in the intra­molecular hydrogen bond between the O atoms of the carboxyl­ate/carb­oxy­lic and the hy­droxy/oxo groups. In the different structures, this hydrogen atom may be closer to either oxygen atom, depending on the properties of each particular structure. In some cases, this hydrogen atom may even be disordered. In the following, it will be referred to as a bridging hydrogen.

[Scheme 1]

Such a bridging hydrogen is a part of a resonance-assisted moiety (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, pp. 81-147. New York: Oxford University Press.]) composed of six atoms with the pertinent bonds being D1, D2, D3, D4, D11 and D12, as shown in Fig. 1[link]a. However, the delocalized bonds can be further extended within the mol­ecule, especially to the C=O/C—OH bond (D1/D5 in Fig. 1[link]a). Resonance-assisted hydrogen bonds tend to be stronger and therefore the bridging hydrogen should be displaced towards the hydrogen-bond centre. On the other hand, O⋯H⋯O hydrogen bonds with a bridging hydrogen that is situated about its centre are usually observed for strong intra­molecular hydrogen bonds with the O⋯O distances being shorter than 2.5 Å (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, pp. 81-147. New York: Oxford University Press.]), while the O⋯H⋯O angles tend to be close to 180° (Jeffrey, 1995[Jeffrey, G. A. (1995). Crystallogr. Rev. 4, 213-254.]). The Ocarboxyl­ate/carboxyl­icgroup⋯Ohy­droxy/oxo group distance can be as short as 2.41 Å in some 2-hy­droxy-3,5-di­nitro­benzoates (II) or 2-carb­oxy-4,6-di­nitro­phenolates (III); however, the O⋯H⋯O angle, which is ca 160°, situates it in a category of its own.

[Figure 1]
Figure 1
Definition of bonds and various angles in IIV.

The above-mentioned features of the intra­molecular O⋯H⋯O hydrogen bond in the mol­ecules considered herein have been ignored on many occasions by incorrectly applied constraints or severe restraints on the O—H distances, 0.82 or 0.84 Å, together with angle constraints/restraints equal to 109° as proposed by SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

A robust indication whether the bridging hydrogen has been positioned correctly follows from the bond distances C=O/C—O of the involved carboxyl­ate/carb­oxy­lic and hydrox­yl/oxo groups, although there are a few exceptions in which the bridging hydrogen is attached to the oxygen forming a slightly shorter C—O distance. These exceptions will be mentioned briefly below. Thus, it seems that a considerable number of the structures containing the mol­ecules IIV could have been determined more correctly with a more realistic description of the pertinent hydrogen bond in these mol­ecular fragments.

A search of the Cambridge Structural Database (CSD, Version 3.58, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that 27 structures out of 53 reported as 2-hy­droxy-3,5-di­nitro­benzoates (II) seem to be suspect; 21 structures out of 70 reported as 2-carb­oxy-4,6-di­nitro­phenolates (III) seem to be suspect, and nine structures out of 15 that contain a mol­ecule of 2-hy­droxy-3,5-di­nitro­benzoic acid (I) also appear to be suspect. Figs. 2[link]a and 2[link]b illustrate this situation for 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III), respectively.

[Figure 2]
Figure 2
The dependence of bond distances: (a) D2 on D4 for structures that were originally determined as 2-hy­droxy-3,5-di­nitro­benzoate (II), or as containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I); (b) D1 on D3 for the structures that were determined as 2-carb­oxy-4,6-di­nitro­phenolate (III). Colour code for symbols: black squares are the data retrieved from the CSD; red circles are the corrected title structures; green and blue triangles are the original and the corrected structure of LUDFUL, which contains a mol­ecule of 2-hy­droxy-3,5-di­nitro­benzoic acid (I).

It is plausible to expect that the environment affects the position of the bridging hydrogen. Therefore, it can be assumed that the proton transfer stemming from the carboxyl group will affect its position.

The data for the suspect structures published in Acta Crystallographica were retrieved from the journal's web page and recalculated. Tables 1[link] and 2[link] contain an overview of those structures, which were successfully redetermined. In the following, these structures are referred to by their CSD refcodes; for the pertinent chemical names, see Table 2[link].

Table 1
Experimental details

  DUJZAK JEVNAA LUDFUL NUQVEB
Crystal data
Chemical formula [Ag(C9H7NO)2](C7H3N2O7) [Zn(C3H4N2)4](C7H3N2O7)2 C7H4N2O7·C12H8N2 C6H9N2+·C7H3N2O7
Mr 625.30 791.93 408.33 336.27
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/a Triclinic, P[\overline{1}]
Temperature (K) 293 293 293 100
a, b, c (Å) 9.0154 (18), 7.6122 (15), 17.138 (3) 25.0809 (15), 6.7251 (4), 18.9145 (10) 14.8002 (15), 7.4029 (16), 16.0091 (16) 5.8673 (7), 8.0991 (9), 15.2437 (17)
α, β, γ (°) 90, 104.38 (3), 90 90, 97.658 (6), 90 90, 96.395 (8), 90 86.844 (3), 84.252 (3), 81.209 (3)
V3) 1139.3 (4) 3161.9 (3) 1743.1 (5) 711.69 (14)
Z 2 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.95 0.87 0.12 0.13
Crystal size (mm) 0.20 × 0.15 × 0.11 0.20 × 0.18 × 0.10 0.36 × 0.34 × 0.26 0.29 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker SMART CCD area-detector Bruker APEXII area-detector Enraf–Nonius CAD-4 Bruker APEX DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 1999) Multi-scan (SADABS; Bruker, 2009)
Tmin, Tmax 0.846, 0.918 0.963, 0.990
No. of measured, independent and observed [I > 3σ(I)] reflections 10841, 4602, 4225 20634, 3635, 2152 8396, 4202, 1587 12709, 4943, 3677
Rint 0.022 0.058 0.056 0.023
(sin θ/λ)max−1) 0.651 0.651 0.661 0.756
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.023, wR(F) = 0.053, S = 1.34 R[F > 3σ(F)] = 0.036, wR(F) = 0.075, S = 1.23 R[F > 3σ(F)] = 0.044, wR(F) = 0.083, S = 1.08 R[F > 3σ(F)] = 0.042, wR(F) = 0.109, S = 2.06
No. of reflections 4602 3635 4202 4943
No. of parameters 356 244 274 222
No. of restraints 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.30 0.23, −0.23 0.29, −0.31 0.40, −0.32
Absolute structure 1800 of Friedel pairs used in the refinement
Absolute structure parameter 0.004 (17)
  QIQJAD SAFGUD SEDKET TIYZIM
Crystal data
Chemical formula C9H8Cl2N5+·C7H3N2O7·C3H7NO [Ag(C12H6N2O2)](C7H3N2O7) C5H9N2+·C7H3N2O7 C6H12N3+·C7H3N2O7
Mr 557.31 755.36 324.26 353.30
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21 Triclinic, P[\overline{1}]
Temperature (K) 294 174 293 173
a, b, c (Å) 10.0227 (5), 10.5507 (5), 12.5359 (6) 11.757 (2), 18.297 (4), 13.223 (3) 8.1183 (7), 6.0636 (5), 14.1453 (11) 7.0109 (4), 10.6617 (8), 10.7454 (7)
α, β, γ (°) 81.858 (1), 71.888 (1), 70.009 (1) 90, 103.91 (3), 90 90, 91.904 (1), 90 93.075 (6), 95.863 (5), 104.944 (6)
V3) 1183.1 (1) 2761.1 (11) 695.93 (10) 769.30 (9)
Z 2 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Cu Kα
μ (mm−1) 0.34 0.81 0.13 1.09
Crystal size (mm) 0.16 × 0.14 × 0.08 0.3 × 0.24 × 0.2 0.40 × 0.27 × 0.11 0.22 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector Oxford Diffraction Gemini R Ultra Bruker SMART CCD Agilent Xcalibur (Eos, Gemini)
Absorption correction Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2002) Multi-scan (SADABS; Bruker, 2002) Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax 0.93, 0.97 0.780, 0.910 0.959, 0.986 0.925, 1.000
No. of measured, independent and observed [I > 3σ(I)] reflections 13936, 5507, 4441 12726, 5013, 3100 3523, 2301, 1444 4664, 2953, 2426
Rint 0.019 0.052 0.040 0.026
(sin θ/λ)max−1) 0.661 0.603 0.595 0.618
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.056, wR(F) = 0.147, S = 3.41 R[F > 3σ(F)] = 0.062, wR(F) = 0.118, S = 1.64 R[F > 3σ(F)] = 0.041, wR(F) = 0.088, S = 1.16 R[F > 3σ(F)] = 0.041, wR(F) = 0.100, S = 1.64
No. of reflections 5507 5013 2301 2953
No. of parameters 340 444 212 229
No. of restraints 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.36 0.76, −0.63 0.11, −0.10 0.21, −0.18
Absolute structure 955 Friedel pairs used in the refinement
Absolute structure parameter 0.5
  TUJPEV (VABZIJ) WADXOR YAXPOE
Crystal data
Chemical formula C10H12N3O3S+·C7H3N2O7 C8H13N2O+·C7H3N2O7·H2O C9H17N2+·C7H3N2O7 C26H29N2+·C7H3N2O7
Mr 481.41 398.33 380.35 596.63
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 100 200 200
a, b, c (Å) 8.5551 (1), 10.5000 (2), 12.7576 (3) 6.6691 (3), 11.3831 (4), 12.2900 (5) 6.1537 (3), 19.1541 (14), 14.5527 (11) 14.5648 (3), 12.9374 (3), 16.1619 (3)
α, β, γ (°) 106.463 (1), 100.913 (1), 108.272 (1) 89.727 (2), 76.771 (2), 76.930 (2) 90, 98.343 (6), 90 90, 103.900 (1), 90
V3) 993.72 (3) 883.62 (6) 1697.2 (2) 2956.22 (11)
Z 2 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.23 0.13 0.12 0.10
Crystal size (mm) 0.20 × 0.20 × 0.16 0.52 × 0.13 × 0.10 0.30 × 0.13 × 0.10 0.51 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker SMART APEXII CCD area-detector Oxford Diffraction Gemini-S CCD-detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2009) Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (SADABS; Bruker, 2008)
Tmin, Tmax 0.955, 0.964 0.937, 0.987 0.920, 0.990 0.932, 1.000
No. of measured, independent and observed [I > 3σ(I)] reflections 24261, 6717, 4398 17014, 4061, 3042 7800, 3339, 1976 29552, 7344, 5724
Rint 0.030 0.030 0.034 0.015
(sin θ/λ)max−1) 0.758 0.650 0.617 0.667
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.044, wR(F) = 0.104, S = 1.95 R[F > 3σ(F)] = 0.038, wR(F) = 0.086, S = 1.77 R[F2 > 2σ(F2)] = 0.046, wR(F2) = 0.095, S = 1.33 R[F > 3σ(F)] = 0.054, wR(F) = 0.190, S = 1.80
No. of reflections 6717 4061 3339 7344
No. of parameters 301 258 268 399
No. of restraints 0 0 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.35 0.46, −0.23 0.36, −0.24 0.63, −0.28
Absolute structure
Absolute structure parameter

Table 2
Overview of the redetermined structures

REFCODE Chemical name original/corrected if necessary
DUJZAKa Bis(quinolin-8-ol)silver(I) 2-hy­droxy-3,5-di­nitro­benzoate
JEVNAAb Tetra­kis(1H-imidazole-N3)zinc(II) bis­(2-hy­droxy-3,5-di­nitro­benzoate / tetra­kis­(1H-imidazole-N3)zinc(II) bis­(2-carb­oxy-4,6-di­nitro­phenolate)
LUDFULc 1-Aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 2-hy­droxy-3,5-di­nitro­benzoate / phenazine 2-hy­droxy-3,5-di­nitro­benzoic acid
NUQVEBd 2-Amino-5-methyl­pyridinium 2-hy­droxy-3,5-di­nitro­benzoate) / 2-amino-5-methyl­pyridinium 2-hy­droxy-3,5-di­nitro­benzoate) (0.38) / 2-amino-5-methyl­pyridinium 2-carb­oxy-4,6-di­nitro­phenolate (0.62)
QIQJADe 3,5-Di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 3,5-di­nitro-2-hy­droxy­benzoate N,N-di­methyl­formamide solvate / 3,5-di­nitro-2-hy­droxy­benzoate (0.55) 2-carb­oxy-4,6-di­nitro­phenolate (0.45) N,N-di­methyl­formamide monosolvate / 3,5-di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 3,5-di­nitro-2-hy­droxy­benzoate N,N-di­methyl­formamide monosolvate
SAFGUDf Bis(1,10-phenanthroline-5,6-dione-2N,N′)silver(I) 2-hy­droxy-3,5-di­nitro­benzoate / bis(1,10-phenanthroline-5,6-dione-2N,N′)silver(I) 2-carb­oxy-4,6-di­nitro­phenolate
SEDKETg 3,5-Di­methyl­pyrazolium 2-carb­oxy-4,6-di­nitro­phenolate / 3,5-di­methyl­pyrazolium 2-hy­droxy-3,5-di­nitro­benzoate
TIYZIMh 3-(1H-Imidazol-1-yl)propanaminium 2-carb­oxy-4,6-di­nitro­phenolate
TUJPEVi 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium 3,5-di­nitro­salicylate
VABZIJj 2-Isopropyl-6-methyl-4-oxo-3,4-di­hydro­pyrimidin-1-ium 2-carb­oxy-4,6-di­nitro­phenolatemonohydrate
WADXORk 1-Aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 2-hy­droxy-3,5-di­nitro­benzoate / 2,3,4,6,7,8,9,10-octa­hydro­pyrimido[1,2-a]azepin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate (0.73) / 2,3,4,6,7,8,9,10-octa­hydro­pyrimido[1,2-a]azepin-1-ium 2-carb­oxy-4,6–2-carb­oxy-4,6-di­nitro­phenolate (0.37)
YAXPOEl 4-(Di­phenyl­meth­yl)-1-(3-phenyl­prop-2-en-1-yl)piperazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate
Notes: (a) Zhang & Jian (2009[Zhang, C.-L. & Jian, F.-F. (2009). Acta Cryst. E65, m1521.]); (b) Huang et al. (2007[Huang, F., Song, W.-D. & Li, S.-D. (2007). Acta Cryst. E63, m388-m389.]); (c) Senthil Kumar et al. (2002[Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002). Acta Cryst. E58, o865-o866.]); (d) Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1194-o1195.]); (e) Sridhar et al. (2013[Sridhar, B., Nanubolu, J. B. & Ravikumar, K. (2013). Acta Cryst. C69, 1164-1169.]); (f) Wang et al. (2012[Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, m76.]); (g) Wei et al. (2012[Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.]); (h) Yamuna et al. (2014[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o318-o319.]); (i) Malathy et al. (2015[Malathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618-620.]); (j) Hemamalini & Fun (2010b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2950-o2951.]); (k) Smith & Lynch (2016[Smith, G. & Lynch, D. E. (2016). Acta Cryst. E72, 382-386.]); (l) Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]).

Notably, JEVNAA turns out not to be a substituted benzoate but a phenolate. NUQVEB though reported as a substituted benzoate turns out to be present in a disordered benzoate and a phenolate form. QIQJAD though reported as a disordered benzoate and a phenolate turns out to be a substituted benzoate. SAFGUD was reported as a substituted benzoate but turns out to be a phenolate. WADXOR was reported as a substituted benzoate that is disordered over two positions but it turns out to be present both in a dominant benzoate as well as in a minor phenolate form. Finally, SEDKET was originally determined as a substituted phenolate but it turns out to be a benzoate.

Some of the retrieved structures were difficult or impossible to recalculate with sufficient accuracy: HILPOI (trimetho­prim­ium 3,5-di­nitro­salicylate; Subashini et al., 2007[Subashini, A., Samuel, E., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4049.]) because of an abnormally low proportion of observed reflections (moreover the bridging hydrogen H6a is situated out of the plane between the carboxyl­ate and hy­droxy oxygen atoms, which seems to indicate an error) and VUZNEK (3,4-di­amino­pyridinium 2-carb­oxy-4,6-di­nitro­phenolate; Hemamalini & Fun, 2010b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2950-o2951.]) because of the disorder present in the structure.

2. Refinement of the title structures

For each structure, two methods have been applied for the refinement of the hydrogen atoms involved in hydrogen bonding. In Method 1, the positions of the bridging hydrogens as well as those of the hy­droxy, primary and secondary amine and ammonium hydrogen atoms were fixed after their local­ization in the difference electron-density maps while their displacement parameters were refined. In Method 2, the positional parameters of the latter hydrogen atoms were refined while their displacement parameters were constrained in the usual manner: Uiso(H) = 1.2Ueq(Namine) or Uiso(H) = 1.5Ueq(Ohy­droxy) or Uiso(H) = 1.5Ueq(Nammonium).

The appropriate sections of the difference electron-density maps of the title structures (see supplementary Fig. S1) show regions with the hy­droxy, amine and ammonium hydrogen atoms. These sections comprise the maps that were obtained after the refinement of the models without the pertinent hydrogen atoms as well as the maps that were calculated by either refinement method. It can be seen from the supplementary Fig. S1 that one of the reasons that hinders the correct localization of the hydrogen atoms involved in the hydrogen bonds is an apparent non-spherical electron density of the donor and acceptor atoms. Thus, hydrogen-atom local­ization by X-ray diffraction is hindered not only by its weak scattering power, but also by the polarization of its electron density resulting from the proximity of the acceptor and by the asphericity of the electron density of the donor and acceptor atoms. Therefore, refinement Method 1 was given preference. The hydrogen bonds in the title structures are listed in Table 3[link], which shows that there might be quite a large difference between the results with the fixed and the refined positional parameters of such hydrogen atoms. In the following, a detailed description of the refinement of the recalculated structures is given:

Table 3
Hydrogen bonds (Å, °) in the redetermined structures

The upper entries for each hydrogen bond refer to refinement Method 1: fixed hydrogen-atom positions, which were obtained from the difference electron-density maps, and refined displacement parameters. The lower entries refer to refinement Method 2: refined hydrogen-atom positions and constrained displacement parameters.

D—H⋯A D—H H⋯A DA D—H⋯A
DUJZAK        
O1—H1aa⋯O8 0.759 (2) 1.859 (2) 2.606 (3) 167.96 (14)
  0.97 (4) 1.64 (4) 2.603 (3) 175 (3)
O2—H2aa⋯O9 0.922 (2) 1.727 (2) 2.631 (3) 166.48 (15)
  0.75 (4) 1.90 (4) 2.636 (3) 165 (4)
O3—H3b⋯O9 1.040 (2) 1.495 (2) 2.481 (3) 155.88 (12)
  1.11 (4) 1.41 (4) 2.480 (3) 160 (3)
         
JEVNAA        
O2—H1a⋯O1 1.039 (2) 1.496 (2) 2.498 (2) 160.4 (1)
  0.89 (2) 1.65 (3) 2.503 (2) 160 (2)
N2—H2a⋯O3 0.967 (2) 1.890 (2) 2.838 (3) 165.9 (1)
  0.84 (2) 2.02 (2) 2.845 (3) 169 (2)
N4—H4a⋯O1i 0.943 (2) 1.924 (1) 2.784 (2) 150.6 (1)
  0.86 (2) 1.95 (2) 2.792 (2) 165 (2)
         
LUDFUL        
O3—H3a⋯O2 1.059 (1) 1.530 (1) 2.513 (2) 151.7 (1)
  1.06 (2) 1.51 (2) 2.516 (2) 156 (2)
O1—H1a⋯N3 1.163 (1) 1.416 (1) 2.552 (2) 163.2 (1)
  1.14 (2) 1.44 (2) 2.552 (2) 166 (2)
         
NUQVEB        
O7—H1o7⋯O1 0.919 (1) 1.531 (1) 2.4202 (12) 161.55 (6)
  1.14 (2) 1.31 (2) 2.4178 (12) 163 (2)
O1—H1o1⋯O7 0.931 (1) 1.513 (1) 2.4202 (12) 163.52 (6)
  1.31 (2) 1.14 (2) 2.4178 (12) 163 (2)
N2—H2a⋯O7ii 0.892 (1) 2.079 (1) 2.9655 (14) 172.84 (6)
  0.87 (1) 2.095 (14) 2.9674 (14) 176.5 (12)
N2—H2b⋯O1iii 0.846 (1) 2.165 (1) 2.8526 (14) 138.40 (6)
  0.88 (2) 2.146 (14) 2.852 (1) 137.3 (11)
N2—H2b⋯O2iii 0.846 (1) 2.413 (1) 3.1741 (14) 150.02 (6)
  0.88 (2) 2.384 (14) 3.1736 (15) 150.3 (11)
N1—H1⋯O6ii 0.898 (1) 1.783 (1) 2.6781 (13) 174.83 (6)
  0.90 (1) 1.784 (14) 2.6773 (14) 173.3 (13)
         
QIQJAD        
N3—H3n⋯O2 0.862 (2) 1.994 (2) 2.854 (2) 174.8 (1)
  0.81 (3) 2.05 (3) 2.854 (3) 175 (3)
N3—H4n⋯O8iv 0.863 (2) 2.059 (1) 2.921 (2) 176.9 (1)
  0.85 (2) 2.07 (2) 2.920 (2) 173 (3)
N2—H2n⋯O1 0.897 (2) 1.831 (2) 2.728 (2) 177.5 (1)
  0.81 (3) 1.93 (3) 2.731 (2) 171 (2)
N5—H5n⋯N4v 0.866 (1) 2.141 (1) 2.9992 (19) 171.1 (1)
  0.84 (2) 2.17 (2) 2.999 (2) 171 (2)
N5—H6n⋯O8vi 0.863 (2) 2.041 (2) 2.760 (2) 140.2 (1)
  0.78 (2) 2.12 (3) 2.764 (2) 141 (2)
O3—H3o⋯O1 0.926 (1) 1.562 (1) 2.4572 (18) 161.3 (1)
  0.99 (3) 1.49 (3) 2.4569 (19) 164 (3)
         
SAFGUD        
O8—H7⋯O7 1.155 (4) 1.346 (4) 2.462 (6) 159.6 (3)
  1.05 (7) 1.57 (7) 2.452 (7) 138 (6)
         
SEDKET        
O1—H2a⋯O2 1.22 (5) 1.34 (5) 2.476 (3) 149 (5)
  1.27 (3) 1.29 (3) 2.477 (3) 151 (3)
O2—H2a⋯O1 1.34 (5) 1.22 (5) 2.476 (3) 149 (5)
  1.29 (3) 1.27 (3) 2.477 (3) 151 (3)
N1—H1⋯O1vii 1.11 (5) 1.92 (5) 2.799 (4) 133 (3)
  0.99 (4) 2.00 (3) 2.804 (4) 137 (3)
N1—H1⋯O7vii 1.11 (5) 1.94 (5) 2.850 (4) 137 (3)
  0.99 (4) 2.03 (3) 2.855 (4) 140 (3)
N2—H2⋯O3 0.96 (3) 1.77 (3) 2.685 (4) 158 (3)
  0.99 (3) 1.75 (3) 2.684 (4) 157 (3)
         
TIYZIM        
O2b—H2b⋯O1b 0.982 (1) 1.516 (1) 2.4473 (16) 156.3 (1)
  1.02 (2) 1.48 (2) 2.4476 (16) 156 (2)
N3a—H3aa⋯N1aaviii 0.904 (1) 1.932 (1) 2.797 (2) 159.6 (1)
  0.91 1.92 2.797 (2) 162
N3a—H3ab⋯O2bix 0.901 (1) 2.565 (1) 3.1297 (17) 121.4 (1)
  0.91 2.58 3.1298 (17) 120
N3a—H3ab⋯O2bix 0.901 (1) 2.565 (1) 3.1297 (17) 121.4 (1)
  0.91 2.58 3.1297 (18) 120
N3a—H3ab⋯O3bix 0.901 (1) 2.072 (1) 2.9537 (17) 165.8 (1)
  0.91 2.06 2.9542 (17) 165
N3a—H3ac⋯O1bx 0.893 (1) 2.061 (1) 2.815 (2) 141.5 (1)
  0.91 2.03 2.815 (2) 144
N3a—H3ac⋯O7bx 0.893 (1) 2.484 (1) 2.9712 (19) 114.7 (1)
  0.91 2.46 2.9706 (19) 116
         
TUJPEV        
O6—H6a⋯O5 1.184 (1) 1.295 (1) 2.4268 (16) 156.58 (6)
  1.24 (2) 1.21 (2) 2.4280 (17) 165.3 (14)
N1—H1a⋯O6xi 1.002 (1) 2.068 (1) 3.0655 (17) 173.55 (7)
  0.89 2.24 3.0694 (17) 155
N1—H1b⋯N3v 0.793 (1) 2.292 (1) 3.0393 (15) 157.3 (1)
  0.89 2.20 3.0382 (15) 157
N1—H1c⋯O4v 0.832 (2) 1.831 (1) 2.663 (2) 177.1 (1)
  0.89 1.77 2.660 (2) 175
N2—H2a⋯O5 0.970 (1) 1.844 (1) 2.7852 (15) 162.64 (9)
  0.827 (17) 1.986 (16) 2.7900 (16) 164.0 (18)
         
VABZIJ        
N3—H1n3⋯O6x 0.973 (1) 1.754 (1) 2.7182 (14) 170.48 (8)
  0.91 (1) 1.823 (14) 2.7214 (14) 170.8 (15)
N4—H1n4⋯O1w 0.909 (1) 1.840 (1) 2.7348 (15) 167.76 (8)
  0.91 (2) 1.833 (15) 2.7323 (16) 172.0 (15)
O1w—H2w1⋯O1xii 0.917 (1) 1.890 (1) 2.7886 (14) 166.21 (6)
  0.82 (2) 1.995 (19) 2.7906 (15) 162.7 (16)
O1w—H1w1—O3iii 0.915 (1) 2.040 (1) 2.9352 (14) 165.84 (7)
  0.89 (2) 2.064 (18) 2.9357 (15) 168.0 (17)
O7—H7⋯O1 1.019 (1) 1.433 (1) 2.4340 (13) 165.94 (7)
  0.96 (2) 1.505 (16) 2.4358 (13) 162.0 (16)
         
WADXOR        
N8a—H8a⋯O11b 0.960 (2) 1.933 (2) 2.864 (2) 162.83 (11)
  0.91 (2) 1.96 (2) 2.869 (2) 174.1 (17)
O11b—H21b⋯O21b 1.145 (2) 1.303 (6) 2.433 (6) 167.3 (3)
  1.07 (9) 1.48 (9) 2.430 (6) 145 (7)
O2b—H2b⋯O12b 1.103 (2) 1.385 (2) 2.471 (2) 166.81 (13)
  0.91 (3) 1.61 (3) 2.475 (3) 159 (3)
         
YAXPOE        
N1—H71⋯O1iv 0.945 (1) 1.954 (1) 2.813 (2) 150.01 (8)
  0.90 (2) 1.98 (2) 2.812 (2) 154.0 (19)
N1—H71⋯O2iv 0.945 (1) 2.302 (2) 3.032 (2) 133.62 (8)
  0.90 (2) 2.36 (2) 3.034 (2) 131.8 (17)
O7—H7⋯O1 0.924 (2) 1.668 (1) 2.505 (2) 148.96 (9)
  0.92 (3) 1.71 (3) 2.504 (2) 142 (2)
Symmetry codes: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + 1, −y + 1, −z; (iii) −x + 1, −y, −z; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 2, −z + 1; (vi) x − 1, y + 1, z; (vii) −x + 1, y + [{1\over 2}], −z + 1; (viii) −x, −y, −z; (ix) x + 1, y, z; (x) −x, −y + 1, −z + 1; (xi) −x, −y + 2, −z + 1; (xii) x, y + 1, z.

DUJZAK (Zhang & Jian, 2009[Zhang, C.-L. & Jian, F.-F. (2009). Acta Cryst. E65, m1521.]): C—Har­yl were constrained to be equal to 0.93 Å while Uiso(Har­yl) = 1.2Ueq(Car­yl). The position of the bridging hydrogen H3b as well as those of the hy­droxy hydrogen atoms H1aa and H2aa were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displace­ment parameters were refined.

JEVNAA (Huang et al., 2007[Huang, F., Song, W.-D. & Li, S.-D. (2007). Acta Cryst. E63, m388-m389.]): C—Har­yl were constrained to be equal to 0.93 Å while Uiso(Har­yl) = 1.2Ueq(Car­yl). The position of the bridging hydrogen H1a as well as those of the secondary amine hydrogen atoms H2a and H4a were located in the difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

LUDFUL (Senthil Kumar et al., 2002[Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002). Acta Cryst. E58, o865-o866.]): C—Har­yl were constrained to be equal to 0.93 Å while Uiso(Har­yl) = 1.2Ueq(Car­yl). The position of the bridging hydrogen H3a as well as that of the hydroxy hydrogen atom H1a were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

NUQVEB (Hemamalini & Fun, 2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1194-o1195.]): The subroutine TwinRotMax of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated non-merohedral twinning: h2 = −h1; k2 = −k1; l2 = −0.488 h1 − 0.153k1 + l1. The refinement was carried out on the non-overlapped reflections only. The refined value of the second domain fraction converged to the value −0.0006 (4). Therefore the value of the second domain fraction was set to 0 and was not refined further. C—Har­yl and C—Hmeth­yl were constrained to be equal to 0.95 and 0.98 Å, respectively. Uiso(Har­yl) = 1.2Ueq(Car­yl) and Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The positions of the disordered bridging hydrogens H1o1 and H1o7 as well as those of the primary (H2a, H2b) and the secondary amine hydrogen atoms (H1a) were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the bridging hydrogens H1o1 and H1o7, their isotropic displacement parameters were refined to be equal while their occupational parameters were refined under the condition that their sum was equal to 1.

QIQJAD (Sridhar et al., 2013[Sridhar, B., Nanubolu, J. B. & Ravikumar, K. (2013). Acta Cryst. C69, 1164-1169.]): The subroutine TwinRotMax of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicated non-merohedral twinning: h2 = −1.018h1 + 0.054k1; k2 = −0.673h1 + 1.018k1; l2 = −0.039h1 + 0.116k1 − l1. The refined value of the second domain fraction converged to the value 0.028 (13). Therefore the value of the second domain fraction was set to 0 and was not refined further. C—Hsp2 and C—Hmeth­yl were constrained to equal to 0.93 and 0.96 Å, respectively. Uiso(Hsp2) = 1.2Ueq(Csp2) and Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The positions of the bridging hydrogen H3o and those of the primary (H3n, H4n, H5n, H6n) as well as of the secondary (H2n) amine hydrogen atoms were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

SAFGUD (Wang et al., 2012[Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, m76.]): C—Har­yl were constrained to be equal to 0.93 Å while Uiso(Har­yl) = 1.2Ueq(Car­yl). The bridging hydrogen H7 was located in a difference electron-density map and its position was fixed while its isotropic displacement parameter Uiso(H7) was refined.

SEDKET (Wei et al., 2012[Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.]): The non-centrosymmetric structure is composed of the light atoms only (the heaviest atom is O) and the data collection was carried out with Mo Kα radiation. The article by Wei et al. (2012[Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.]) does not indicate whether the Friedel pairs were merged and nor does it contain the value of the Flack parameter. The Flack parameter was set to 0.5 without being refined in the present model. C—Har­yl and C—Hmeth­yl were constrained to be equal to 0.93 and 0.96 Å, respectively. Uiso(Har­yl) = 1.2Ueq(Car­yl) and Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The position of the bridging hydrogen H2a as well as those of the secondary amine hydrogen atoms H1 and H2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

TIYZIM (Yamuna et al. (2014[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o318-o319.]): C—Har­yl and C—Hmethyl­ene were constrained to be equal to 0.95 and 0.99 Å, respectively. Uiso(Har­yl) = 1.2Ueq(Car­yl) and Uiso(Hmethyl­ene) = 1.5Ueq(Cmethyl­ene). The position of the bridging hydrogen H2b as well as those of the ammonium hydrogen atoms (H3aa, H3ab, H3ac) were found in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H3ab, H3ac,), their displacement parameters were constrained to be equal to that of H3aa.

TUJPEV (Malathy et al., 2015[Malathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618-620.]): C—Har­yl were constrained to be equal to 0.93 Å while Uiso(Har­yl) = 1.2Ueq(Car­yl). C—Hmeth­yl were constrained to be equal to 0.96 Å while Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The position of the bridging hydrogen H6a as well as those of the secondary amine group H2a and of the ammonium hydrogen atoms H1a, H1b and H1c were found in a difference-electron map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H1b, H1c), their displacement parameters were constrained to be equal to that of H1a.

VABZIJ (Hemamalini & Fun, 2010c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2747.]): C—Har­yl, C—Hmeth­yl, C—Hmethine were constrained to be equal to 0.93, 0.96 and 0.98 Å, respectively. Uiso(Har­yl) = 1.2Ueq(Car­yl), Uiso(Hmethine) = 1.2Ueq(Cmethine), Uiso(Hmeth­yl) = 1.5Ueq(Cmeth­yl). The position of the bridging hydrogen H7 as well as those of the secondary amine hydrogen atom H1n4 and of the water hydrogen atoms H1w1 and H1w2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their displacement parameters were refined.

WADXOR (Smith & Lynch, 2016[Smith, G. & Lynch, D. E. (2016). Acta Cryst. E72, 382-386.]): The non-centrosymmetric structure is composed of light atoms only (the heaviest atoms present in the structure are oxygens) and the data collection was carried out with Mo Kα radiation. The original article reported the refined Flack parameter to be equal to −0.1 (13); however, the refinement using JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) did not converge and therefore the Flack parameter was set to 0.5 without being refined. C—Har­yl and C—Hmethyl­ene were constrained to be equal to 0.95 and 0.99 Å, respectively, except for the distances between the methyl­ene atom C11 and the attached hydrogen atoms H12a and H13a, which were restrained to 0.99 (1) Å (Müller, 2009[Müller, P. (2009). Crystallogr. Rev. 15, 57-83.]). [The reason for the different treatment of the latter methyl­ene group was its vicinity to the disordered methyl­ene groups centered on C10 and C12a.] Uiso(Har­yl) = 1.2Ueq(Car­yl) and Uiso(Hmethyl­ene) = 1.2Ueq(Cmethyl­ene). There were two types of occupational disorder present in the structure. The first one was related to the fragments with the methyl­ene carbon atoms C9a, C10a and the attached respective pairs of hydrogen atoms H91a, H92a and H10a, H11a, as well as to C13a and C12a with the attached respective pairs of hydrogen atoms H16a, H17a and H14a, H15a. The occupation parameter of C13 was refined while those of the related atoms were either set equal to that of C13 (i.e. C12a and attached hydrogen atoms) or its complement to 1 (C9a and C10a and attached hydrogen atoms). The displacement parameters of the disordered pairs of atoms C9a and C13a as well as C10a and C12a were set to be equal, i.e. that of C13a equalled that of C9a while that of C10a equalled that of C12a. The second type of occupational disorder referred to the fragments C2b—H61b, C2b–O2b—H2b and C6b—H6b, C6b—O21b—H21b. This means that the occupation parameters of H61b, H21b were set equal to the refined occupational parameter of O21b while being complements to 1 for H6b, O2b, H2b. The positions of the bridging hydrogens H2b and H21b as well as that of the primary amine hydrogen atom H8a were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displace­ment parameters were refined; in the case of bridging hydrogens H2b and H21b, their isotropic displacement parameters were constrained to be equal.

YAXPOE (Dayananda et al., 2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]): C—Har­yl and C—Hmethyl­ene were constrained to equal to 0.95 and 0.99 Å, respectively. Uiso(Har­yl) = 1.2Ueq(Car­yl) and Uiso(Hmethyl­ene) = 1.5Ueq(Cmethyl­ene). The bridging hydrogen H7 was located in a difference electron-density map. Its positional parameters were fixed while Uiso(H7a) was refined. A high instability factor Δ in the weighting scheme (0.0064) was applied in order to avoid a large number of reflections with (IobsIcalc)/σ(w) > 10 where σ(w) = [σ2(I) + ΔI2]−1/2. [This condition generates A alerts for Δ = 0.0004, which has been used in other refinements of the title structure, when running checkCIF (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).] The residual electron-density map contains peaks which are difficult to inter­pret (see supplementary Fig. S1).

3. Discussion of the inter­dependence of bond lengths and angles

For this discussion, the definition of the various bonds and angles in the moieties of IIV (shown in the scheme), are illustrated in Figs. 1[link]a and 1b, respectively. As already pointed out, the dependence D2 on D4 and D1 on D3 (Fig. 2[link]) has shown that a large number of structures are biased by incorrectly applied constraints or restraints on the bridging hydrogen. However, a dubious or incorrect localization of the bridging hydrogen or the acid hydrogen is believed to affect the positions of the non-hydrogen atoms only minutely, and therefore even the biased structures can be considered further. The parameters q1 = D2 − D1 and q2 = D12 − D11 express the electron delocalization within the fragment D1–D12–D11–D2. The introduction of the parameters q1 and q2 follows an analogous discussion of resonance-assisted hydrogen bonds in the enol forms of β-diketone fragments (Gilli et al., 1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.], 2009[Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 34, 34-44.]). Fig. 3[link]a shows that the distance where the structures with 2-carb­oxy-4,6-di­nitro­phenolates (III; red circles) transform into 2-hy­droxy-3,5-di­nitro­benzoates (II; black squares) corresponds to the shortest distance D13min ≃ 2.41 Å, which in turn corresponds to (q1 + q2) ≃ 0.08 Å. This implies that this is the region where the bridging hydrogen has the greatest tendency to be situated about the centre of the O⋯O intra­molecular hydrogen bond or disordered about it. A very similar dependence is shown in Fig. 3[link]b, where only distances D1 and D3 are compared. The observed dependence means that the elongation of one C—O bond takes place mostly at the cost of the shortening of the neighbouring C=O bond; in other words, the distance between these two O atoms, D13 ≃ [(D13min)2 + (D2 − D1)2]1/2 (Fig. 1)[link]. Table 4[link] lists the structures in which the title mol­ecules are present in different forms. In the recalculated structure of SEDKET (Table 2[link]) and e.g. the reported structures of KEZJIJ (Song et al., 2007[Song, W.-D., Guo, X.-X. & Yu, L. (2007). Acta Cryst. E63, o1890-o1891.]) and KEZJIJ01 (Smith et al., 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]) that refer to the structure determination of 2-(pyridin-2-yl)pyridinium 2-carb­oxy-4,6-di­nitro­phenolate, the bridging hydrogen is attached to the O atom having the shorter C—O bond distance.

Table 4
Overview of selected structures with different forms of the mol­ecules: 2-hy­droxy-3,5-di­nitro­benzoic acid (I); 2-hy­droxy-3,5-di­nitro­benzoate (II); 2-carb­oxy-4,6-di­nitro­phenolate (III); 3,5-di­nitro-2-oxidobenzoate (IV)

The structures are ordered by ascending pKa value of the base. The corresponding values of (q1 + q2), D13, D1, D2 and D5 (cf. Fig. 1[link]) are also given.

  Refcode Base and its form present in the structure pKa ΔpKa Type (q1 + q2) (Å) D13 (Å) D1 (Å) D2 (Å) D5 (Å) Remarks
1 GORXAMa 1,4-dioxane −3.9 −6.08 I 0.204 0.196 2.547 2.545 1.219 1.220 1.337 1.336 1.307 1.300 Two independent mol­ecules
2 GORXEQa 1,4-dioxane −3.9 −6.08 I 0.235 2.601 1.206 1.343 1.319  
3 GORXEQ01a 1,4-dioxane −3.9 −6.08 I 0.197 2.531 1.222 1.346 1.302  
4 AJEBOGb 4-cyanopyridinium 1.92 −0.26 III 0.003 2.523 1.324 1.28 1.213  
5 ABULAMc 2-aminoanilinium <2 <-0.18 III 0.011 2.447 1.309 1.282 1.219  
6 PIDCAIc 2-aminoanilinium <2 <-0.18 III 0.009 2.44 1.314 1.285 1.229 Wrongly attached hydrogen due to C=O distances. Originally determined as type II but it should be III.
7 PERBARd 3-carbamoylpyridinium 3.35 1.2 II 0.17 2.452 1.287 1.329 1.239 Wrongly attached hydrogen due to C=O distances. Originally determined as type II but it is probably III. Disorder present in the structure.
8 GIFMUEe 1-naphthylammonium 3.92 1.74 III 0.011 2.488 1.31 1.279 1.224  
9 MIPROSf 8-aminoquinolinium 3.95 1.77 II 0.072 2.408 1.278 1.300 1.237 The bridging hydrogen is situated about the centre.
10 ABUKUFg 4-chloroanilinium 3.98 1.80 II 0.094 2.435 1.276 1.297 1.242  
11 YIVHIWh 4-iodoanilinium 4.18 1.63 II 0.129 2.461 1.285 1.321 1.228  
12 GIFNUFi 1,10-phenanthrolinium 4.27 2.09 II 0.096 2.428 1.280 1.297 1.232 Determined as the type III but it is probably II (Fig. 1[link]). The chemical name was correct.
13 FOXHADj 2-(pyridin-2-yl)pyridinium 4.33 2.15 II 0.047 2.42 1.307 1.292 1.228 100 K; the reported hydrogen H3 is situated out of the plane formed by C⋯O bonds and is superficial.
14 KEZJIJj 2-(pyridin-2-yl)pyridinium 4.33 2.15 III 0.07 2.422 1.293 1.296 1.231 C=O distances are about equal. The recalculation has shown that the bridging hydrogen is about the centre of the hydrogen bond, slightly closer to atom O2, which forms a shorter C=O bond.
15 KEZJIJ01j 2-(pyridin-2-yl)pyridinium 4.33 2.15 III 0.066 2.423 1.295 1.299 1.221 C=O distances are about equal, the hydrogen is attached to the O atom forming a shorter C=O bond.
16 FICXIZk cytosinium 4.60 2.42 II 0.098 2.423 1.285 1.310 1.234 The type according to the C=O distances should be II; the bridging hydrogen was wrongly attached.
17 ABUJUEl anilinium 4.60 2.42 II 0.129 2.448 1.280 1.323 1.231  
18 ABUKOZm 4-fluoroanilinium 4.65 2.47 II 0.142 2.465 1.273 1.325 1.252  
19 GIFMOYn quinolinium 4.85 2.67 III 0.05 2.414 1.294 1.285 1.235 The title mol­ecule has similarly long C=O distances.
20 ZAJHATo 2-amminobenzoic acid 4.96 2.78 II 0.135 2.461 1.282 1.324 1.227  
21 AJEBIAp pyridinium 5.23 3.05 I and II 0.142 0.163 2.458 2.582 1.250 1.308 1.257 Two independent mol­ecules
22 EGABOFq 2-methylquinolinium 5.71 3.53 II 0.285 2.411 1.207 1.359 1.244 Outlier
23 AJECEX01r 2,6-di­aminopyridin-1-ium 6.13 3.95 II 0.072 0.121 2.435 2.464 1.298 1.295 1.309 1.332 1.241 1.237 One of the title mol­ecules has similarly long C=O distances.
24 AJECIBs 2-aminopyrimidinium 6.82 4.64 II 0.114 0.145 2.466 2.473 1.277 1.270 1.308 1.323 1.241 1.238  
25 TUMWABt 1H-imidazol-3-ium 6.95 4.77 III −0.01 2.457 1.320 1.279 1.214  
26 LUMJOUu hydrazinium 8.12 5.94 III 0.014 2.459 1.318 1.275 1.211  
27 SEDKETv 3,5-di­methylpyrazolium 9 6.82 III 0.037 2.481 1.300 1.282 1.224  
28 SEDKETv (corrected) 3,5-di­methylpyrazolium 9 6.82 II 0.027 2.476 1.305 1.277 1.229 The bridging hydrogen after recalculation is closer to oxygen O1, which forms the shorter C=O bond (C12—O1).
29 LUDDETw benzylammonium 9.33 7.15 III 0.002 2.483 1.305 1.269 1.218  
30 LUDDET01w benzylammonium 9.33 7.15 III     1.311 1.311 1.275 1.279 1.217 1.219  
31 INELUIx 1-phenyl­ethylammonium 9.79 7.61 III 0.009 0.009 2.467 2.482 1.309 1.320 1.272 1.277 1.221 1.214  
32 MILLOIy di­cyclo­hexylammonium 10.4 8.22 III 0.028 2.464 1.289 1.273 1.225 The C=O distances of the title mol­ecule are similar.
33 ACIFATz 4-sulfamoylanilinium 10.6 8.42 III 0.028 2.462 1.315 1.287 1.209  
34 EGUTIJaa methylammonium 10.6 8.42 III 0.011 2.481 1.314 1.276 1.218  
35 EGUTOPbb tri­ethylammonium 10.78 8.6 II 0.082 2.429 1.275 1.286 1.248  
36 EGUTOP01bb tri­ethylammonium 10.78 8.6 II 0.072 2.419 1.275 1.288 1.242  
37 FOGZILcc di­ethylammonium 11.09 8.91 III 0.004 2.489 1.308 1.270 1.217  
38 XEBFAMdd piperidinium C5H11N 11.28 9.1 II and IV 0.078 0.061 2.586 2.736 1.219 1.234 1.278 1.253 1.255 1.271 One mol­ecule of DNSA (I) is fully ionized, the other is in form II.
39 YEJZAOee guanidinium 12.5 10.32 II 0.079 2.415 1.291 1.305 1.235  
40 YEJZAO01ee guanidinium 12.5 10.32 II 0.073 2.415 1.292 1.300 1.239  
References for the pKa values: (a) https://chemaxon.com/products/calculators-and-predictors#pka; (b) https://www.chemicalbook.com/ProductMSDSDetailCB0688145_EN.htm; (c) Dean (1987[Dean, J. A. (1987). Handbook of Organic Chemistry, pp. 8-46 New York, NY: McGraw-Hill Book Co.]); (d) https://pubchem.ncbi.nlm.nih.gov/compound/nicotinamide#section=pKa; (e) https://labs.chem.ucsb.edu/zhang/liming/pdf/pKas_of_Organic_Acids_and_Bases.pdf; (f) https://binarystore.wiley.com/store/10.1002/jcc.23068/asset/supinfo/JCC_23068_sm_SuppInfo.pdf?v=1&s=e864a51d58b4cdc175f6b69c92ceddb546201e3b; (g) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (h) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (i) https://chemicalland21.com/specialtychem/finechem/1,10-PHENANTHROLINE.htm; (j) https://www.chemicalbook.com/ProductMSDSDetailCB5195697_EN.htm; (k) https://www.drugfuture.com/chemdata/cytosine.html; (l) https://pubchem.ncbi.nlm.nih.gov/compound/aniline#section=pKa; (m) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (n) Hosmane & Liebman (2009[Hosmane, R. S. & Liebman, J. F. (2009). Struct. Chem. 20, 693-697.]); (o) https://www.csun.edu/\~hcchm003/321/Ka.pdf; (p) https://pubchem.ncbi.nlm.nih.gov/compound/pyridine#section=Dissociation-Constants; (q) https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23068; (r) https://www.chemicalbook.com/ProductMSDSDetailCB0236195_EN.htm; (s) https://pubchem.ncbi.nlm.nih.gov/compound/2-amino­pyridine#section=Dissociation-Constants; (t) https://pubchem.ncbi.nlm.nih.gov/compound/imidazole#section=pKa; (u) https://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf; (v) https://www.chemicalbook.com/ProductMSDSDetailCB2707394_EN.htm; (w) https://pubchem.ncbi.nlm.nih.gov/compound/benzyl­amine#section=pKa; (x) https://www.drugbank.ca/drugs/DB04325; (z) https://pubchem.ncbi.nlm.nih.gov/compound/di­cyclo­hexyl­amine#section=Dissociation-Constants; (z) https://pubchem.ncbi.nlm.nih.gov/compound/sulfanilamide#section=Dissociation-Constants; (aa) https://pubchem.ncbi.nlm.nih.gov/compound/methyl­amine#section=pKa; (ab) https://pubchem.ncbi.nlm.nih.gov/compound/tri­ethyl­amine#section=Dissociation-Constants; (ac) https://pubchem.ncbi.nlm.nih.gov/compound/di­ethyl­amine#section=Dissociation-Constants; (ad) https://pubchem.ncbi.nlm.nih.gov/compound/piperidine#section=Dissociation-Constants; (ae) https://pubchem.ncbi.nlm.nih.gov/compound/guanidine#section=pKa.References to publications with the chemical names of the determined compounds (original and corrected ones if necessary): (1) Senthil Kumar et al. (1999[Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069-1074.]): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (1:1)]; (2) Senthil Kumar et al. (1999[Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069-1074.]): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (2:1); (3) Senthil Kumar et al. (1999[Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069-1074.]): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (2:1); (4) Smith et al. (2003a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003a). Aust. J. Chem. 56, 707-713.]): 4-cyano­pyridinium 3,5-di­nitro­salicylate, 4-cyano­pyridinium 3,5-di­nitro­salicylate 2-carb­oxy-4,6-di­nitro­phenolate; (5) Smith et al. (2011[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649-1662.]): 2-amino­anilinium 2-carb­oxy-4,6-di­nitro­phenolate; (6) Khan et al. (2013[Khan, I. M., Ahmad, A. & Ullah, M. F. (2013). Spectrochim. Acta A, 102, 82-87.]): 2-amino­anilinium 2-hy­droxy-3,5-di­nitro­benzoate, 2-amino­anilinium 2-carb­oxy-4,6-di­nitro­phenolate; (7) Jin et al. (2013[Jin, S., Wang, D., Linhe, Q., Fu, M., Wu, S. & Ren, J. (2013). J. Chem. Crystallogr. 43, 258-265.]): 3-carbamoylpyridinium 2-carb­oxy-4,6-di­nitro­phenolate, 3-carbamoylpyridinium 2-hy­droxy-3,5-di­nitro­benzoate; (8) Smith et al. (2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]): 1-naphthyl­ammonium 3,5-di­nitro­salicylate, 1-naphthyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (9) Smith et al. (2001b[Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001b). Aust. J. Chem. 54, 165-170.]): 8-amino­quinolinium 3,5-di­nitro­salicylate; (10) Smith et al. (2011[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649-1662.]): 4-chloro­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (11) Jones et al. (2014[Jones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849-5858.]): (4-iodo­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (12) Smith et al. (2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]): 1,10-Phenanthrolinium 3,5-di­nitro­salicylate; (13) Singh et al. (2014[Singh, N., Khan, I. M., Ahmad, A. & Javed, S. (2014). J. Mol. Liq. 191, 142-150.]): 2-(pyridin-2-yl)pyridinium 2-hy­droxy-3,5-di­nitro­benzoate; (14) Song et al. (2007[Song, W.-D., Guo, X.-X. & Yu, L. (2007). Acta Cryst. E63, o1890-o1891.]): 2,2′-bipyridinium 2-carb­oxy-4,6-di­nitro­phenolate; (15) Smith et al. (2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]): 2,2′-bipyridinium 2-carb­oxy-4,6-di­nitro­phenolate; (16) Smith et al. (2005a[Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. E61, o746-o748.]): cytosinium 3,5-di­nitro­salicylate, cytosinium 2-carb­oxy-4,6-di­nitro­phenolate; (17) Smith et al. (2011[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649-1662.]): anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (18) Smith et al. (2011[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649-1662.]): 4-fluoro­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (19) Smith et al. (2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]): quinolinium 3,5-di­nitro­salicylate, quinolinium 2-carb­oxy-4,6-di­nitro­phenolate; (20) Smith et al. (1995[Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133-1149.]): 3,5-di­nitro­salicylic acid 2-amino­benzoic acid, 2-ammonium­benzoic acid 2-carb­oxy-4,6-di­nitro­phenolate; (21) Smith et al. (2003a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003a). Aust. J. Chem. 56, 707-713.]): pyridinium 3,5-di­nitro­salicylate 3,5-di­nitro­salicylic acid; (22) Zhang et al. (2014[Zhang, J., Jin, S., Tao, L., Liu, B. & Wang, D. (2014). J. Mol. Struct. 1072, 208-220.]): 2-methyl­quinolinium 2-hy­droxy-3,5-di­nitro­benzoate; (23) Gao et al. (2015[Gao, X., Zhang, H., Wen, X., Liu, B., Jin, S. & Wang, D. (2015). J. Mol. Struct. 1093, 82-95.]): 2,6-di­amino­pyridin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate; (24) Smith et al. (2003a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003a). Aust. J. Chem. 56, 707-713.]): 2-amino­pyrimidinium 3,5-di­nitro­salicylate ethanol solvate, 2-amino­pyrimidinium 3,5-di­nitro­salicylate ethanol (2:2:1); (25) Jin et al. (2015b[Jin, S., Zhang, H., Liu, H., Wen, X., Li, M. & Wang, D. (2015b). J. Mol. Struct. 1096, 157-170.]): 1H-imidazol-3-ium 2-carb­oxy-4,6-di­nitro­phenolate; (26) Fu et al. (2015[Fu, X., Liu, X., Sun, P., Zhang, S., Yang, Q., Wei, Q., Xie, G., Chen, S. & Fan, X. (2015). J. Anal. Appl. Pyrolysis, 114, 79-90.]): hydrazinium 2-carb­oxy-4,6-di­nitro­phenolate; (27) Wei et al. (2012[Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.]): (3,5-Di­methyl­pyrazolium 2-carb­oxy-4,6-di­nitro­phenolate); (28) this work: (3,5-di­methyl­pyrazolium 2-hy­droxy-3,5-di­nitro­benzoate; (29) Smith et al. (2002b[Smith, G., Wermuth, U. D. & Healy, P. C. (2002b). Acta Cryst. E58, o845-o847.]): benzyl­ammonium 3,5-di­nitro­salicylate, benzyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (30) Jin et al. (2015a[Jin, S., Lin, Z., Wang, D., Chen, G., Ji, Z., Huang, T. & Zhou, Y. (2015a). J. Chem. Crystallogr. 45, 159-168.]): benzyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (31) Smith et al. (2003b[Smith, G., Wermuth, U. D. & White, J. M. (2003b). Acta Cryst. E59, o1977-o1979.]): (S)-(−)-1-phenyl­ethyl­aminium 3,5-di­nitro­salicylate, (S)-(−)-1-phenyl­ethyl­aminium 2-carb­oxy-4,6-di­nitro­phenolate; (32) Ng et al. (2001[Ng, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29-37.]): di­cyclo­hexyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (33) Smith et al. (2001c[Smith, G., Wermuth, U. D. & White, J. M. (2001c). Acta Cryst. E57, o1036-o1038.]): 4-ammonio­benzene­sulfonamide 3,5-di­nitro­salicylate, 4-ammonio­benzene­sulfonamide 2-carb­oxy-4,6-di­nitro­phenolate; (34) Smith et al. (2002a[Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002a). Aust. J. Chem. 55, 349-356.]): methyl­ammonium 3,5-di­nitro­salicylate, methyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (35) Smith et al. (2002a[Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002a). Aust. J. Chem. 55, 349-356.]): tri­ethyl­ammonium 3,5-di­nitro­salicylate; (36) Rajkumar & Chandramohan (2017[Rajkumar, M. & Chandramohan, A. (2017). J. Mol. Struct. 1134, 762-769.]): tri­ethyl­ammonium 2-hy­droxy-3,5-di­nitro­benzoate; (37) Smith et al. (2005b[Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o1836-o1838.]): di­ethyl­ammonium 3,5-di­nitro­salicylate, di­ethyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (38) Smith et al. (2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610-o613.]): tris­(piperidinium) bis­(3,5-di­nitro­salicylate) monohydrate, tris­(piperidinium) 2-hy­droxy-3,5-di­nitro­benzoate 2-olate-3,5-di­nitro­benzoate monohydrate; (39) Smith et al. (2001a[Smith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, o640-o642.]): guanidinium 3,5-di­nitro­salicylate; (40) Fu et al. (2015[Fu, X., Liu, X., Sun, P., Zhang, S., Yang, Q., Wei, Q., Xie, G., Chen, S. & Fan, X. (2015). J. Anal. Appl. Pyrolysis, 114, 79-90.]): guanidinium 3,5-di­nitro­salicylate.
[Figure 3]
Figure 3
The dependence of distances: (a) D13 on (q1 + q2); (b) D13 on D2 − D1; (c) D13 on D12—D11; (d) D2 − D1 on (q1 + q2); (e) D13 on (q1 + q2), also for the structures with 3,5-di­nitro-2-oxidobenzoate (IV), which are shown as blue triangles. Colour code for symbols: green triangles refer to the structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), black squares are the structures with 2-hy­droxy-3,5-di­nitro­benzoate (II), and red circles are the structures with 2-carb­oxy-4,6-di­nitro­phenolates (III).

Fig. 3[link]a and 3b also show that the bridging hydrogen cannot be situated near the centre of the intra­molecular O⋯O hydrogen bond in structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I). Fig. 3[link]c shows a similar dependence of D13 on (D12 − D11). It can be seen that the adjacent C—C conjugated bonds are less, but still sensitive to the bonding of the hy­droxy hydrogen atom to one of the neighbouring C—O groups. These properties indicate that the O⋯H⋯O hydrogen bonding with the pertinent O⋯O distance D13 belongs to the category of resonance-assisted hydrogen bonds (Gilli et al., 1989[Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.], 2009[Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 34, 34-44.]; Sobczyk et al., 2005[Sobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513-3560.]).

Fig. 3[link]d compares both dependences shown in Figs. 3[link]a and 3b. It can be seen that the dependence of (D2 − D1) on (q1 + q2) is fairly linear. The dependence seems to show the narrowest spread for the 2-hy­droxy-3,5-di­nitro­benzoates (II), which are represented by the black squares. Importantly, the line for each class of mol­ecules inter­cepts the D2 − D1 axis at different values. The structures that contain 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (green triangles) are clearly separated from the rest of the structures although they show a similar trend. Figs. 3[link]a–3d also show outliers that do not fit the overall trends and which are most probably the structures determined as 2-hy­droxy-3,5-di­nitro­benzoates (II) instead of 2-carb­oxy-4,6-di­nitro­phenolates (III) and vice versa. Fig. 3[link]e shows the same as Fig. 3[link]a except for the addition of a few known structures that contain a 3,5-di­nitro-2-oxidobenzoate (IV), which are indicated by blue triangles. Their positions can be explained by the fact that the carboxyl­ate groups are substanti­ally inclined to the benzene ring in such compounds, which causes elongation of the distance between the carboxyl­ate and oxo group, and these mol­ecules will not be considered further.

The alternation of the inclinations (Fig. 4[link]a–4d) of the dependences of D1, D12, D11, and D2 on (q1 + q2) are in agreement with the delocalization of the electron density in these bonds. The 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (green triangles) and the 2-hy­droxy-3,5-di­nitro­benzoates (II; black squares) are situated apart from the 2-carb­oxy-4,6-di­nitro­phenolates (III; red circles) in the given figures. The fact that D1 tends to be shortest in 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (Fig. 4[link]a) can be explained by the elongation of bond D5 in the latter mol­ecules because of the attachment of the hydrogen atom and the concomitant shortening of D1. The bond lengths D1 (Fig. 4[link]a) are equal to 1.28–1.30 Å at (q1 + q2) ≃ 0.08 where the highest probability for the occurrence of a symmetric intra­molecular O⋯H⋯O hydrogen bond takes place. The corresponding values of D12, D11, D2, D6 and D10 are 1.49 Å (Fig. 4[link]b), 1.43 Å (Fig. 4[link]c), 1.30 Å (Fig. 4[link]d), 1.37–1.39 Å (Fig. 4[link]e) and 1.41–1.43 Å (Fig. 4[link]f).

[Figure 4]
Figure 4
The dependence of bond distances: (a) D1 on (q1 + q2); (b) D12 on (q1 + q2); (c) D11 on (q1 + q2); (d) D2 on (q1 + q2); (e) D6 on (q1 + q2); (f) D10 on (q1 + q2). The colour code for the symbols is the same as in Fig. 3[link].

Fig. 5[link]a shows the dependence of D5 on (q1 + q2). Comparing Fig. 5[link]a to Fig. 4[link]a, which shows the dependence of D1 on (q1 + q2), an indirect proportionality of both dependences can be observed. The bond length D5 is equal to 1.22–1.24 Å for (q1 + q2) ≃ 0.08 Å. The dependence of D5 on (q1 + q2) (Fig. 5[link]a) is similar to that of bond D12 (Fig. 4[link]b) in 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III), but not in mol­ecules of 2-hydroxo-3,5-di­nitro­benzoic acid (I). It is inter­esting that 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules are in line with other forms of the title mol­ecules for the dependences in Fig. 5[link]c and Fig. 4[link]d. Bond D7 is rather distant from the carb­oxy­lic group (Fig. 5[link]b) and the delocalization within the pyridine ring is no longer clear. The same holds for bonds D14 and D15 (Figs. 5[link]c and 5d). Figs. 5[link]e and 5f show the inclinations, ANG1 and ANG2, of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.

[Figure 5]
Figure 5
The dependence of bond distances: (a) D5 on (q1 + q2); (b) D7 on (q1 + q2); (c) D14 on (q1 + q2). The dependence of dihedral angles: (e) ANG1 on (q1 + q2); (f) ANG2 on (q1 + q2). [ANG1 and ANG2 are the dihedral angles of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.] The colour code of the symbols is the same as in Fig. 3[link].

Fig. 6[link]a–6c show dependences in which the localization of the bridging hydrogen takes place. It seems that the most obtuse angles of O⋯H⋯O (ANG3) occur for (q1 + q2) in the range <0.06–0.10> Å, i.e. for the shortest distances of D13 (2.41 Å). It is questionable whether the position of a bridging hydrogen in the transition zone between 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III) facilitates its positional disorder, which occurs e.g. in NUQVEB, because of the impossibility of angle ANG3 approaching 180°. The dependence of the angles ANG4 and ANG5 (Fig. 1[link]b) shows once more the effect of incorrectly applied constraints, which are manifested by values close to 109.54° (cf. Figs. 2[link]a and 2b).

[Figure 6]
Figure 6
(a) Dependence of the O⋯H⋯O angle ANG3 on (q1 + q2); (b) dependence of ANG4 on (q1 + q2); (c) dependence of ANG5 on (q1 + q2). Colour code for symbols: green triangles refer to the structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), black squares are the structures with 2-hy­droxy-3,5-di­nitro­benzoate (II), and red circles are the structures with 2-carb­oxy-4,6-di­nitro­phenolate (III); blue triangles, squares and circles are the recalculated structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), 2-hy­droxy-3,5-di­nitro­benzoate (II) and 2-carb­oxy-4,6-di­nitro­phenolate (III), respectively.

The previous discussion has shown the correlations of D1 and D5 on (q1 + q2) (Figs. 4[link]a and 5a, respectively), and the indirect dependence of D1 on D5. Therefore, the position of the bridging hydrogen is expected to be related to the environment of the mol­ecules, i.e. to be dependent on ΔpKa = pKa(base) − pKa(acid). The value of ΔpKa is correlated with the occurrence of a structure where the base and the acid components are not ionized, thus forming a co-crystal (Δ < 0), or ionized forming a salt (ΔpKa > 3) (Childs et al., 2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). It is difficult to predict the form in which the acid and the base are present for 0 < ΔpKa < 3 (Childs et al., 2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]).

In Table 4[link], the structures are ordered according to ascending values of the pKa values of the bases, i.e. according to increasing basicity. The corresponding values of ΔpKa are compared with (q1 + q2) and D13. The pKa of 2-hy­droxy-3,5-di­nitro­benzoic acid (I; 3,5-di­nitro­salicylic acid) is reported as 2.18 (Smith & Wermuth, 2014[Smith, G. & Wermuth, U. D. (2014). Acta Cryst. E70, 430-434.]; Hemamalini & Fun, 2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1194-o1195.]), although a value of 1.53 has been reported in the literature (https://www.chemicalbook.com/ProductMSDSDetailCB9172047_EN.htm). The weakest bases given at the top of Table 4[link] are not able to deprotonate the title mol­ecule, which remains in the form of 2-hy­droxy-3,5-di­nitro­benzoic acid (I). On the other hand, the bases with the largest values of pKa (see the bottom of Table 3[link]) are able to deprive the title mol­ecule of the hy­droxy and acid hydrogen atoms, so in such cases the resulting mol­ecule would be in the form of 3,5-di­nitro-2-oxidobenzoate (IV). The compounds with moderate basicities are able to deprotonate the acid hydrogen atom but not the bridging hydrogen; hence, the resulting forms are 2-hy­droxy-3,5-di­nitro­benzoate (II) or 2-carb­oxy-4,6-di­nitro­phenolate (III). These structures appear in the inter­mediate region of Table 4[link]. A more radical transfer of the acid hydrogen atom should cause a more significant shortening of bond D5, which should be concomitant with the elongation of bond D1. Such an elongation of bond D1 (cf. Fig. 1[link]a) should support the formation of a 2-carb­oxy-4,6-di­nitro­phenolate (III).

4. Summary

(1) The bridging hydrogen in the mol­ecules discussed (IIII) is involved in a resonance-assisted hydrogen bond, which is part of a hexa­gonal R11(6) ring. The system of conjugated bonds in the title mol­ecules, however, comprises more atoms than the ring in which the bridging hydrogen is involved. In particular, the whole carboxyl­ate/carb­oxy­lic group affects the discussed intra­molecular O⋯H⋯O hydrogen bond.

(2) The transition region between the forms of 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III) takes place for C—O (D1) ≃ 1.28–1.30 Å, C—O (D2) ≃ 1.30 Å, O⋯O distance D13 ≃ 2.41 Å and (q1 + q2) ≃ 0.08 Å. Simultaneously, the highest probability for the presence of the bridging hydrogen to be in the centre of the hydrogen bond is expected in this transition region. However, the hydrogen atom can also be disordered over two positions as occurs in NUQVEB.

(3) The bridging hydrogen in the discussed intra­molecular hydrogen bond can be situated at the centre between both oxygen atoms with approximately equal C—O bond distances. Therefore, the bridging hydrogen can not be situated at the centre of the intra­molecular O⋯H⋯O hydrogen bond in compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I).

(4) In some rare cases (e.g. recalculated SEDKET, KEZJIJ and KEZJIJ01), the bridging hydrogen is bonded to the oxygen atom that forms the shorter C—O bond distance (Table 3[link]). It would be of inter­est to see how the localization of the bridging hydrogen develops with changing temperature in such cases.

(5) Table 4[link] shows the occurrence of the different forms of the mol­ecules (see scheme) and the dependence on basicity. Alhough it would be expected that the increasing basicity should support the occurrence of 2-carb­oxy-4,6-di­nitro­phenolates (III) and, of course, for very strong bases, 3,5-di­nitro-2-oxidobenzoates (IV), there are many exceptions to this rule.

(6) The positioning of the hydrogen atoms can be affected by the asphericity of the electron density of the donor and acceptor atoms.

(7) It is essential to calculate difference electron-density maps in order to locate correctly the bridging hydrogen atom, and any other hydrogen atoms involved in hydrogen bonding.

(8) The present overview has shown that the application of constraints and restraints is frequently incorrect.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997) for DUJZAK; SMART (Bruker, 1999) for JEVNAA; CAD-4 Software (Enraf-Nonius, 1989) for LUDFUL; APEX2 (Bruker, 2009) for NUQVEB, VABZIJ; SMART (Bruker, 2001) for QIQJAD; SMART (Bruker, 2007) for SAFGUD; SMART (Bruker, 2002) for SEDKET; CrysAlis PRO (Agilent, 2012) for TIYZIM; APEX2 (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; APEX2 (Bruker, 2010) for YAXPOE. Cell refinement: SAINT (Bruker, 1997) for DUJZAK; SAINT (Bruker, 1999) for JEVNAA; CAD-4 Software (Enraf-Nonius, 1989) for LUDFUL; SAINT (Bruker, 2009) for NUQVEB, VABZIJ; SAINT (Bruker, 2001) for QIQJAD; SAINT (Bruker, 2007) for SAFGUD; SAINT (Bruker, 2002) for SEDKET; CrysAlis PRO (Agilent, 2012) for TIYZIM; SAINT (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; SAINT (Bruker, 2010) for YAXPOE. Data reduction: SAINT (Bruker, 1997) for DUJZAK; SAINT (Bruker, 1999) for JEVNAA; Xtal3.5 (Hall et al., 1995) for LUDFUL; SAINT (Bruker, 2009) for NUQVEB, VABZIJ; SAINT (Bruker, 2001) for QIQJAD; SAINT (Bruker, 2007) for SAFGUD; SAINT (Bruker, 2002) for SEDKET; CrysAlis RED (Agilent, 2012) for TIYZIM; SAINT (Bruker, 2004) for TUJPEV; CrysAlis PRO (Agilent, 2014) for WADXOR; SAINT (Bruker, 2010) for YAXPOE. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for DUJZAK, JEVNAA, LUDFUL, QIQJAD, SEDKET, TUJPEV, YAXPOE; SHELXTL (Sheldrick, 2008) for NUQVEB, VABZIJ; SHELXS-97 (Sheldrick, 2008) for SAFGUD; SUPERFLIP (Palatinus & Chapuis, 2007) for TIYZIM; SIR92 (Altomare et al., 1993) for WADXOR. Program(s) used to refine structure: JANA2016 (Petricek et al., 2014) for DUJZAK; JANA2006 (Petricek et al., 2014) for JEVNAA, LUDFUL, NUQVEB, QIQJAD, SAFGUD, TIYZIM, TUJPEV, VABZIJ, YAXPOE; JANA2006 (Petricek, 2014) for SEDKET.

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK) top
Crystal data top
[Ag(C9H7NO)2](C7H3N2O7)F(000) = 628
Mr = 625.30Dx = 1.823 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4356 reflections
a = 9.0154 (18) Åθ = 3.6–27.6°
b = 7.6122 (15) ŵ = 0.95 mm1
c = 17.138 (3) ÅT = 293 K
β = 104.38 (3)°Block, yellow
V = 1139.3 (4) Å30.20 × 0.15 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4225 reflections with I > 3σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.6°, θmin = 3.6°
φ and ω scansh = 1111
10841 measured reflectionsk = 98
4602 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.023Hydrogen site location: difference Fourier map
wR(F) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.34Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
4602 reflections(Δ/σ)max = 0.025
356 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
48 constraintsAbsolute structure: 1800 of Friedel pairs used in the refinement
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters 9.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.062197 (18)0.74282 (3)0.668863 (11)0.01868 (5)
O10.0993 (2)0.4630 (2)0.64021 (12)0.0202 (6)
O20.1741 (2)0.5061 (2)0.77196 (12)0.0214 (6)
N10.1154 (2)0.7667 (3)0.55616 (13)0.0177 (7)
N20.2685 (2)0.8371 (3)0.75427 (14)0.0163 (7)
C10.1280 (3)0.9181 (4)0.51463 (18)0.0222 (9)
H1a0.0612411.0092760.5353860.0267*
C20.2362 (3)0.9448 (4)0.44205 (18)0.0243 (9)
H2a0.2409231.0519170.4154390.0291*
C30.3354 (3)0.8130 (4)0.41016 (19)0.0209 (9)
H3a0.4078480.8294710.3616120.0251*
C40.3270 (3)0.6506 (4)0.45167 (18)0.0169 (8)
C50.4264 (3)0.5079 (4)0.42259 (17)0.0209 (9)
H5a0.5007440.5183440.374290.0251*
C60.4131 (3)0.3554 (4)0.46539 (17)0.0217 (9)
H6a0.4774020.2616620.4453110.026*
C70.3036 (3)0.3371 (3)0.53948 (17)0.0184 (8)
H7a0.2979650.2326720.5682040.0221*
C80.2057 (3)0.4717 (3)0.56954 (16)0.0148 (8)
C90.2139 (3)0.6331 (3)0.52566 (16)0.0141 (8)
C100.3159 (3)0.9993 (4)0.74633 (17)0.0188 (9)
H10a0.2568921.0698720.7061080.0225*
C110.4512 (3)1.0703 (4)0.79567 (18)0.0220 (9)
H11a0.4808851.1845290.7877030.0264*
C120.5373 (3)0.9693 (4)0.85495 (18)0.0210 (9)
H12a0.6273461.013970.8877960.0252*
C130.4907 (3)0.7960 (3)0.86712 (16)0.0171 (8)
C140.5743 (3)0.6845 (4)0.92853 (17)0.0200 (8)
H14a0.6650830.7239380.9627490.024*
C150.5225 (3)0.5197 (4)0.93771 (17)0.0206 (8)
H15a0.5777890.4478070.9785390.0247*
C160.3863 (3)0.4570 (3)0.88620 (16)0.0173 (8)
H16a0.351780.3446690.89370.0208*
C170.3043 (3)0.5596 (3)0.82528 (16)0.0142 (8)
C180.3541 (2)0.7340 (5)0.81443 (13)0.0140 (6)
O30.1402 (2)0.0134 (3)0.92525 (13)0.0259 (7)
O40.4152 (2)0.3755 (3)0.69139 (13)0.0284 (7)
O50.3271 (2)0.5961 (3)0.76858 (13)0.0271 (7)
O60.1238 (2)0.5247 (2)0.98352 (12)0.0211 (6)
O70.1679 (2)0.2659 (4)1.03546 (11)0.0286 (6)
O80.0981 (2)0.1498 (2)0.70180 (12)0.0237 (7)
O90.06657 (19)0.2138 (2)0.81885 (11)0.0196 (6)
N30.3217 (2)0.4436 (3)0.74764 (14)0.0173 (7)
N40.1088 (2)0.3645 (3)0.98085 (13)0.0152 (7)
C190.1970 (3)0.3339 (4)0.79254 (18)0.0130 (8)
C200.1027 (3)0.3992 (3)0.86303 (15)0.0126 (7)
H20a0.1149340.5128550.8802950.0151*
C210.0095 (2)0.2908 (3)0.90660 (15)0.0114 (8)
C220.0326 (3)0.1188 (3)0.88194 (16)0.0130 (8)
C230.0605 (3)0.0603 (3)0.80708 (16)0.0129 (7)
C240.1770 (3)0.1678 (3)0.76332 (17)0.0132 (8)
H24a0.2405390.1286610.7150890.0159*
C250.0307 (3)0.1145 (3)0.77245 (16)0.0148 (8)
H1aa0.0914070.3777320.6638150.047 (14)*
H2aa0.1455360.3950040.7839010.043 (11)*
H3b0.1352790.0953530.8879930.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01622 (8)0.01722 (9)0.01945 (10)0.00339 (11)0.00154 (6)0.00024 (11)
O10.0219 (9)0.0127 (9)0.0199 (10)0.0063 (8)0.0065 (8)0.0058 (8)
O20.0185 (9)0.0173 (9)0.0231 (11)0.0065 (8)0.0049 (8)0.0030 (8)
N10.0190 (9)0.0152 (14)0.0181 (11)0.0003 (11)0.0033 (8)0.0008 (10)
N20.0145 (10)0.0161 (11)0.0187 (12)0.0018 (9)0.0049 (9)0.0005 (9)
C10.0254 (14)0.0145 (12)0.0263 (16)0.0042 (12)0.0056 (12)0.0044 (11)
C20.0325 (15)0.0177 (13)0.0239 (16)0.0069 (13)0.0093 (12)0.0104 (11)
C30.0214 (13)0.0247 (13)0.0154 (15)0.0059 (12)0.0021 (12)0.0023 (11)
C40.0136 (12)0.0220 (14)0.0150 (15)0.0026 (11)0.0031 (10)0.0005 (12)
C50.0160 (12)0.0289 (15)0.0156 (14)0.0005 (12)0.0002 (10)0.0035 (12)
C60.0156 (12)0.0247 (14)0.0217 (16)0.0092 (12)0.0009 (11)0.0062 (11)
C70.0179 (12)0.0175 (14)0.0187 (14)0.0039 (11)0.0026 (10)0.0018 (11)
C80.0139 (12)0.0146 (12)0.0140 (13)0.0001 (11)0.0000 (9)0.0001 (10)
C90.0147 (12)0.0142 (12)0.0132 (13)0.0002 (11)0.0032 (9)0.0016 (10)
C100.0208 (13)0.0176 (13)0.0198 (15)0.0021 (12)0.0084 (11)0.0021 (11)
C110.0259 (14)0.0166 (13)0.0254 (16)0.0085 (12)0.0099 (12)0.0039 (11)
C120.0180 (12)0.0226 (14)0.0235 (15)0.0108 (12)0.0074 (11)0.0101 (12)
C130.0138 (11)0.0232 (14)0.0156 (14)0.0032 (10)0.0064 (10)0.0059 (10)
C140.0118 (11)0.0285 (14)0.0182 (15)0.0034 (11)0.0010 (10)0.0071 (10)
C150.0143 (12)0.0281 (15)0.0175 (15)0.0038 (12)0.0002 (10)0.0017 (11)
C160.0160 (12)0.0146 (12)0.0208 (15)0.0018 (11)0.0035 (10)0.0001 (10)
C170.0107 (11)0.0149 (12)0.0165 (14)0.0020 (10)0.0025 (9)0.0031 (10)
C180.0115 (9)0.0160 (11)0.0156 (11)0.0014 (17)0.0052 (8)0.0001 (15)
O30.0215 (10)0.0236 (11)0.0279 (12)0.0066 (9)0.0029 (9)0.0016 (9)
O40.0212 (10)0.0283 (11)0.0267 (12)0.0044 (9)0.0110 (8)0.0010 (9)
O50.0295 (10)0.0195 (10)0.0288 (12)0.0130 (9)0.0004 (9)0.0016 (9)
O60.0213 (9)0.0158 (9)0.0236 (11)0.0028 (8)0.0007 (8)0.0059 (8)
O70.0340 (9)0.0225 (9)0.0194 (9)0.0057 (15)0.0121 (7)0.0015 (13)
O80.0304 (11)0.0156 (10)0.0204 (11)0.0061 (9)0.0028 (8)0.0051 (8)
O90.0209 (8)0.0129 (12)0.0223 (10)0.0061 (8)0.0003 (7)0.0009 (8)
N30.0141 (10)0.0190 (11)0.0169 (12)0.0064 (10)0.0001 (9)0.0044 (9)
N40.0115 (10)0.0169 (11)0.0154 (12)0.0012 (9)0.0003 (8)0.0025 (9)
C190.0080 (11)0.0164 (12)0.0135 (15)0.0043 (10)0.0009 (10)0.0044 (11)
C200.0158 (12)0.0082 (11)0.0137 (13)0.0009 (10)0.0036 (9)0.0004 (9)
C210.0098 (9)0.0122 (17)0.0103 (11)0.0048 (10)0.0012 (8)0.0021 (9)
C220.0086 (11)0.0150 (13)0.0147 (14)0.0009 (10)0.0015 (9)0.0033 (10)
C230.0133 (11)0.0110 (12)0.0134 (13)0.0001 (10)0.0015 (9)0.0007 (9)
C240.0120 (12)0.0135 (13)0.0142 (15)0.0018 (11)0.0033 (10)0.0004 (11)
C250.0153 (12)0.0109 (11)0.0177 (14)0.0006 (10)0.0029 (10)0.0010 (10)
Geometric parameters (Å, º) top
O1—C81.347 (3)C13—C141.415 (4)
O1—H1aa0.7585 (19)C13—C181.415 (3)
O2—C171.359 (3)C14—H14a0.93
O2—H2aa0.922 (2)C14—C151.361 (4)
N1—C11.344 (4)C15—H15a0.93
N1—C91.365 (3)C15—C161.406 (3)
N2—C101.325 (4)C16—H16a0.93
N2—C181.371 (4)C16—C171.365 (4)
C1—H1a0.93C17—C181.429 (5)
C1—C21.392 (4)O3—C221.333 (3)
C2—H2a0.93O3—H3b1.040 (2)
C2—C31.364 (4)O4—N31.227 (3)
C3—H3a0.93O5—N31.219 (3)
C3—C41.419 (4)O6—N41.226 (3)
C4—C51.418 (4)O7—N41.215 (3)
C4—C91.423 (4)O8—C251.242 (3)
C5—H5a0.93O9—C251.275 (3)
C5—C61.362 (4)O9—H3b1.4952 (19)
C6—H6a0.93N3—C191.458 (3)
C6—C71.408 (4)N4—C211.473 (3)
C7—H7a0.93C19—C201.385 (4)
C7—C81.367 (4)C19—C241.388 (4)
C8—C91.433 (4)C20—H20a0.93
C10—H10a0.93C20—C211.373 (3)
C10—C111.408 (4)C21—C221.408 (4)
C11—H11a0.93C22—C231.419 (3)
C11—C121.354 (4)C23—C241.394 (3)
C12—H12a0.93C23—C251.508 (4)
C12—C131.416 (4)C24—H24a0.93
C8—O1—H1aa118.2 (2)C13—C14—C15120.2 (2)
C17—O2—H2aa111.60 (19)H14a—C14—C15119.88
C1—N1—C9118.3 (2)C14—C15—H15a119.61
C10—N2—C18118.4 (2)C14—C15—C16120.8 (2)
N1—C1—H1a118.43H15a—C15—C16119.61
N1—C1—C2123.1 (2)C15—C16—H16a119.71
H1a—C1—C2118.43C15—C16—C17120.6 (2)
C1—C2—H2a120.19H16a—C16—C17119.71
C1—C2—C3119.6 (3)O2—C17—C16123.8 (2)
H2a—C2—C3120.19O2—C17—C18116.0 (2)
C2—C3—H3a120.26C16—C17—C18120.2 (2)
C2—C3—C4119.5 (2)N2—C18—C13121.8 (3)
H3a—C3—C4120.27N2—C18—C17119.6 (2)
C3—C4—C5122.8 (2)C13—C18—C17118.6 (2)
C3—C4—C9117.8 (2)C22—O3—H3b102.89 (19)
C5—C4—C9119.5 (2)C25—O9—H3b102.84 (17)
C4—C5—H5a120O4—N3—O5124.3 (2)
C4—C5—C6120.0 (2)O4—N3—C19117.5 (2)
H5a—C5—C6120O5—N3—C19118.2 (2)
C5—C6—H6a119.4O6—N4—O7124.2 (2)
C5—C6—C7121.2 (2)O6—N4—C21116.66 (19)
H6a—C6—C7119.4O7—N4—C21119.1 (2)
C6—C7—H7a119.72N3—C19—C20118.7 (2)
C6—C7—C8120.6 (2)N3—C19—C24118.9 (2)
H7a—C7—C8119.72C20—C19—C24122.3 (2)
O1—C8—C7123.5 (2)C19—C20—H20a121.04
O1—C8—C9116.5 (2)C19—C20—C21117.9 (2)
C7—C8—C9120.0 (2)H20a—C20—C21121.04
N1—C9—C4121.7 (2)N4—C21—C20116.7 (2)
N1—C9—C8119.6 (2)N4—C21—C22120.67 (19)
C4—C9—C8118.7 (2)C20—C21—C22122.7 (2)
N2—C10—H10a118.33O3—C22—C21122.3 (2)
N2—C10—C11123.3 (2)O3—C22—C23120.0 (2)
H10a—C10—C11118.33C21—C22—C23117.7 (2)
C10—C11—H11a120.58C22—C23—C24120.0 (2)
C10—C11—C12118.8 (3)C22—C23—C25120.6 (2)
H11a—C11—C12120.58C24—C23—C25119.4 (2)
C11—C12—H12a119.87C19—C24—C23119.2 (2)
C11—C12—C13120.3 (2)C19—C24—H24a120.38
H12a—C12—C13119.87C23—C24—H24a120.38
C12—C13—C14123.1 (2)O8—C25—O9125.0 (2)
C12—C13—C18117.4 (2)O8—C25—C23118.9 (2)
C14—C13—C18119.6 (3)O9—C25—C23116.1 (2)
C13—C14—H14a119.88O3—H3b—O9155.88 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11a···O5i0.932.483.335 (4)152
O1—H1aa···O80.7585 (19)1.859 (2)2.606 (3)167.96 (14)
O2—H2aa···O90.922 (2)1.727 (2)2.631 (3)166.48 (15)
O3—H3b···O91.040 (2)1.4952 (19)2.481 (3)155.88 (12)
Symmetry code: (i) x+1, y+2, z.
Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) top
Crystal data top
[Zn(C3H4N2)4](C7H3N2O7)2F(000) = 1616
Mr = 791.93Dx = 1.664 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3242 reflections
a = 25.0809 (15) Åθ = 2.1–26.9°
b = 6.7251 (4) ŵ = 0.87 mm1
c = 18.9145 (10) ÅT = 293 K
β = 97.658 (6)°Platelet, yellow
V = 3161.9 (3) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker APEX-II area-detector
diffractometer
3635 independent reflections
Radiation source: fine-focus sealed tube2152 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3231
Tmin = 0.846, Tmax = 0.918k = 88
20634 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.075Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.23(Δ/σ)max = 0.007
3635 reflectionsΔρmax = 0.23 e Å3
244 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
32 constraintsExtinction coefficient: 1400 (500)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters: 9

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47960 (10)0.4200 (3)0.62639 (13)0.0460 (10)
H10.4440040.3982020.6330960.0552*
C20.50386 (10)0.3369 (4)0.57533 (13)0.0484 (10)
H20.4887450.2482950.5405650.0581*
C30.56018 (9)0.5299 (3)0.63970 (12)0.0401 (9)
H30.5915910.5978190.6566660.0481*
C40.59325 (9)0.9065 (4)0.83991 (12)0.0404 (9)
H40.5917220.8232290.878850.0485*
N40.62879 (7)1.0508 (3)0.83789 (11)0.0471 (8)
C60.57665 (9)1.0451 (4)0.73735 (13)0.0444 (9)
H60.5609521.0747050.6911990.0533*
C70.73999 (9)0.4553 (3)0.34225 (11)0.0329 (8)
C80.79245 (9)0.5059 (3)0.36676 (12)0.0342 (8)
H80.8176390.517620.3350920.0411*
C90.80717 (8)0.5388 (3)0.43803 (12)0.0311 (8)
C100.77048 (8)0.5210 (3)0.48978 (12)0.0302 (8)
C110.71702 (8)0.4593 (3)0.46099 (11)0.0282 (7)
C120.70286 (9)0.4300 (3)0.38898 (12)0.0323 (8)
H120.6678450.3926760.3716560.0388*
C130.67545 (9)0.4249 (3)0.50834 (12)0.0333 (8)
N10.51487 (7)0.5429 (3)0.66784 (9)0.0373 (7)
N20.55523 (8)0.4075 (3)0.58408 (10)0.0438 (8)
N30.56024 (7)0.8957 (3)0.77961 (9)0.0354 (7)
C50.61854 (9)1.1406 (4)0.77303 (14)0.0479 (10)
H50.6370641.2474020.756750.0575*
N50.72386 (8)0.4225 (3)0.26644 (10)0.0427 (8)
N60.86351 (7)0.5897 (3)0.46068 (11)0.0403 (8)
O10.78238 (6)0.5518 (2)0.55681 (8)0.0378 (6)
O20.68832 (6)0.4695 (2)0.57640 (8)0.0420 (6)
O30.63104 (6)0.3579 (2)0.48669 (8)0.0426 (6)
O40.67630 (7)0.3835 (3)0.24643 (8)0.0575 (7)
O50.75772 (7)0.4340 (3)0.22570 (9)0.0662 (8)
O60.89634 (7)0.5475 (3)0.42013 (9)0.0658 (8)
O70.87622 (6)0.6730 (3)0.51757 (9)0.0568 (7)
Zn10.50.70908 (6)0.750.03866 (15)
H1a0.7286410.5082680.5793350.108 (11)*
H2a0.5806680.3677140.5525620.088 (9)*
H4a0.6575931.0985790.8705940.106 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (14)0.0558 (17)0.0507 (17)0.0069 (12)0.0086 (12)0.0071 (13)
C20.0460 (16)0.0536 (18)0.0448 (17)0.0064 (13)0.0033 (12)0.0116 (13)
C30.0327 (13)0.0485 (16)0.0396 (16)0.0053 (11)0.0071 (11)0.0037 (12)
C40.0366 (14)0.0491 (16)0.0343 (15)0.0066 (12)0.0004 (11)0.0062 (12)
N40.0332 (12)0.0568 (15)0.0484 (15)0.0016 (10)0.0048 (10)0.0044 (11)
C60.0416 (15)0.0568 (17)0.0336 (15)0.0015 (12)0.0004 (12)0.0077 (13)
C70.0344 (13)0.0369 (14)0.0264 (14)0.0024 (10)0.0002 (10)0.0008 (10)
C80.0332 (13)0.0366 (14)0.0337 (15)0.0009 (10)0.0073 (10)0.0030 (10)
C90.0254 (12)0.0287 (13)0.0382 (15)0.0031 (9)0.0003 (10)0.0001 (10)
C100.0338 (13)0.0219 (12)0.0342 (14)0.0035 (9)0.0013 (10)0.0006 (10)
C110.0288 (12)0.0245 (12)0.0310 (14)0.0011 (9)0.0030 (10)0.0013 (10)
C120.0281 (12)0.0306 (14)0.0370 (15)0.0009 (9)0.0002 (10)0.0004 (10)
C130.0338 (13)0.0312 (14)0.0356 (15)0.0037 (10)0.0067 (11)0.0026 (10)
N10.0341 (11)0.0433 (13)0.0357 (12)0.0029 (9)0.0086 (9)0.0001 (9)
N20.0437 (12)0.0526 (14)0.0371 (13)0.0034 (10)0.0126 (10)0.0035 (10)
N30.0321 (10)0.0442 (12)0.0288 (11)0.0016 (9)0.0003 (9)0.0042 (9)
C50.0393 (15)0.0540 (18)0.0499 (18)0.0090 (12)0.0040 (12)0.0069 (14)
N50.0414 (13)0.0517 (14)0.0338 (13)0.0032 (10)0.0004 (10)0.0005 (10)
N60.0327 (11)0.0435 (13)0.0438 (14)0.0038 (9)0.0023 (10)0.0059 (10)
O10.0362 (9)0.0445 (10)0.0308 (10)0.0009 (7)0.0026 (7)0.0054 (7)
O20.0399 (10)0.0552 (11)0.0313 (10)0.0055 (8)0.0056 (7)0.0066 (8)
O30.0325 (9)0.0561 (11)0.0400 (10)0.0091 (8)0.0079 (7)0.0084 (8)
O40.0395 (10)0.0890 (14)0.0408 (11)0.0047 (9)0.0063 (8)0.0048 (9)
O50.0499 (11)0.1146 (17)0.0361 (11)0.0057 (10)0.0133 (9)0.0036 (10)
O60.0351 (10)0.1012 (16)0.0635 (13)0.0075 (10)0.0156 (9)0.0121 (11)
O70.0430 (10)0.0799 (14)0.0453 (11)0.0182 (9)0.0029 (8)0.0108 (10)
Zn10.0355 (2)0.0455 (3)0.0352 (3)00.00566 (17)0
Geometric parameters (Å, º) top
C1—H10.93C8—H80.93
C1—C21.331 (4)C8—C91.367 (3)
C1—N11.377 (3)C9—C101.435 (3)
C2—H20.93C9—N61.462 (3)
C2—N21.362 (3)C10—C111.440 (3)
C3—H30.93C10—O11.280 (3)
C3—N11.320 (3)C11—C121.375 (3)
C3—N21.328 (3)C11—C131.480 (3)
C4—H40.93C12—H120.93
C4—N41.322 (3)C13—O21.319 (3)
C4—N31.319 (3)C13—O31.220 (3)
N4—C51.361 (3)N2—H2a0.967 (2)
N4—H4a0.9427 (18)C5—H50.93
C6—H60.93N5—O41.231 (3)
C6—N31.381 (3)N5—O51.223 (3)
C6—C51.335 (3)N6—O61.231 (3)
C7—C81.378 (3)N6—O71.217 (3)
C7—C121.377 (3)O1—H1a1.4955 (15)
C7—N51.454 (3)O2—H1a1.0386 (15)
H1—C1—C2124.94C9—C10—O1125.18 (18)
H1—C1—N1124.94C11—C10—O1120.2 (2)
C2—C1—N1110.1 (2)C10—C11—C12121.4 (2)
C1—C2—H2126.81C10—C11—C13120.78 (19)
C1—C2—N2106.4 (2)C12—C11—C13117.85 (18)
H2—C2—N2126.81C7—C12—C11120.69 (19)
H3—C3—N1124.28C7—C12—H12119.65
H3—C3—N2124.28C11—C12—H12119.66
N1—C3—N2111.44 (19)C11—C13—O2117.03 (18)
H4—C4—N4124.35C11—C13—O3122.6 (2)
H4—C4—N3124.35O2—C13—O3120.3 (2)
N4—C4—N3111.3 (2)C1—N1—C3104.66 (19)
C4—N4—C5107.74 (19)C2—N2—C3107.4 (2)
C4—N4—H4a133.8 (2)C2—N2—H2a121.3 (2)
C5—N4—H4a118.5 (2)C3—N2—H2a131.3 (2)
H6—C6—N3125.29C4—N3—C6105.04 (18)
H6—C6—C5125.29N4—C5—C6106.5 (2)
N3—C6—C5109.4 (2)N4—C5—H5126.75
C8—C7—C12120.8 (2)C6—C5—H5126.75
C8—C7—N5119.8 (2)C7—N5—O4117.82 (19)
C12—C7—N5119.40 (19)C7—N5—O5119.10 (18)
C7—C8—H8120.27O4—N5—O5123.08 (19)
C7—C8—C9119.5 (2)C9—N6—O6117.66 (19)
H8—C8—C9120.27C9—N6—O7119.73 (19)
C8—C9—C10123.06 (18)O6—N6—O7122.61 (18)
C8—C9—N6116.8 (2)C10—O1—H1a98.67 (13)
C10—C9—N6120.16 (19)C13—O2—H1a102.66 (16)
C9—C10—C11114.56 (19)O1—H1a—O2160.37 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.473.327 (3)154
O2—H1a···C101.0386 (15)2.110 (2)2.820 (3)123.5 (1)
O2—H1a···O11.0386 (15)1.4955 (15)2.498 (2)160.4 (1)
N2—H2a···O30.967 (2)1.8902 (16)2.838 (3)165.87 (12)
N4—H4a···O1ii0.9427 (18)1.9236 (14)2.784 (2)150.60 (13)
N4—H4a···O7ii0.9427 (18)2.4336 (18)2.873 (3)108.36 (13)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+3/2, y+1/2, z+3/2.
3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL) top
Crystal data top
C7H4N2O7·C12H8N2Dx = 1.556 Mg m3
Mr = 408.33Melting point: 471 K
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 14.8002 (15) ÅCell parameters from 25 reflections
b = 7.4029 (16) Åθ = 5–12°
c = 16.0091 (16) ŵ = 0.12 mm1
β = 96.395 (8)°T = 293 K
V = 1743.1 (5) Å3Rhombic, yellow
Z = 40.36 × 0.34 × 0.26 mm
F(000) = 840
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.5°
Graphite monochromatorh = 019
w scansk = 99
8396 measured reflectionsl = 2121
4202 independent reflections3 standard reflections every 150 reflections
1587 reflections with I > 3σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.083Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.08(Δ/σ)max = 0.006
4202 reflectionsΔρmax = 0.29 e Å3
274 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
40 constraintsExtinction coefficient: 5100 (500)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters: 6

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.98761 (10)0.2874 (2)0.46747 (9)0.0599 (6)
O10.85079 (8)0.4309 (2)0.24121 (9)0.0539 (6)
C10.98636 (12)0.4161 (3)0.33159 (12)0.0373 (7)
O71.12739 (10)0.6537 (3)0.15665 (10)0.0716 (7)
C41.17200 (13)0.4785 (3)0.36328 (13)0.0421 (8)
H4a1.2340710.5010180.3734320.0506*
C51.12429 (13)0.5256 (3)0.28746 (12)0.0378 (7)
O20.84456 (9)0.3110 (2)0.36758 (9)0.0632 (7)
C21.03254 (14)0.3661 (3)0.40995 (13)0.0430 (8)
C31.12654 (13)0.3980 (3)0.42348 (12)0.0423 (8)
N11.18089 (15)0.3455 (3)0.50174 (12)0.0665 (9)
C70.88704 (14)0.3818 (3)0.31414 (14)0.0457 (9)
C61.03232 (13)0.4947 (3)0.27113 (12)0.0386 (7)
H6a1.0015060.5268820.2194650.0463*
O61.25212 (10)0.6448 (3)0.23814 (10)0.0804 (8)
O41.14445 (14)0.2742 (3)0.55587 (13)0.1291 (12)
N21.17129 (12)0.6128 (3)0.22290 (12)0.0504 (8)
O51.26041 (12)0.3839 (3)0.51002 (10)0.0996 (10)
N30.68389 (10)0.3729 (2)0.18982 (10)0.0388 (6)
N40.50803 (11)0.3575 (3)0.10509 (11)0.0517 (7)
C170.57960 (14)0.2988 (3)0.06927 (13)0.0505 (9)
C190.61248 (13)0.4326 (3)0.22726 (12)0.0377 (7)
C80.74378 (15)0.2489 (3)0.06912 (15)0.0552 (9)
H8a0.8026870.2529570.0962150.0663*
C160.66987 (13)0.3064 (3)0.11118 (13)0.0405 (8)
C180.52369 (13)0.4267 (3)0.18296 (13)0.0413 (8)
C120.45074 (14)0.4976 (3)0.22251 (15)0.0533 (9)
H12a0.3923870.4981060.1941320.064*
C140.55304 (15)0.5655 (3)0.34545 (14)0.0522 (9)
H14a0.5612950.6102010.4000520.0627*
C130.46523 (15)0.5645 (3)0.30108 (15)0.0555 (10)
H13a0.4166060.6106330.3264530.0666*
C150.62592 (14)0.5020 (3)0.30951 (13)0.0442 (8)
H15a0.6837590.5044970.3389180.053*
C100.6400 (2)0.1763 (4)0.05197 (16)0.0789 (12)
H10a0.6311770.1315330.106540.0946*
C110.56781 (17)0.2291 (3)0.01395 (15)0.0689 (11)
H11a0.5096710.2199060.0423730.0827*
C90.72833 (18)0.1879 (3)0.01060 (16)0.0685 (12)
H9a0.7772450.1528770.0386190.0822*
H3a0.9191910.2790020.4401530.138 (12)*
H1a0.7731390.4026660.2291660.105 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0634 (10)0.0734 (13)0.0442 (9)0.0001 (9)0.0122 (8)0.0094 (9)
O10.0315 (8)0.0749 (13)0.0545 (10)0.0027 (8)0.0009 (7)0.0096 (9)
C10.0315 (11)0.0413 (14)0.0394 (12)0.0004 (10)0.0046 (10)0.0033 (11)
O70.0556 (10)0.1066 (17)0.0520 (10)0.0111 (10)0.0040 (8)0.0199 (11)
C40.0326 (11)0.0468 (15)0.0457 (13)0.0043 (11)0.0016 (11)0.0111 (12)
C50.0325 (11)0.0414 (15)0.0398 (12)0.0028 (10)0.0059 (10)0.0035 (11)
O20.0445 (9)0.0836 (14)0.0637 (10)0.0069 (9)0.0161 (8)0.0161 (10)
C20.0493 (13)0.0426 (15)0.0377 (12)0.0029 (12)0.0073 (11)0.0033 (12)
C30.0449 (12)0.0468 (16)0.0337 (12)0.0128 (11)0.0024 (10)0.0056 (12)
N10.0646 (15)0.090 (2)0.0420 (13)0.0141 (14)0.0078 (12)0.0014 (13)
C70.0413 (13)0.0461 (16)0.0509 (14)0.0004 (12)0.0098 (11)0.0019 (13)
C60.0334 (11)0.0433 (14)0.0381 (12)0.0051 (10)0.0003 (10)0.0035 (11)
O60.0328 (8)0.1225 (17)0.0871 (12)0.0130 (10)0.0128 (8)0.0119 (12)
O40.1041 (16)0.197 (3)0.0807 (15)0.0108 (16)0.0151 (13)0.0758 (17)
N20.0369 (11)0.0590 (15)0.0567 (13)0.0011 (11)0.0116 (10)0.0046 (12)
O50.0575 (11)0.177 (2)0.0581 (11)0.0108 (14)0.0193 (9)0.0056 (13)
N30.0310 (9)0.0431 (12)0.0419 (10)0.0041 (9)0.0024 (8)0.0009 (10)
N40.0446 (11)0.0533 (14)0.0545 (12)0.0017 (10)0.0065 (9)0.0035 (11)
C170.0538 (14)0.0491 (17)0.0469 (14)0.0046 (13)0.0024 (12)0.0024 (13)
C190.0354 (12)0.0362 (14)0.0412 (13)0.0040 (11)0.0029 (10)0.0023 (11)
C80.0564 (15)0.0521 (18)0.0588 (16)0.0030 (13)0.0136 (13)0.0013 (13)
C160.0459 (13)0.0339 (14)0.0419 (13)0.0006 (11)0.0057 (11)0.0018 (11)
C180.0352 (11)0.0378 (15)0.0504 (13)0.0009 (11)0.0032 (10)0.0008 (12)
C120.0355 (13)0.0510 (17)0.0730 (17)0.0020 (12)0.0041 (12)0.0052 (14)
C140.0630 (15)0.0471 (17)0.0484 (14)0.0037 (14)0.0143 (13)0.0049 (13)
C130.0457 (14)0.0512 (18)0.0728 (18)0.0032 (13)0.0208 (13)0.0040 (15)
C150.0419 (13)0.0481 (16)0.0418 (13)0.0029 (12)0.0012 (11)0.0047 (12)
C100.107 (2)0.078 (2)0.0504 (16)0.009 (2)0.0051 (17)0.0198 (16)
C110.0775 (19)0.071 (2)0.0533 (17)0.0057 (16)0.0147 (14)0.0148 (15)
C90.089 (2)0.060 (2)0.0602 (18)0.0060 (17)0.0270 (15)0.0069 (16)
Geometric parameters (Å, º) top
O3—C21.329 (3)N4—C171.332 (3)
O3—H3a1.0592 (14)N4—C181.344 (3)
O1—C71.282 (3)C17—C161.428 (3)
O1—H1a1.1628 (13)C17—C111.421 (3)
C1—C21.410 (3)C19—C181.423 (3)
C1—C71.487 (3)C19—C151.407 (3)
C1—C61.373 (3)C8—H8a0.93
O7—N21.219 (2)C8—C161.413 (3)
C4—H4a0.93C8—C91.349 (3)
C4—C51.379 (3)C18—C121.412 (3)
C4—C31.371 (3)C12—H12a0.93
C5—C61.376 (3)C12—C131.347 (3)
C5—N21.459 (3)C14—H14a0.93
O2—C71.234 (3)C14—C131.410 (3)
C2—C31.404 (3)C14—C151.361 (3)
C3—N11.464 (3)C13—H13a0.93
N1—O41.194 (3)C15—H15a0.93
N1—O51.204 (3)C10—H10a0.93
C6—H6a0.93C10—C111.346 (4)
O6—N21.217 (2)C10—C91.400 (4)
N3—C191.346 (3)C11—H11a0.93
N3—C161.346 (3)C9—H9a0.93
C2—O3—H3a105.60 (13)C16—C17—C11117.8 (2)
C7—O1—H1a113.94 (15)N3—C19—C18119.68 (18)
C2—C1—C7119.58 (18)N3—C19—C15120.03 (17)
C2—C1—C6120.63 (17)C18—C19—C15120.28 (19)
C7—C1—C6119.79 (17)H8a—C8—C16120.23
H4a—C4—C5120.49H8a—C8—C9120.23
H4a—C4—C3120.49C16—C8—C9119.5 (2)
C5—C4—C3119.01 (18)N3—C16—C17119.52 (18)
C4—C5—C6121.58 (19)N3—C16—C8120.61 (17)
C4—C5—N2119.83 (17)C17—C16—C8119.86 (19)
C6—C5—N2118.58 (17)N4—C18—C19121.90 (19)
C7—O2—H3a102.24 (13)N4—C18—C12119.74 (18)
O3—C2—C1120.09 (17)C19—C18—C12118.35 (19)
O3—C2—C3122.05 (17)C18—C12—H12a119.82
C1—C2—C3117.84 (19)C18—C12—C13120.35 (19)
C4—C3—C2121.34 (18)H12a—C12—C13119.82
C4—C3—N1116.79 (18)H14a—C14—C13119.52
C2—C3—N1121.86 (19)H14a—C14—C15119.52
C3—N1—O4119.3 (2)C13—C14—C15121.0 (2)
C3—N1—O5118.0 (2)C12—C13—C14121.0 (2)
O4—N1—O5122.7 (2)C12—C13—H13a119.52
O1—C7—C1115.30 (19)C14—C13—H13a119.52
O1—C7—O2123.93 (18)C19—C15—C14119.05 (18)
C1—C7—O2120.76 (18)C19—C15—H15a120.48
C1—C6—C5119.59 (17)C14—C15—H15a120.48
C1—C6—H6a120.21H10a—C10—C11119.51
C5—C6—H6a120.2H10a—C10—C9119.51
O7—N2—C5118.45 (16)C11—C10—C9121.0 (2)
O7—N2—O6122.87 (19)C17—C11—C10120.6 (2)
C5—N2—O6118.66 (17)C17—C11—H11a119.71
C19—N3—C16119.31 (15)C10—C11—H11a119.71
C19—N3—H1a119.38 (14)C8—C9—C10121.3 (3)
C16—N3—H1a120.79 (14)C8—C9—H9a119.37
C17—N4—C18117.41 (17)C10—C9—H9a119.37
N4—C17—C16122.14 (19)O3—H3a—O2151.72 (10)
N4—C17—C11120.09 (19)O1—H1a—N3163.24 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13a···O4i0.932.493.334 (3)151
O3—H3a···O21.0592 (14)1.5297 (14)2.5132 (19)151.72 (10)
O1—H1a···N31.1628 (13)1.4160 (14)2.5515 (19)163.24 (10)
Symmetry code: (i) x+3/2, y+1/2, z+1.
2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB) top
Crystal data top
C6H9N2+·C7H3N2O7Z = 2
Mr = 336.27F(000) = 348
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8673 (7) ÅCell parameters from 5139 reflections
b = 8.0991 (9) Åθ = 2.7–32.4°
c = 15.2437 (17) ŵ = 0.13 mm1
α = 86.844 (3)°T = 100 K
β = 84.252 (3)°Block, yellow
γ = 81.209 (3)°0.29 × 0.14 × 0.08 mm
V = 711.69 (14) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4943 independent reflections
Radiation source: fine-focus sealed tube3677 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 32.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.963, Tmax = 0.990k = 1211
12709 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.042Hydrogen site location: difference Fourier map
wR(F) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 2.06Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
4943 reflections(Δ/σ)max = 0.009
222 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
34 constraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters: 15

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.50355 (15)0.28624 (11)0.24318 (6)0.0153 (3)
N20.82331 (16)0.41649 (12)0.19964 (6)0.0182 (3)
C10.67739 (18)0.36376 (13)0.26429 (7)0.0152 (3)
C20.35124 (18)0.22197 (14)0.30471 (7)0.0165 (3)
H20.2333130.1677250.2857310.0198*
C30.36539 (18)0.23424 (14)0.39257 (7)0.0180 (3)
C40.54266 (19)0.31918 (15)0.41642 (7)0.0200 (3)
H40.5560830.3320790.4771690.024*
C50.69461 (19)0.38301 (14)0.35491 (7)0.0186 (3)
H50.8111360.4399590.3728330.0223*
C60.2014 (2)0.16274 (17)0.46143 (8)0.0262 (4)
H6a0.1180190.2524390.4980840.0394*
H6b0.0901440.1107430.4324580.0394*
H6c0.2890830.0784570.4986080.0394*
O10.17284 (13)0.61818 (10)0.14277 (5)0.0201 (2)
O20.10549 (15)0.60964 (11)0.31689 (5)0.0252 (3)
O30.28472 (15)0.76461 (12)0.38855 (5)0.0275 (3)
O40.93312 (14)0.99538 (11)0.26216 (6)0.0242 (3)
O50.99966 (15)1.02486 (11)0.11988 (6)0.0279 (3)
O60.55543 (14)0.76370 (11)0.07523 (5)0.0224 (3)
O70.26607 (14)0.63258 (10)0.01549 (5)0.0199 (2)
N30.25052 (15)0.70323 (12)0.31961 (6)0.0172 (3)
N40.89095 (16)0.97282 (12)0.18597 (6)0.0190 (3)
C70.33912 (17)0.70052 (13)0.15501 (7)0.0141 (3)
C80.38900 (17)0.74506 (13)0.23906 (7)0.0144 (3)
C90.56997 (17)0.83259 (13)0.24874 (7)0.0156 (3)
H90.6014390.8597040.3057240.0187*
C100.70326 (17)0.87968 (13)0.17493 (7)0.0154 (3)
C110.66121 (18)0.84357 (13)0.09021 (7)0.0157 (3)
H110.7536950.8791430.0400520.0188*
C120.48279 (17)0.75522 (13)0.08058 (7)0.0139 (3)
C130.43623 (18)0.71649 (13)0.01006 (7)0.0165 (3)
H1o70.207680.6154570.0419230.044 (6)*0.62 (3)
H1o10.1868130.6130810.0815690.044 (6)*0.38 (3)
H2a0.8094760.3979730.1434020.035 (4)*
H2b0.9285720.4698910.2116570.048 (5)*
H10.4811170.2761330.1864430.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (4)0.0168 (5)0.0130 (4)0.0032 (3)0.0023 (3)0.0006 (3)
N20.0194 (4)0.0221 (5)0.0147 (4)0.0085 (4)0.0004 (3)0.0009 (4)
C10.0166 (5)0.0137 (5)0.0152 (5)0.0012 (4)0.0022 (4)0.0004 (4)
C20.0142 (5)0.0162 (5)0.0192 (5)0.0026 (4)0.0015 (4)0.0007 (4)
C30.0182 (5)0.0180 (5)0.0168 (5)0.0011 (4)0.0004 (4)0.0009 (4)
C40.0239 (5)0.0239 (6)0.0127 (5)0.0043 (5)0.0035 (4)0.0007 (4)
C50.0201 (5)0.0201 (6)0.0169 (5)0.0054 (4)0.0041 (4)0.0004 (4)
C60.0238 (6)0.0324 (7)0.0219 (6)0.0077 (5)0.0028 (4)0.0047 (5)
O10.0192 (4)0.0259 (4)0.0176 (4)0.0108 (3)0.0027 (3)0.0010 (3)
O20.0275 (4)0.0281 (5)0.0220 (4)0.0141 (4)0.0034 (3)0.0013 (3)
O30.0290 (5)0.0434 (6)0.0120 (4)0.0097 (4)0.0019 (3)0.0062 (4)
O40.0215 (4)0.0234 (4)0.0302 (5)0.0036 (3)0.0110 (3)0.0066 (4)
O50.0227 (4)0.0276 (5)0.0354 (5)0.0122 (4)0.0009 (3)0.0022 (4)
O60.0280 (4)0.0278 (5)0.0128 (4)0.0102 (4)0.0001 (3)0.0006 (3)
O70.0229 (4)0.0252 (4)0.0139 (4)0.0096 (3)0.0034 (3)0.0010 (3)
N30.0168 (4)0.0200 (5)0.0145 (4)0.0020 (4)0.0017 (3)0.0002 (4)
N40.0154 (4)0.0150 (5)0.0275 (5)0.0027 (4)0.0051 (4)0.0025 (4)
C70.0135 (4)0.0136 (5)0.0150 (5)0.0010 (4)0.0022 (4)0.0010 (4)
C80.0145 (5)0.0155 (5)0.0128 (5)0.0016 (4)0.0000 (4)0.0003 (4)
C90.0144 (5)0.0156 (5)0.0169 (5)0.0000 (4)0.0038 (4)0.0031 (4)
C100.0128 (4)0.0131 (5)0.0210 (5)0.0030 (4)0.0035 (4)0.0018 (4)
C110.0148 (5)0.0137 (5)0.0179 (5)0.0009 (4)0.0007 (4)0.0005 (4)
C120.0145 (4)0.0141 (5)0.0132 (5)0.0020 (4)0.0018 (4)0.0009 (4)
C130.0190 (5)0.0153 (5)0.0151 (5)0.0021 (4)0.0026 (4)0.0012 (4)
Geometric parameters (Å, º) top
N1—C11.3498 (15)O1—H1o10.9310 (8)
N1—C21.3674 (14)O2—N31.2280 (14)
N1—H10.8977 (9)O3—N31.2338 (13)
N2—C11.3353 (14)O4—N41.2402 (14)
N2—H2a0.8921 (9)O5—N41.2273 (13)
N2—H2b0.8456 (10)O6—C131.2340 (13)
C1—C51.4139 (15)O7—C131.3022 (15)
C2—H20.95O7—H1o70.9185 (8)
C2—C31.3602 (16)N3—C81.4564 (13)
C3—C41.4174 (17)N4—C101.4544 (15)
C3—C61.5049 (16)C7—C81.4197 (15)
C4—H40.95C7—C121.4357 (14)
C4—C51.3643 (16)C8—C91.3874 (16)
C5—H50.95C9—H90.95
C6—H6a0.98C9—C101.3750 (15)
C6—H6b0.98C10—C111.3934 (16)
C6—H6c0.98C11—H110.95
H6a—H6b1.6003C11—C121.3787 (16)
H6a—H6c1.6003C12—C131.4939 (15)
H6b—H6c1.6003H2a—H2b1.4990 (2)
O1—C71.2964 (14)
C1—N1—C2123.29 (9)O2—N3—O3122.52 (9)
C1—N1—H1120.41 (9)O2—N3—C8119.61 (9)
C2—N1—H1116.29 (10)O3—N3—C8117.87 (10)
C1—N2—H2a120.74 (11)O4—N4—O5123.30 (10)
C1—N2—H2b120.05 (10)O4—N4—C10118.02 (9)
H2a—N2—H2b119.20 (10)O5—N4—C10118.69 (10)
N1—C1—N2118.98 (10)O1—C7—C8124.03 (9)
N1—C1—C5117.27 (9)O1—C7—C12119.84 (10)
N2—C1—C5123.75 (11)C8—C7—C12116.12 (10)
N1—C2—H2119.38N3—C8—C7121.67 (10)
N1—C2—C3121.25 (11)N3—C8—C9116.48 (9)
H2—C2—C3119.38C7—C8—C9121.84 (9)
C2—C3—C4116.54 (10)C8—C9—H9120.37
C2—C3—C6122.15 (11)C8—C9—C10119.26 (10)
C4—C3—C6121.31 (10)H9—C9—C10120.37
C3—C4—H4118.95N4—C10—C9118.68 (10)
C3—C4—C5122.10 (10)N4—C10—C11119.25 (9)
H4—C4—C5118.95C9—C10—C11122.05 (10)
C1—C5—C4119.51 (11)C10—C11—H11120.64
C1—C5—H5120.24C10—C11—C12118.72 (9)
C4—C5—H5120.24H11—C11—C12120.64
C3—C6—H6a109.47C7—C12—C11121.98 (10)
C3—C6—H6b109.47C7—C12—C13119.00 (10)
C3—C6—H6c109.47C11—C12—C13119.02 (9)
H6a—C6—H6b109.47O6—C13—O7123.12 (10)
H6a—C6—H6c109.47O6—C13—C12120.31 (10)
H6b—C6—H6c109.47O7—C13—C12116.57 (9)
C7—O1—H1o798.33 (6)O1—H1o7—O7161.55 (6)
C7—O1—H1o1101.65 (8)O7—H1o7—H1o1166.67 (6)
C13—O7—H1o7104.71 (9)O1—H1o1—O7163.52 (6)
C13—O7—H1o199.43 (7)O1—H1o1—H1o7171.56 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.473.4107 (16)169
C4—H4···O3ii0.952.383.2397 (15)151
C5—H5···O2iii0.952.433.2361 (16)143
O7—H1o7···O10.9185 (8)1.5313 (8)2.4202 (12)161.55 (6)
O1—H1o1···O70.9310 (8)1.5130 (8)2.4202 (12)163.52 (6)
N2—H2a···O7iv0.8921 (9)2.0783 (9)2.9655 (14)172.84 (6)
N2—H2b···O1iii0.8456 (10)2.1644 (9)2.8526 (14)138.40 (6)
N2—H2b···O2iii0.8456 (10)2.4133 (10)3.1741 (14)150.02 (6)
N1—H1···O6iv0.8977 (9)1.7828 (9)2.6781 (13)174.83 (6)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z.
3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) top
Crystal data top
C9H8Cl2N5+·C7H3N2O7·C3H7NOZ = 2
Mr = 557.31F(000) = 572
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0227 (5) ÅCell parameters from 6413 reflections
b = 10.5507 (5) Åθ = 2.3–28.2°
c = 12.5359 (6) ŵ = 0.34 mm1
α = 81.858 (1)°T = 294 K
β = 71.888 (1)°Plate, colourless
γ = 70.009 (1)°0.16 × 0.14 × 0.08 mm
V = 1183.1 (1) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5507 independent reflections
Radiation source: fine-focus sealed tube4441 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1213
Tmin = 0.93, Tmax = 0.97k = 1313
13936 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F > 3σ(F)] = 0.056Secondary atom site location: difference Fourier map
wR(F) = 0.147Hydrogen site location: difference Fourier map
S = 3.41H atoms treated by a mixture of independent and constrained refinement
5507 reflectionsWeighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
340 parameters(Δ/σ)max = 0.020
0 restraintsΔρmax = 0.80 e Å3
48 constraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Number of fixed parameters: 18

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32107 (18)1.06764 (19)0.15844 (16)0.0464 (7)
C20.2718 (2)1.0232 (2)0.08378 (15)0.0485 (7)
C30.2713 (2)1.0903 (2)0.02046 (16)0.0529 (8)
C40.3231 (2)1.2001 (2)0.04951 (19)0.0621 (9)
H40.3231271.2451730.118860.0745*
C50.3741 (2)1.2420 (2)0.02358 (19)0.0632 (10)
H50.4101271.3148570.0019370.0758*
C60.3745 (2)1.1807 (2)0.12857 (17)0.0537 (8)
H60.408161.2119240.1777270.0645*
C70.32753 (18)0.99894 (19)0.26974 (15)0.0437 (7)
C80.35068 (19)0.8912 (2)0.47363 (15)0.0449 (7)
C90.19780 (18)0.99408 (18)0.36291 (15)0.0418 (7)
N10.45735 (16)0.95248 (17)0.28531 (13)0.0488 (6)
N20.46755 (16)0.89842 (17)0.38722 (13)0.0484 (6)
N30.37354 (18)0.8352 (2)0.56859 (14)0.0613 (8)
N40.21299 (15)0.93978 (16)0.46191 (12)0.0454 (6)
N50.06397 (16)1.04599 (17)0.35102 (13)0.0504 (7)
Cl10.21444 (7)0.88366 (6)0.11855 (5)0.0685 (3)
Cl20.20368 (7)1.04039 (8)0.11161 (5)0.0772 (3)
C100.7671 (2)0.7509 (2)0.50260 (17)0.0495 (8)
C110.92521 (19)0.68875 (18)0.50532 (16)0.0456 (8)
C121.0399 (2)0.68056 (19)0.40501 (17)0.0482 (8)
C131.1855 (2)0.6217 (2)0.4120 (2)0.0565 (9)
C141.2169 (3)0.5728 (2)0.5120 (2)0.0650 (11)
H141.314290.5359920.5150210.078*
C151.1014 (3)0.5795 (2)0.6070 (2)0.0608 (10)
C160.9560 (2)0.63637 (19)0.60559 (18)0.0537 (9)
H160.8795920.6394420.6713130.0645*
N61.3082 (2)0.6096 (2)0.3083 (2)0.0763 (10)
N71.1324 (3)0.5213 (2)0.7146 (3)0.0870 (14)
O10.74835 (14)0.79734 (16)0.40757 (12)0.0638 (7)
O20.66684 (16)0.75284 (17)0.58991 (13)0.0695 (7)
O31.01381 (16)0.72881 (16)0.30779 (13)0.0651 (7)
O41.3027 (2)0.5624 (2)0.22939 (18)0.0962 (10)
O51.4096 (2)0.6460 (3)0.3106 (2)0.1311 (14)
O61.2621 (3)0.4654 (3)0.7114 (2)0.1272 (14)
O71.0297 (3)0.5356 (3)0.7980 (2)0.1153 (15)
C170.8968 (2)0.2419 (2)0.13898 (19)0.0638 (10)
H170.9970490.2257530.102840.0765*
C180.6486 (3)0.3564 (4)0.1366 (3)0.1002 (16)
H18a0.6005660.3622370.0798270.1503*
H18b0.6120840.4416650.1714970.1503*
H18c0.6281540.2877660.1921780.1503*
C190.8613 (4)0.3905 (3)0.0204 (2)0.0959 (16)
H19a0.8126840.384630.073670.1439*
H19b0.8424040.4836990.0083940.1439*
H19c0.9658940.3473770.0489290.1439*
N80.8043 (2)0.32305 (17)0.08649 (14)0.0588 (8)
O80.86513 (17)0.18476 (18)0.23111 (12)0.0693 (7)
H3n0.4599920.8086420.5793830.067 (7)*
H4n0.3006840.8316490.626650.058 (6)*
H2n0.5604480.8674230.3928780.069 (7)*
H5n0.011251.0407690.4067490.056 (6)*
H6n0.0434491.0867030.29060.052 (6)*
H3o0.9113780.7564830.3307910.131 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (8)0.0541 (11)0.0483 (10)0.0081 (8)0.0060 (7)0.0055 (8)
C20.0354 (9)0.0578 (11)0.0464 (10)0.0118 (8)0.0044 (8)0.0068 (8)
C30.0364 (9)0.0682 (13)0.0443 (10)0.0090 (9)0.0049 (8)0.0047 (9)
C40.0457 (11)0.0737 (15)0.0546 (12)0.0053 (10)0.0119 (9)0.0038 (11)
C50.0580 (13)0.0599 (13)0.0701 (14)0.0224 (11)0.0153 (11)0.0054 (11)
C60.0442 (10)0.0589 (12)0.0502 (11)0.0107 (9)0.0112 (9)0.0032 (9)
C70.0323 (9)0.0527 (11)0.0433 (10)0.0115 (8)0.0076 (7)0.0053 (8)
C80.0316 (8)0.0564 (11)0.0446 (10)0.0113 (8)0.0096 (7)0.0050 (8)
C90.0305 (8)0.0502 (10)0.0430 (9)0.0112 (7)0.0074 (7)0.0072 (8)
N10.0326 (8)0.0622 (10)0.0469 (9)0.0126 (7)0.0079 (6)0.0007 (7)
N20.0282 (7)0.0679 (10)0.0450 (9)0.0113 (7)0.0098 (6)0.0005 (7)
N30.0343 (8)0.0949 (14)0.0468 (9)0.0152 (9)0.0110 (7)0.0078 (9)
N40.0293 (7)0.0618 (10)0.0417 (8)0.0119 (7)0.0077 (6)0.0027 (7)
N50.0307 (7)0.0730 (11)0.0421 (9)0.0106 (7)0.0102 (7)0.0001 (8)
Cl10.0784 (4)0.0786 (4)0.0600 (3)0.0419 (3)0.0150 (3)0.0059 (3)
Cl20.0721 (4)0.1162 (5)0.0522 (3)0.0373 (4)0.0190 (3)0.0090 (3)
C100.0386 (10)0.0504 (11)0.0597 (12)0.0073 (8)0.0180 (9)0.0107 (9)
C110.0404 (10)0.0417 (10)0.0597 (12)0.0103 (8)0.0219 (9)0.0067 (8)
C120.0395 (10)0.0464 (10)0.0641 (12)0.0136 (8)0.0218 (9)0.0030 (9)
C130.0384 (10)0.0512 (11)0.0826 (15)0.0101 (8)0.0220 (10)0.0101 (10)
C140.0504 (12)0.0533 (12)0.1065 (19)0.0093 (10)0.0465 (13)0.0135 (12)
C150.0692 (15)0.0506 (12)0.0797 (15)0.0144 (10)0.0492 (13)0.0036 (10)
C160.0578 (12)0.0501 (11)0.0625 (13)0.0162 (9)0.0287 (10)0.0069 (9)
N60.0372 (10)0.0779 (14)0.1062 (18)0.0082 (9)0.0156 (10)0.0157 (12)
N70.113 (2)0.0759 (15)0.1066 (19)0.0325 (14)0.0800 (17)0.0073 (14)
O10.0374 (7)0.0841 (11)0.0645 (9)0.0093 (7)0.0222 (7)0.0067 (8)
O20.0428 (8)0.0946 (12)0.0601 (9)0.0074 (8)0.0121 (7)0.0108 (8)
O30.0427 (8)0.0802 (10)0.0653 (9)0.0151 (7)0.0148 (7)0.0074 (8)
O40.0575 (10)0.1277 (17)0.0882 (13)0.0110 (11)0.0135 (9)0.0195 (12)
O50.0520 (11)0.164 (2)0.181 (2)0.0480 (13)0.0026 (13)0.0623 (18)
O60.1283 (19)0.1273 (18)0.142 (2)0.0037 (15)0.1080 (17)0.0100 (15)
O70.142 (2)0.159 (2)0.0879 (15)0.0849 (19)0.0675 (16)0.0370 (15)
C170.0454 (11)0.0753 (15)0.0575 (13)0.0065 (10)0.0078 (10)0.0085 (11)
C180.0568 (15)0.129 (3)0.120 (2)0.0180 (16)0.0417 (16)0.009 (2)
C190.123 (3)0.0831 (19)0.0697 (17)0.0251 (18)0.0261 (16)0.0120 (14)
N80.0593 (11)0.0601 (11)0.0548 (10)0.0096 (9)0.0229 (9)0.0033 (8)
O80.0558 (9)0.0937 (12)0.0520 (9)0.0195 (8)0.0165 (7)0.0097 (8)
Geometric parameters (Å, º) top
C1—C21.382 (3)C13—C141.374 (4)
C1—C61.427 (3)C13—N61.471 (3)
C1—C71.488 (3)C14—H140.93
C2—C31.396 (3)C14—C151.369 (3)
C3—C41.385 (4)C15—C161.378 (3)
C4—H40.93C15—N71.479 (4)
C4—C51.362 (4)C16—H160.93
C5—H50.93N6—O41.192 (4)
C5—C61.382 (3)N6—O51.213 (4)
C6—H60.93N7—O61.221 (4)
C7—C91.464 (2)N7—O71.202 (4)
C7—N11.291 (2)O3—H3o0.9258 (14)
C8—N21.342 (2)C17—H170.93
C8—N31.303 (3)C17—N81.305 (3)
C8—N41.345 (2)C17—O81.226 (3)
C9—N41.322 (2)C18—H18a0.96
C9—N51.312 (2)C18—H18b0.96
N1—N21.343 (2)C18—H18c0.96
N2—H2n0.8973 (16)C18—N81.425 (3)
N3—H3n0.8624 (18)H18a—H18b1.5677
N3—H4n0.8630 (15)H18a—H18c1.5677
N5—H5n0.8658 (14)H18b—H18c1.5677
N5—H6n0.8630 (16)C19—H19a0.96
C10—C111.503 (3)C19—H19b0.96
C10—O11.267 (3)C19—H19c0.96
C10—O21.231 (2)C19—N81.470 (3)
C11—C121.405 (2)H19a—H19b1.5677
C11—C161.382 (3)H19a—H19c1.5677
C12—C131.402 (3)H19b—H19c1.5677
C12—O31.321 (3)
C2—C1—C6120.20 (18)C11—C12—O3122.09 (17)
C2—C1—C7122.86 (19)C13—C12—O3120.57 (17)
C6—C1—C7116.9 (2)C12—C13—C14122.17 (18)
C1—C2—C3120.2 (2)C12—C13—N6118.7 (2)
C2—C3—C4119.6 (2)C14—C13—N6119.10 (19)
C3—C4—H4120.02C13—C14—H14120.79
C3—C4—C5120.0 (2)C13—C14—C15118.4 (2)
H4—C4—C5120.02H14—C14—C15120.79
C4—C5—H5118.63C14—C15—C16122.1 (2)
C4—C5—C6122.7 (2)C14—C15—N7119.4 (2)
H5—C5—C6118.63C16—C15—N7118.5 (2)
C1—C6—C5117.3 (2)C11—C16—C15119.19 (18)
C1—C6—H6121.37C11—C16—H16120.41
C5—C6—H6121.36C15—C16—H16120.41
C1—C7—C9124.50 (16)C13—N6—O4118.2 (2)
C1—C7—N1115.60 (15)C13—N6—O5117.0 (3)
C9—C7—N1119.58 (16)O4—N6—O5124.8 (2)
N2—C8—N3118.61 (17)C15—N7—O6116.6 (2)
N2—C8—N4120.57 (17)C15—N7—O7118.1 (3)
N3—C8—N4120.81 (16)O6—N7—O7125.3 (3)
C7—C9—N4120.53 (16)C10—O1—H3o101.27 (12)
C7—C9—N5120.93 (16)C12—O3—H3o99.28 (14)
N4—C9—N5118.52 (15)H17—C17—N8116.69
C7—N1—N2117.85 (14)H17—C17—O8116.69
C8—N2—N1123.77 (16)N8—C17—O8126.6 (2)
C8—N2—H2n122.42 (17)H18a—C18—H18b109.47
N1—N2—H2n113.82 (14)H18a—C18—H18c109.47
C8—N3—H3n122.28 (17)H18a—C18—N8109.47
C8—N3—H4n121.07 (18)H18b—C18—H18c109.47
H3n—N3—H4n116.2 (2)H18b—C18—N8109.47
C8—N4—C9117.69 (14)H18c—C18—N8109.47
C9—N5—H5n119.55 (17)H19a—C19—H19b109.47
C9—N5—H6n124.81 (16)H19a—C19—H19c109.47
H5n—N5—H6n115.64 (18)H19a—C19—N8109.47
C11—C10—O1115.76 (15)H19b—C19—H19c109.47
C11—C10—O2119.27 (19)H19b—C19—N8109.47
O1—C10—O2124.96 (19)H19c—C19—N8109.47
C10—C11—C12119.51 (18)C17—N8—C18120.7 (2)
C10—C11—C16119.71 (16)C17—N8—C19119.5 (2)
C12—C11—C16120.74 (18)C18—N8—C19119.6 (2)
C11—C12—C13117.3 (2)O1—H3o—O3161.33 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19a···O4i0.962.473.401 (4)163
N3—H3n···O20.8624 (18)1.9939 (16)2.854 (2)174.78 (11)
N3—H4n···O8ii0.8630 (15)2.0586 (14)2.921 (2)176.91 (12)
N2—H2n···O10.8973 (16)1.8310 (15)2.728 (2)177.45 (12)
N5—H5n···N4iii0.8658 (14)2.1409 (13)2.9992 (19)171.06 (11)
N5—H6n···O8iv0.8630 (16)2.0412 (16)2.760 (2)140.22 (10)
O3—H3o···O10.9258 (14)1.5621 (12)2.4572 (18)161.33 (12)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1; (iv) x1, y+1, z.
Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) top
Crystal data top
[Ag(C12H6N2O2)](C7H3N2O7)F(000) = 1512
Mr = 755.36Dx = 1.817 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5197 reflections
a = 11.757 (2) Åθ = 3.2–25.4°
b = 18.297 (4) ŵ = 0.81 mm1
c = 13.223 (3) ÅT = 174 K
β = 103.91 (3)°Prism, yellow
V = 2761.1 (11) Å30.3 × 0.24 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5013 independent reflections
Radiation source: fine-focus sealed tube3100 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1411
Tmin = 0.780, Tmax = 0.910k = 1722
12726 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F > 3σ(F)] = 0.062H-atom parameters constrained
wR(F) = 0.118Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.64(Δ/σ)max = 0.016
5013 reflectionsΔρmax = 0.76 e Å3
444 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
56 constraintsExtinction coefficient: 2400 (800)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters 3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.21070 (4)0.44031 (3)0.52479 (4)0.0538 (2)
C10.4796 (5)0.5138 (3)0.6221 (4)0.043 (2)
H10.4406960.5582090.606890.0511*
C20.5975 (6)0.5153 (3)0.6692 (4)0.046 (2)
H20.6370090.5594830.6848730.0553*
C30.6551 (5)0.4500 (3)0.6925 (4)0.046 (2)
H30.7343910.4491180.7257290.0547*
C40.5946 (5)0.3859 (3)0.6661 (4)0.035 (2)
C50.6523 (8)0.3141 (4)0.6884 (5)0.068 (3)
C60.5912 (10)0.2510 (4)0.6718 (6)0.093 (5)
C70.4628 (6)0.2534 (3)0.6228 (4)0.042 (2)
C80.3994 (7)0.1881 (3)0.6033 (4)0.052 (3)
H80.4350890.1431840.62240.0623*
C90.2837 (7)0.1928 (4)0.5555 (5)0.063 (3)
H90.2386650.1506160.5401610.0756*
C100.2345 (6)0.2592 (3)0.5304 (5)0.052 (3)
H100.1555820.261070.4961880.0629*
C110.4065 (5)0.3197 (3)0.5966 (4)0.032 (2)
C120.4742 (5)0.3885 (3)0.6197 (4)0.033 (2)
C130.0851 (5)0.4150 (3)0.2774 (5)0.054 (3)
H130.1091470.3670480.2931740.0649*
C140.0376 (5)0.4324 (4)0.1743 (5)0.060 (3)
H140.0291510.3970850.1223580.0717*
C150.0032 (5)0.5033 (3)0.1508 (5)0.051 (3)
H150.0303710.5167790.0822740.0617*
C160.0190 (5)0.5550 (3)0.2306 (4)0.040 (2)
C170.0145 (5)0.6317 (3)0.2063 (5)0.051 (3)
C180.0094 (5)0.6826 (3)0.2940 (5)0.053 (3)
C190.0474 (5)0.6578 (3)0.4023 (5)0.042 (2)
C200.0689 (5)0.7058 (3)0.4858 (5)0.052 (3)
H200.0480990.7547260.4750140.063*
C210.1204 (6)0.6817 (4)0.5833 (5)0.058 (3)
H210.1346260.7131230.640290.0692*
C220.1503 (5)0.6091 (4)0.5941 (5)0.054 (3)
H220.1863520.592540.6605530.0653*
C230.0818 (5)0.5847 (3)0.4195 (4)0.036 (2)
C240.0637 (4)0.5318 (3)0.3326 (4)0.032 (2)
C250.6150 (6)0.4142 (3)0.9276 (4)0.041 (2)
C260.5079 (6)0.4527 (3)0.8869 (4)0.040 (2)
C270.4074 (5)0.4101 (3)0.8426 (4)0.037 (2)
C280.4091 (5)0.3351 (3)0.8456 (4)0.041 (2)
H280.3419980.3080640.8176160.0498*
C290.5156 (6)0.3004 (3)0.8924 (4)0.041 (2)
C300.6177 (5)0.3387 (3)0.9323 (4)0.043 (2)
H300.6870510.3141230.9618040.0515*
C310.2956 (6)0.4467 (4)0.7881 (5)0.047 (3)
N10.4179 (4)0.4525 (2)0.5968 (3)0.0338 (17)
N20.2929 (4)0.3229 (2)0.5519 (3)0.0387 (18)
N30.0989 (4)0.4627 (2)0.3563 (3)0.0413 (18)
N40.1317 (4)0.5603 (2)0.5163 (3)0.0405 (18)
N50.7267 (6)0.4510 (4)0.9628 (4)0.059 (3)
N60.5168 (6)0.2209 (3)0.9002 (4)0.055 (3)
O10.7646 (5)0.3117 (3)0.7273 (4)0.092 (3)
O20.6406 (5)0.1892 (3)0.6987 (4)0.102 (3)
O30.0421 (4)0.6544 (2)0.1169 (3)0.069 (2)
O40.0501 (5)0.7444 (2)0.2776 (4)0.081 (2)
O50.8168 (5)0.4145 (3)0.9750 (4)0.090 (3)
O60.7298 (5)0.5169 (3)0.9762 (4)0.084 (2)
O70.5025 (4)0.5233 (2)0.8850 (3)0.0617 (19)
O80.2936 (4)0.5168 (3)0.7945 (3)0.066 (2)
O90.2137 (4)0.4111 (3)0.7370 (3)0.064 (2)
O100.4286 (5)0.1877 (2)0.8580 (4)0.070 (2)
O110.6096 (5)0.1916 (2)0.9512 (4)0.068 (2)
H70.3888840.5317470.835910.019 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0474 (4)0.0492 (3)0.0603 (3)0.0150 (3)0.0038 (2)0.0149 (3)
C10.054 (5)0.035 (4)0.041 (3)0.006 (3)0.014 (3)0.001 (3)
C20.052 (5)0.041 (4)0.048 (4)0.010 (3)0.018 (3)0.001 (3)
C30.031 (4)0.063 (4)0.043 (3)0.004 (3)0.008 (3)0.008 (3)
C40.036 (4)0.034 (3)0.035 (3)0.015 (3)0.013 (3)0.004 (3)
C50.085 (7)0.078 (6)0.048 (4)0.014 (5)0.031 (4)0.006 (4)
C60.201 (12)0.037 (5)0.065 (5)0.012 (6)0.081 (7)0.001 (4)
C70.033 (4)0.059 (5)0.035 (3)0.007 (3)0.008 (3)0.001 (3)
C80.088 (6)0.023 (3)0.051 (4)0.010 (4)0.029 (4)0.005 (3)
C90.074 (6)0.053 (5)0.067 (5)0.009 (4)0.025 (4)0.008 (4)
C100.039 (4)0.054 (4)0.064 (4)0.003 (4)0.012 (3)0.014 (4)
C110.043 (4)0.026 (3)0.029 (3)0.006 (3)0.010 (3)0.002 (2)
C120.043 (4)0.031 (3)0.028 (3)0.004 (3)0.014 (3)0.002 (2)
C130.052 (5)0.034 (4)0.071 (5)0.002 (3)0.005 (4)0.001 (3)
C140.055 (5)0.055 (5)0.064 (4)0.000 (4)0.003 (4)0.024 (4)
C150.046 (4)0.057 (4)0.045 (4)0.004 (3)0.000 (3)0.002 (3)
C160.029 (3)0.038 (3)0.051 (4)0.000 (3)0.004 (3)0.005 (3)
C170.039 (4)0.054 (4)0.055 (4)0.002 (3)0.001 (3)0.021 (4)
C180.036 (4)0.042 (4)0.077 (5)0.003 (3)0.004 (3)0.005 (4)
C190.035 (4)0.032 (3)0.057 (4)0.003 (3)0.007 (3)0.002 (3)
C200.046 (4)0.031 (3)0.079 (5)0.000 (3)0.012 (4)0.010 (4)
C210.049 (5)0.055 (5)0.067 (5)0.002 (4)0.010 (4)0.013 (4)
C220.046 (4)0.070 (5)0.042 (4)0.003 (4)0.001 (3)0.006 (4)
C230.027 (3)0.034 (3)0.046 (3)0.002 (3)0.006 (3)0.000 (3)
C240.019 (3)0.031 (3)0.046 (3)0.001 (2)0.007 (2)0.004 (3)
C250.058 (5)0.037 (4)0.028 (3)0.010 (3)0.010 (3)0.004 (3)
C260.062 (5)0.032 (3)0.030 (3)0.001 (3)0.018 (3)0.002 (3)
C270.039 (4)0.038 (4)0.035 (3)0.002 (3)0.012 (3)0.006 (3)
C280.057 (5)0.041 (4)0.030 (3)0.007 (3)0.018 (3)0.002 (3)
C290.068 (5)0.029 (3)0.032 (3)0.004 (3)0.024 (3)0.005 (3)
C300.047 (4)0.047 (4)0.036 (3)0.005 (3)0.014 (3)0.002 (3)
C310.057 (5)0.041 (4)0.048 (4)0.011 (4)0.023 (3)0.008 (3)
N10.036 (3)0.031 (3)0.033 (2)0.005 (2)0.008 (2)0.001 (2)
N20.033 (3)0.037 (3)0.044 (3)0.001 (2)0.006 (2)0.002 (2)
N30.040 (3)0.029 (3)0.051 (3)0.001 (2)0.004 (2)0.003 (2)
N40.035 (3)0.043 (3)0.041 (3)0.003 (2)0.004 (2)0.006 (2)
N50.057 (4)0.072 (5)0.044 (3)0.015 (4)0.003 (3)0.009 (3)
N60.090 (5)0.039 (4)0.044 (3)0.004 (3)0.033 (3)0.004 (3)
O10.083 (4)0.104 (4)0.088 (4)0.034 (4)0.022 (3)0.021 (3)
O20.095 (5)0.085 (4)0.115 (5)0.014 (4)0.002 (4)0.007 (4)
O30.066 (3)0.071 (3)0.065 (3)0.002 (3)0.004 (3)0.026 (3)
O40.101 (4)0.040 (3)0.095 (4)0.019 (3)0.007 (3)0.017 (3)
O50.052 (4)0.100 (4)0.111 (4)0.002 (3)0.006 (3)0.031 (3)
O60.091 (4)0.051 (3)0.090 (4)0.024 (3)0.015 (3)0.003 (3)
O70.088 (4)0.042 (3)0.057 (3)0.005 (2)0.021 (3)0.002 (2)
O80.069 (4)0.060 (3)0.072 (3)0.017 (3)0.022 (3)0.009 (2)
O90.042 (3)0.084 (4)0.066 (3)0.006 (3)0.012 (2)0.002 (3)
O100.107 (5)0.039 (3)0.067 (3)0.016 (3)0.025 (3)0.001 (2)
O110.089 (4)0.042 (3)0.081 (3)0.016 (3)0.036 (3)0.022 (2)
Geometric parameters (Å, º) top
Ag1—N12.404 (4)C16—C241.392 (7)
Ag1—N22.348 (5)C17—C181.476 (9)
Ag1—N32.335 (4)C17—O31.220 (8)
Ag1—N42.376 (5)C18—C191.498 (8)
C1—H10.93C18—O41.227 (8)
C1—C21.376 (8)C19—C201.386 (8)
C1—N11.334 (7)C19—C231.400 (8)
C2—H20.93C20—H200.93
C2—C31.373 (8)C20—C211.359 (9)
C3—H30.93C21—H210.93
C3—C41.372 (8)C21—C221.373 (9)
C4—C51.475 (10)C22—H220.93
C4—C121.402 (8)C22—N41.341 (8)
C5—C61.349 (12)C23—C241.478 (7)
C5—O11.298 (10)C23—N41.349 (7)
C6—C71.493 (13)C24—N31.344 (7)
C6—O21.283 (10)C25—C261.430 (9)
C7—C81.399 (9)C25—C301.384 (8)
C7—C111.385 (8)C25—N51.450 (9)
C8—H80.93C26—C271.418 (8)
C8—C91.357 (10)C26—O71.293 (7)
C9—H90.93C27—C281.373 (8)
C9—C101.353 (9)C27—C311.496 (8)
C10—H100.93C28—H280.93
C10—N21.347 (8)C28—C291.407 (8)
C11—C121.481 (7)C29—C301.380 (8)
C11—N21.326 (7)C29—N61.458 (8)
C12—N11.344 (7)C30—H300.93
C13—H130.93C31—O81.286 (8)
C13—C141.381 (9)C31—O91.223 (8)
C13—N31.339 (8)N5—O51.230 (9)
C14—H140.93N5—O61.218 (8)
C14—C151.373 (9)N6—O101.216 (8)
C15—H150.93N6—O111.257 (8)
C15—C161.396 (8)O7—H71.346 (4)
C16—C171.473 (8)O8—H71.155 (4)
H1—C1—C2118.04C19—C18—O4120.9 (6)
H1—C1—N1118.04C18—C19—C20121.6 (5)
C2—C1—N1123.9 (5)C18—C19—C23119.3 (5)
C1—C2—H2120.88C20—C19—C23119.1 (5)
C1—C2—C3118.2 (5)C19—C20—H20119.84
H2—C2—C3120.88C19—C20—C21120.3 (6)
C2—C3—H3120.34H20—C20—C21119.84
C2—C3—C4119.3 (5)C20—C21—H21121.42
H3—C3—C4120.34C20—C21—C22117.2 (6)
C3—C4—C5121.7 (6)H21—C21—C22121.42
C3—C4—C12119.3 (5)C21—C22—H22117.46
C5—C4—C12119.0 (5)C21—C22—N4125.1 (5)
C4—C5—C6121.9 (8)H22—C22—N4117.46
C4—C5—O1118.9 (7)C19—C23—C24121.2 (5)
C6—C5—O1119.2 (8)C19—C23—N4120.8 (5)
C5—C6—C7119.3 (7)C24—C23—N4118.0 (5)
C5—C6—O2121.4 (9)C16—C24—C23120.2 (5)
C7—C6—O2119.3 (7)C16—C24—N3122.5 (5)
C6—C7—C8119.6 (6)C23—C24—N3117.2 (4)
C6—C7—C11120.4 (6)C26—C25—C30121.2 (5)
C8—C7—C11120.0 (6)C26—C25—N5122.7 (5)
C7—C8—H8121.23C30—C25—N5116.1 (6)
C7—C8—C9117.5 (6)C25—C26—C27117.1 (5)
H8—C8—C9121.23C25—C26—O7122.2 (5)
C8—C9—H9120.26C27—C26—O7120.5 (5)
C8—C9—C10119.5 (6)C26—C27—C28122.1 (5)
H9—C9—C10120.26C26—C27—C31120.1 (5)
C9—C10—H10118.01C28—C27—C31117.8 (5)
C9—C10—N2124.0 (6)C27—C28—H28121
H10—C10—N2118.01C27—C28—C29118.0 (5)
C7—C11—C12119.5 (5)H28—C28—C29121
C7—C11—N2121.3 (5)C28—C29—C30122.6 (5)
C12—C11—N2119.2 (5)C28—C29—N6118.3 (5)
C4—C12—C11119.8 (5)C30—C29—N6119.1 (5)
C4—C12—N1121.2 (5)C25—C30—C29118.7 (5)
C11—C12—N1118.9 (5)C25—C30—H30120.65
H13—C13—C14117.83C29—C30—H30120.65
H13—C13—N3117.83C27—C31—O8116.2 (5)
C14—C13—N3124.3 (5)C27—C31—O9120.8 (6)
C13—C14—H14121.04O8—C31—O9122.9 (6)
C13—C14—C15117.9 (6)C1—N1—C12117.9 (4)
H14—C14—C15121.04C10—N2—C11117.6 (5)
C14—C15—H15120.29C13—N3—C24117.3 (5)
C14—C15—C16119.4 (5)C22—N4—C23117.5 (5)
H15—C15—C16120.29C25—N5—O5118.4 (6)
C15—C16—C17120.1 (5)C25—N5—O6120.0 (6)
C15—C16—C24118.5 (5)O5—N5—O6121.6 (6)
C17—C16—C24121.4 (5)C29—N6—O10118.3 (5)
C16—C17—C18118.1 (5)C29—N6—O11117.2 (5)
C16—C17—O3122.0 (6)O10—N6—O11124.5 (5)
C18—C17—O3119.9 (6)C26—O7—H799.4 (4)
C17—C18—C19119.0 (5)C31—O8—H7103.7 (4)
C17—C18—O4120.1 (6)O7—H7—O8159.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10i0.932.493.180 (7)131
C8—H8···O7ii0.932.323.220 (7)162
C9—H9···O6ii0.932.493.243 (9)138
C13—H13···O4iii0.932.473.209 (7)137
C22—H22···O80.932.363.251 (7)160
O7—H7···C311.346 (4)1.922 (7)2.833 (8)119.1 (3)
O7—H7···O81.346 (4)1.155 (4)2.462 (6)159.6 (3)
O8—H7···C261.155 (4)2.013 (6)2.781 (7)120.3 (3)
O8—H7···O71.155 (4)1.346 (4)2.462 (6)159.6 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y1/2, z+1/2.
3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET) top
Crystal data top
C5H9N2+·C7H3N2O7F(000) = 336
Mr = 324.26Dx = 1.547 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.1183 (7) ÅCell parameters from 1025 reflections
b = 6.0636 (5) Åθ = 2.5–22.6°
c = 14.1453 (11) ŵ = 0.13 mm1
β = 91.904 (1)°T = 293 K
V = 695.93 (10) Å3Block, colorless
Z = 20.40 × 0.27 × 0.11 mm
Data collection top
Bruker SMART CCD
diffractometer
2301 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.959, Tmax = 0.986k = 77
3523 measured reflectionsl = 1612
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.041Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.088(Δ/σ)max = 0.033
S = 1.16Δρmax = 0.11 e Å3
2301 reflectionsΔρmin = 0.10 e Å3
212 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 3100 (400)
37 constraintsAbsolute structure: 955 of Friedel pairs used in the refinement
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5
Secondary atom site location: difference Fourier map
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters 10.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2262 (4)0.7164 (5)0.2338 (2)0.0464 (11)
N20.2203 (3)0.6196 (5)0.3198 (2)0.0478 (11)
C60.3519 (4)0.7226 (6)0.5525 (2)0.0412 (12)
N30.2179 (3)1.3158 (5)0.7705 (2)0.0509 (12)
N40.5552 (4)0.7120 (5)0.8913 (2)0.0501 (12)
O10.5417 (3)0.5285 (4)0.70239 (16)0.0462 (9)
O20.4266 (3)0.5357 (4)0.53811 (15)0.0582 (10)
O30.2657 (3)0.8100 (4)0.49006 (14)0.0507 (8)
O40.1415 (3)1.4013 (4)0.70419 (18)0.0652 (10)
O50.2270 (3)1.3968 (4)0.85025 (18)0.0709 (11)
O60.5263 (4)0.7839 (5)0.96960 (17)0.0853 (12)
O70.6549 (4)0.5664 (5)0.87980 (17)0.0719 (12)
C10.1300 (5)0.6431 (8)0.0685 (2)0.0762 (19)
H1a0.1321190.8002980.0607330.1144*
H1b0.0275250.5860150.0430680.1144*
H1c0.2196990.5783960.0357440.1144*
C20.1466 (4)0.5878 (6)0.1713 (2)0.0469 (13)
C30.0892 (4)0.4058 (7)0.2187 (3)0.0553 (14)
H30.0296510.2885880.1924460.0663*
C40.1373 (4)0.4313 (6)0.3133 (2)0.0481 (13)
C50.1093 (5)0.2896 (7)0.3966 (3)0.0669 (16)
H5a0.0251420.1832510.3809140.1003*
H5b0.209640.2145510.4144770.1003*
H5c0.0748820.3793020.4482380.1003*
C120.4691 (4)0.7102 (6)0.7196 (2)0.0372 (12)
C70.3736 (3)0.8233 (6)0.6477 (2)0.0348 (11)
C80.2972 (4)1.0181 (6)0.6641 (2)0.0380 (12)
H80.2398051.0895160.6150130.0456*
C90.3044 (4)1.1108 (6)0.7534 (2)0.0381 (11)
C100.3902 (4)1.0091 (6)0.8274 (2)0.0403 (12)
H100.3937511.0711210.8876030.0483*
C110.4704 (4)0.8133 (6)0.8100 (2)0.0380 (11)
H2a0.507 (5)0.485 (9)0.620 (3)0.145 (19)*
H10.289 (6)0.878 (9)0.225 (3)0.130 (19)*
H20.258 (4)0.707 (6)0.373 (2)0.063 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0502 (18)0.049 (2)0.0399 (18)0.0006 (15)0.0027 (14)0.0034 (15)
N20.0497 (19)0.051 (2)0.0422 (18)0.0046 (17)0.0047 (14)0.0066 (17)
C60.0393 (19)0.047 (2)0.037 (2)0.0016 (18)0.0053 (16)0.0027 (18)
N30.0500 (19)0.043 (2)0.060 (2)0.0003 (17)0.0048 (16)0.0031 (18)
N40.065 (2)0.046 (2)0.0387 (19)0.0015 (17)0.0037 (16)0.0042 (16)
O10.0564 (15)0.0414 (15)0.0407 (14)0.0091 (13)0.0027 (11)0.0072 (12)
O20.0704 (17)0.0626 (18)0.0414 (14)0.0205 (15)0.0036 (12)0.0156 (14)
O30.0581 (14)0.0600 (17)0.0333 (13)0.0050 (14)0.0083 (11)0.0013 (12)
O40.0703 (17)0.0521 (17)0.0721 (18)0.0185 (15)0.0141 (14)0.0031 (15)
O50.092 (2)0.0593 (19)0.0617 (17)0.0072 (16)0.0048 (14)0.0187 (15)
O60.148 (3)0.075 (2)0.0326 (16)0.035 (2)0.0069 (15)0.0032 (15)
O70.092 (2)0.072 (2)0.0510 (16)0.0308 (19)0.0083 (14)0.0090 (16)
C10.086 (3)0.096 (4)0.047 (2)0.014 (3)0.009 (2)0.007 (2)
C20.043 (2)0.054 (3)0.0434 (19)0.005 (2)0.0046 (17)0.009 (2)
C30.049 (2)0.057 (3)0.060 (2)0.004 (2)0.0075 (18)0.022 (2)
C40.039 (2)0.044 (2)0.062 (2)0.0027 (19)0.0037 (17)0.003 (2)
C50.066 (3)0.060 (3)0.074 (3)0.000 (2)0.002 (2)0.012 (2)
C120.0351 (19)0.041 (2)0.036 (2)0.0079 (18)0.0025 (15)0.0010 (17)
C70.0342 (17)0.039 (2)0.0316 (17)0.0052 (17)0.0004 (13)0.0031 (16)
C80.041 (2)0.038 (2)0.0349 (19)0.0032 (18)0.0036 (15)0.0039 (17)
C90.041 (2)0.032 (2)0.0416 (19)0.0045 (17)0.0020 (15)0.0015 (17)
C100.049 (2)0.039 (2)0.0325 (19)0.0038 (18)0.0020 (16)0.0017 (17)
C110.0419 (19)0.041 (2)0.0312 (17)0.0038 (19)0.0025 (14)0.0049 (17)
Geometric parameters (Å, º) top
N1—N21.353 (4)H1a—H1b1.5677
N1—C21.330 (5)H1a—H1c1.5677
N1—H11.11 (5)H1b—H1c1.5677
N2—C41.327 (5)C2—C31.380 (5)
N2—H20.96 (3)C3—H30.93
C6—O21.304 (4)C3—C41.389 (5)
C6—O31.229 (4)C4—C51.482 (5)
C6—C71.484 (4)C5—H5a0.96
N3—O41.223 (4)C5—H5b0.96
N3—O51.231 (4)C5—H5c0.96
N3—C91.452 (5)H5a—H5b1.5677
N4—O61.220 (4)H5a—H5c1.5677
N4—O71.213 (4)H5b—H5c1.5677
N4—C111.457 (4)C12—C71.433 (4)
O1—C121.277 (4)C12—C111.422 (4)
O1—H2a1.22 (5)C7—C81.358 (5)
O2—H2a1.34 (5)C8—H80.93
C1—H1a0.96C8—C91.382 (4)
C1—H1b0.96C9—C101.384 (4)
C1—H1c0.96C10—H100.93
C1—C21.494 (5)C10—C111.380 (5)
N2—N1—C2108.2 (3)N2—C4—C3106.8 (3)
N2—N1—H1121 (2)N2—C4—C5122.3 (3)
C2—N1—H1131 (2)C3—C4—C5130.9 (3)
N1—N2—C4110.1 (3)C4—C5—H5a109.47
N1—N2—H2117 (2)C4—C5—H5b109.47
C4—N2—H2132 (2)C4—C5—H5c109.47
O2—C6—O3121.3 (3)H5a—C5—H5b109.47
O2—C6—C7117.2 (3)H5a—C5—H5c109.47
O3—C6—C7121.5 (3)H5b—C5—H5c109.47
O4—N3—O5123.2 (3)O1—C12—C7121.3 (3)
O4—N3—C9118.1 (3)O1—C12—C11124.1 (3)
O5—N3—C9118.7 (3)C7—C12—C11114.5 (3)
O6—N4—O7122.1 (3)C6—C7—C12119.5 (3)
O6—N4—C11117.8 (3)C6—C7—C8118.1 (3)
O7—N4—C11120.1 (3)C12—C7—C8122.3 (3)
C12—O1—H2a106 (2)C7—C8—H8119.87
C6—O2—H2a106 (2)C7—C8—C9120.3 (3)
H1a—C1—H1b109.47H8—C8—C9119.87
H1a—C1—H1c109.47N3—C9—C8119.6 (3)
H1a—C1—C2109.47N3—C9—C10119.3 (3)
H1b—C1—H1c109.47C8—C9—C10121.0 (3)
H1b—C1—C2109.47C9—C10—H10120.77
H1c—C1—C2109.47C9—C10—C11118.5 (3)
N1—C2—C1122.8 (3)H10—C10—C11120.77
N1—C2—C3108.1 (3)N4—C11—C12120.9 (3)
C1—C2—C3129.1 (3)N4—C11—C10115.7 (3)
C2—C3—H3126.58C12—C11—C10123.3 (3)
C2—C3—C4106.8 (3)O1—H2a—O2149 (5)
H3—C3—C4126.58
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1a···O7i0.962.493.176 (5)128
C5—H5a···O4ii0.962.473.395 (5)162
C10—H10···O6iii0.932.473.369 (4)164
O1—H2a···O21.22 (5)1.34 (5)2.476 (3)149 (5)
O2—H2a···O11.34 (5)1.22 (5)2.476 (3)149 (5)
N1—H1···O1i1.11 (5)1.92 (5)2.799 (4)133 (3)
N1—H1···O7i1.11 (5)1.94 (5)2.850 (4)137 (3)
N2—H2···O30.96 (3)1.77 (3)2.685 (4)158 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y3/2, z+1; (iii) x+1, y+1/2, z+2.
3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) top
Crystal data top
C6H12N3+·C7H3N2O7Z = 2
Mr = 353.30F(000) = 368
Triclinic, P1Dx = 1.525 Mg m3
a = 7.0109 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.6617 (8) ÅCell parameters from 2218 reflections
c = 10.7454 (7) Åθ = 4.2–72.3°
α = 93.075 (6)°µ = 1.09 mm1
β = 95.863 (5)°T = 173 K
γ = 104.944 (6)°Irregular, yellow
V = 769.30 (9) Å30.22 × 0.14 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2953 independent reflections
Graphite monochromator2426 reflections with I > 3σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.026
ω scansθmax = 72.5°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 85
Tmin = 0.925, Tmax = 1.000k = 1213
4664 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.100Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.64(Δ/σ)max = 0.013
2953 reflectionsΔρmax = 0.21 e Å3
229 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
46 constraintsExtinction coefficient: 740 (130)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Number of fixed parameters: 12

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1b0.19161 (17)0.67539 (12)0.52684 (11)0.0294 (4)
O2b0.38292 (17)0.47166 (12)0.40838 (12)0.0313 (4)
O3b0.25511 (17)0.37712 (12)0.26158 (12)0.0312 (4)
O4b0.41258 (19)0.58639 (13)0.16853 (13)0.0365 (5)
O5b0.59776 (18)0.75622 (13)0.28239 (14)0.0382 (5)
O6b0.3446 (2)0.93719 (14)0.62658 (15)0.0474 (5)
O7b0.02822 (19)0.91655 (13)0.61477 (13)0.0410 (5)
N1b0.1720 (2)0.88469 (14)0.58118 (14)0.0301 (5)
N2b0.4396 (2)0.67347 (14)0.25363 (14)0.0281 (5)
C1b0.0455 (2)0.68023 (16)0.46268 (15)0.0225 (5)
C2b0.0572 (2)0.57873 (15)0.36597 (15)0.0217 (5)
C3b0.0987 (2)0.57933 (16)0.29810 (15)0.0228 (5)
H3b0.0861720.5125620.2332190.0273*
C4b0.2738 (2)0.67709 (16)0.32422 (15)0.0238 (5)
C5b0.2967 (2)0.77664 (16)0.41630 (15)0.0244 (5)
H5b0.4184940.8426180.4336770.0292*
C6b0.1392 (2)0.77850 (16)0.48267 (15)0.0244 (5)
C7b0.2405 (2)0.46767 (16)0.33986 (15)0.0245 (5)
N1a0.2235 (2)0.05127 (14)0.17301 (14)0.0305 (5)
N2a0.0146 (2)0.22579 (13)0.06967 (13)0.0239 (4)
N3a0.3467 (2)0.20531 (13)0.28160 (13)0.0254 (4)
C1a0.0395 (2)0.12591 (16)0.15749 (16)0.0272 (6)
H1a0.063240.1110940.2027720.0327*
C2a0.3211 (3)0.10665 (17)0.08987 (17)0.0314 (6)
H2a0.4574430.074320.0791160.0377*
C3a0.1954 (3)0.21356 (17)0.02572 (17)0.0294 (6)
H3a0.2258450.2690840.037060.0353*
C4a0.1719 (2)0.32466 (17)0.02832 (15)0.0268 (5)
H4aa0.2420140.3513320.1019650.0322*
H4ab0.1427080.4037980.0084810.0322*
C5a0.3076 (2)0.27759 (16)0.06668 (16)0.0271 (5)
H5aa0.3244870.1931340.0336640.0326*
H5ab0.4406670.3404340.0791140.0326*
C6a0.2253 (2)0.26206 (16)0.19085 (15)0.0279 (6)
H6aa0.2182270.3478910.2270270.0335*
H6ab0.087120.2060210.177260.0335*
H2b0.3391340.5541440.461480.075 (9)*
H3aa0.3297810.1195320.2607010.045 (4)*
H3ab0.4758270.2487040.2845540.045 (4)*
H3ac0.3131450.212090.3591890.045 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1b0.0268 (6)0.0307 (7)0.0277 (6)0.0010 (5)0.0098 (5)0.0050 (5)
O2b0.0247 (6)0.0313 (7)0.0327 (7)0.0024 (5)0.0088 (5)0.0060 (5)
O3b0.0283 (6)0.0285 (7)0.0317 (7)0.0002 (5)0.0047 (5)0.0082 (5)
O4b0.0371 (7)0.0325 (7)0.0413 (8)0.0085 (6)0.0167 (6)0.0042 (6)
O5b0.0231 (6)0.0380 (8)0.0506 (9)0.0010 (6)0.0111 (6)0.0014 (6)
O6b0.0352 (7)0.0408 (8)0.0552 (10)0.0009 (6)0.0052 (7)0.0197 (7)
O7b0.0398 (7)0.0333 (7)0.0470 (8)0.0034 (6)0.0162 (6)0.0121 (6)
N1b0.0326 (8)0.0241 (8)0.0301 (8)0.0012 (6)0.0060 (6)0.0023 (6)
N2b0.0260 (7)0.0259 (7)0.0343 (8)0.0074 (6)0.0092 (6)0.0063 (6)
C1b0.0234 (8)0.0236 (8)0.0201 (8)0.0054 (6)0.0034 (6)0.0027 (6)
C2b0.0218 (8)0.0215 (8)0.0207 (8)0.0036 (6)0.0019 (6)0.0029 (6)
C3b0.0265 (8)0.0220 (8)0.0208 (8)0.0077 (7)0.0043 (6)0.0017 (6)
C4b0.0220 (8)0.0254 (8)0.0260 (8)0.0080 (7)0.0064 (7)0.0057 (7)
C5b0.0220 (8)0.0220 (8)0.0269 (8)0.0015 (6)0.0023 (7)0.0050 (7)
C6b0.0276 (8)0.0210 (8)0.0230 (8)0.0045 (7)0.0018 (7)0.0001 (6)
C7b0.0247 (8)0.0261 (8)0.0216 (8)0.0051 (7)0.0021 (6)0.0007 (6)
N1a0.0292 (8)0.0252 (8)0.0349 (8)0.0050 (6)0.0011 (6)0.0007 (6)
N2a0.0247 (7)0.0234 (7)0.0229 (7)0.0054 (6)0.0034 (5)0.0002 (6)
N3a0.0268 (7)0.0229 (7)0.0245 (7)0.0041 (6)0.0021 (6)0.0026 (6)
C1a0.0286 (9)0.0260 (9)0.0278 (9)0.0087 (7)0.0051 (7)0.0018 (7)
C2a0.0269 (9)0.0316 (10)0.0352 (10)0.0047 (7)0.0073 (7)0.0060 (8)
C3a0.0301 (9)0.0311 (9)0.0289 (9)0.0095 (7)0.0092 (7)0.0016 (7)
C4a0.0277 (8)0.0248 (8)0.0248 (8)0.0009 (7)0.0052 (7)0.0000 (7)
C5a0.0237 (8)0.0295 (9)0.0260 (9)0.0030 (7)0.0055 (7)0.0021 (7)
C6a0.0301 (9)0.0306 (9)0.0261 (9)0.0125 (7)0.0053 (7)0.0016 (7)
Geometric parameters (Å, º) top
O1b—C1b1.284 (2)N1a—C2a1.376 (3)
O2b—C7b1.308 (2)N2a—C1a1.348 (2)
O2b—H2b0.9820 (12)N2a—C3a1.375 (2)
O3b—C7b1.222 (2)N2a—C4a1.4622 (19)
O4b—N2b1.232 (2)N3a—C6a1.483 (2)
O5b—N2b1.2248 (17)N3a—H3aa0.9042 (14)
O6b—N1b1.2313 (18)N3a—H3ab0.9009 (13)
O7b—N1b1.225 (2)N3a—H3ac0.8932 (14)
N1b—C6b1.464 (2)C1a—H1a0.95
N2b—C4b1.458 (2)C2a—H2a0.95
C1b—C2b1.440 (2)C2a—C3a1.351 (2)
C1b—C6b1.428 (2)C3a—H3a0.95
C2b—C3b1.373 (2)C4a—H4aa0.99
C2b—C7b1.496 (2)C4a—H4ab0.99
C3b—H3b0.95C4a—C5a1.517 (2)
C3b—C4b1.382 (2)C5a—H5aa0.99
C4b—C5b1.378 (2)C5a—H5ab0.99
C5b—H5b0.95C5a—C6a1.507 (2)
C5b—C6b1.378 (2)C6a—H6aa0.99
N1a—C1a1.318 (2)C6a—H6ab0.99
C1b—O1b—H2b99.82 (10)C6a—N3a—H3ab109.46 (13)
C7b—O2b—H2b106.90 (11)C6a—N3a—H3ac111.76 (15)
O6b—N1b—O7b123.30 (15)H3aa—N3a—H3ab110.21 (16)
O6b—N1b—C6b117.72 (16)H3aa—N3a—H3ac106.71 (14)
O7b—N1b—C6b118.97 (13)H3ab—N3a—H3ac107.27 (13)
O4b—N2b—O5b123.59 (16)N1a—C1a—N2a111.91 (16)
O4b—N2b—C4b117.89 (12)N1a—C1a—H1a124.04
O5b—N2b—C4b118.52 (14)N2a—C1a—H1a124.04
O1b—C1b—C2b120.19 (13)N1a—C2a—H2a124.86
O1b—C1b—C6b124.76 (15)N1a—C2a—C3a110.28 (15)
C2b—C1b—C6b115.00 (15)H2a—C2a—C3a124.86
C1b—C2b—C3b121.54 (13)N2a—C3a—C2a106.10 (16)
C1b—C2b—C7b119.88 (15)N2a—C3a—H3a126.95
C3b—C2b—C7b118.56 (14)C2a—C3a—H3a126.95
C2b—C3b—H3b120.01N2a—C4a—H4aa109.47
C2b—C3b—C4b119.99 (15)N2a—C4a—H4ab109.47
H3b—C3b—C4b120.01N2a—C4a—C5a112.62 (14)
N2b—C4b—C3b119.03 (14)H4aa—C4a—H4ab106.12
N2b—C4b—C5b119.24 (13)H4aa—C4a—C5a109.47
C3b—C4b—C5b121.73 (16)H4ab—C4a—C5a109.47
C4b—C5b—H5b120.69C4a—C5a—H5aa109.47
C4b—C5b—C6b118.62 (13)C4a—C5a—H5ab109.47
H5b—C5b—C6b120.69C4a—C5a—C6a111.50 (15)
N1b—C6b—C1b120.26 (15)H5aa—C5a—H5ab107.36
N1b—C6b—C5b116.59 (13)H5aa—C5a—C6a109.47
C1b—C6b—C5b123.09 (15)H5ab—C5a—C6a109.47
O2b—C7b—O3b121.86 (14)N3a—C6a—C5a112.35 (15)
O2b—C7b—C2b115.78 (14)N3a—C6a—H6aa109.47
O3b—C7b—C2b122.33 (16)N3a—C6a—H6ab109.47
C1a—N1a—C2a105.01 (14)C5a—C6a—H6aa109.47
C1a—N2a—C3a106.69 (13)C5a—C6a—H6ab109.47
C1a—N2a—C4a125.73 (15)H6aa—C6a—H6ab106.43
C3a—N2a—C4a127.56 (14)O1b—H2b—O2b156.29 (9)
C6a—N3a—H3aa111.33 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4a—H4aa···O4bi0.992.533.359 (2)141
O2b—H2b···O1b0.9820 (12)1.5161 (11)2.4473 (16)156.29 (9)
O2b—H2b···C1b0.9820 (12)2.1471 (15)2.7833 (18)121.00 (8)
N3a—H3aa···N1aii0.9042 (14)1.9318 (14)2.797 (2)159.6 (1)
N3a—H3ab···O2biii0.9009 (13)2.5650 (12)3.1297 (17)121.35 (10)
N3a—H3ab···O3biii0.9009 (13)2.0721 (11)2.9537 (17)165.79 (10)
N3a—H3ac···O1biv0.8932 (14)2.0610 (13)2.815 (2)141.47 (11)
N3a—H3ac···O7biv0.8932 (14)2.4844 (13)2.9712 (19)114.74 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x, y+1, z+1.
4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV) top
Crystal data top
C10H12N3O3S+·C7H3N2O7Z = 2
Mr = 481.41F(000) = 496
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5551 (1) ÅCell parameters from 6718 reflections
b = 10.5000 (2) Åθ = 1.8–32.6°
c = 12.7576 (3) ŵ = 0.23 mm1
α = 106.463 (1)°T = 296 K
β = 100.913 (1)°Prism, yellow
γ = 108.272 (1)°0.20 × 0.20 × 0.16 mm
V = 993.72 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6717 independent reflections
Radiation source: fine-focus sealed tube4398 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.955, Tmax = 0.964k = 1515
24261 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.044Hydrogen site location: difference Fourier map
wR(F) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.95Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
6717 reflections(Δ/σ)max = 0.013
301 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
48 constraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Number of fixed parameters: 9

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02012 (4)0.65156 (4)0.38514 (3)0.03475 (15)
O10.12136 (12)0.56298 (10)0.26952 (9)0.0472 (5)
O20.09555 (13)0.65440 (11)0.47594 (9)0.0468 (5)
O30.47434 (14)0.55510 (13)0.32058 (11)0.0626 (6)
N10.29155 (15)1.24477 (12)0.38430 (11)0.0434 (6)
N20.13845 (14)0.60248 (12)0.42019 (10)0.0376 (5)
N30.39246 (16)0.57705 (15)0.40555 (12)0.0536 (6)
C10.07464 (15)0.82919 (13)0.38935 (12)0.0322 (5)
C20.21693 (19)0.93183 (16)0.47844 (13)0.0511 (7)
C30.28732 (19)1.06857 (16)0.47796 (14)0.0514 (7)
C40.21467 (16)1.10142 (13)0.38945 (12)0.0344 (6)
C50.07052 (18)1.00124 (15)0.30229 (13)0.0444 (7)
C60.00046 (17)0.86380 (15)0.30181 (13)0.0421 (6)
C70.24788 (17)0.58299 (13)0.35471 (13)0.0355 (6)
C80.2306 (2)0.56568 (16)0.23936 (14)0.0473 (7)
C90.3761 (2)0.55015 (16)0.22381 (16)0.0511 (8)
C100.4452 (3)0.5287 (2)0.12416 (18)0.0766 (11)
O40.51685 (14)0.76882 (14)0.75724 (10)0.0657 (6)
O50.25004 (13)0.72390 (11)0.65907 (9)0.0495 (5)
O60.03442 (11)0.74382 (11)0.75483 (8)0.0431 (4)
O70.13539 (17)0.8490 (2)0.89544 (14)0.0980 (10)
O80.12065 (16)0.7660 (2)1.03000 (12)0.0975 (9)
O90.46550 (16)0.90412 (15)1.25865 (10)0.0717 (7)
O100.66293 (15)0.90569 (15)1.17611 (11)0.0749 (7)
N40.06158 (16)0.80710 (17)0.96062 (13)0.0598 (7)
N50.51466 (16)0.88865 (13)1.17407 (12)0.0488 (6)
C110.31789 (15)0.78551 (13)0.85956 (12)0.0326 (5)
C120.14714 (16)0.77857 (13)0.85292 (12)0.0328 (5)
C130.10840 (16)0.80786 (15)0.95755 (13)0.0389 (6)
C140.22578 (17)0.84024 (15)1.06095 (13)0.0403 (6)
C150.38931 (16)0.84763 (14)1.06263 (12)0.0365 (6)
C160.43735 (16)0.82163 (13)0.96389 (12)0.0356 (6)
C170.36856 (18)0.75728 (15)0.75210 (13)0.0400 (6)
H1a0.1888481.2565720.3422130.088 (4)*
H1b0.3535681.2974120.4468230.088 (4)*
H1c0.3482881.2386270.3382320.088 (4)*
H20.2651210.9087890.5385670.0613*
H2a0.1864990.6300390.502340.068 (5)*
H30.3839071.1384390.5375610.0617*
H50.0202221.0257660.2438150.0533*
H60.0967980.7945380.2424170.0506*
H80.1396150.5650540.1858780.0568*
H10a0.5519470.6085970.1422860.1149*
H10b0.3629550.5225510.0583210.1149*
H10c0.465050.4410640.10770.1149*
H140.1949650.8567421.1281710.0484*
H160.5493530.828330.9673860.0428*
H6a0.1155770.7276990.690230.132 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03683 (17)0.03321 (18)0.0360 (2)0.01370 (13)0.01260 (14)0.01423 (16)
O10.0462 (5)0.0373 (5)0.0422 (7)0.0089 (4)0.0009 (5)0.0087 (5)
O20.0524 (6)0.0510 (6)0.0532 (7)0.0246 (5)0.0309 (5)0.0276 (6)
O30.0518 (6)0.0718 (8)0.0660 (9)0.0313 (6)0.0248 (6)0.0153 (7)
N10.0510 (7)0.0374 (6)0.0502 (9)0.0178 (5)0.0268 (6)0.0202 (6)
N20.0476 (6)0.0413 (6)0.0327 (7)0.0235 (5)0.0154 (5)0.0169 (6)
N30.0495 (7)0.0628 (9)0.0487 (9)0.0283 (6)0.0154 (6)0.0136 (7)
C10.0350 (6)0.0317 (7)0.0316 (8)0.0143 (5)0.0112 (5)0.0120 (6)
C20.0588 (9)0.0433 (9)0.0382 (9)0.0107 (7)0.0053 (7)0.0197 (8)
C30.0520 (9)0.0380 (8)0.0432 (10)0.0029 (7)0.0033 (7)0.0129 (8)
C40.0400 (7)0.0320 (7)0.0393 (9)0.0172 (6)0.0208 (6)0.0153 (6)
C50.0478 (8)0.0446 (8)0.0438 (10)0.0195 (7)0.0064 (7)0.0235 (8)
C60.0392 (7)0.0397 (8)0.0403 (9)0.0118 (6)0.0004 (6)0.0159 (7)
C70.0414 (7)0.0275 (7)0.0374 (9)0.0132 (5)0.0131 (6)0.0113 (6)
C80.0553 (9)0.0506 (9)0.0426 (10)0.0238 (7)0.0203 (7)0.0194 (8)
C90.0605 (9)0.0379 (8)0.0574 (12)0.0169 (7)0.0325 (9)0.0141 (8)
C100.0921 (14)0.0731 (13)0.0819 (15)0.0351 (12)0.0607 (13)0.0275 (13)
O40.0483 (6)0.0981 (10)0.0513 (8)0.0274 (6)0.0254 (5)0.0227 (7)
O50.0578 (6)0.0613 (7)0.0295 (6)0.0241 (5)0.0132 (5)0.0156 (5)
O60.0404 (5)0.0525 (6)0.0322 (6)0.0196 (4)0.0028 (4)0.0136 (5)
O70.0700 (8)0.1711 (16)0.0831 (11)0.0810 (10)0.0212 (8)0.0529 (11)
O80.0537 (7)0.1721 (16)0.0566 (9)0.0299 (9)0.0287 (7)0.0359 (10)
O90.0770 (8)0.0950 (10)0.0308 (7)0.0267 (7)0.0041 (6)0.0211 (7)
O100.0480 (7)0.0991 (10)0.0639 (9)0.0302 (6)0.0064 (6)0.0241 (8)
N40.0396 (7)0.0856 (11)0.0419 (9)0.0249 (7)0.0082 (6)0.0084 (8)
N50.0478 (7)0.0458 (7)0.0405 (9)0.0147 (6)0.0044 (6)0.0138 (7)
C110.0346 (6)0.0281 (6)0.0318 (8)0.0107 (5)0.0078 (5)0.0096 (6)
C120.0351 (6)0.0301 (7)0.0291 (8)0.0112 (5)0.0039 (5)0.0104 (6)
C130.0330 (6)0.0444 (8)0.0356 (9)0.0154 (6)0.0079 (6)0.0108 (7)
C140.0424 (7)0.0454 (8)0.0301 (8)0.0162 (6)0.0100 (6)0.0112 (7)
C150.0370 (7)0.0341 (7)0.0297 (8)0.0107 (5)0.0009 (6)0.0104 (6)
C160.0321 (6)0.0324 (7)0.0393 (9)0.0124 (5)0.0061 (6)0.0120 (6)
C170.0411 (7)0.0393 (8)0.0385 (9)0.0139 (6)0.0130 (6)0.0143 (7)
Geometric parameters (Å, º) top
S1—O11.4228 (9)C9—C101.491 (3)
S1—O21.4264 (13)C10—H10a0.96
S1—N21.6264 (14)C10—H10b0.96
O3—N31.402 (2)C10—H10c0.96
O3—C91.333 (2)O4—C171.223 (2)
N1—C41.468 (2)O5—C171.2827 (18)
N1—H1a1.0015 (14)O5—H6a1.2945 (12)
N1—H1b0.7932 (11)O6—C121.3010 (16)
N1—H1c0.8315 (15)O6—H6a1.1837 (11)
N2—C71.391 (2)O7—N41.211 (3)
N2—H2a0.9703 (12)O8—N41.214 (2)
N3—C71.312 (2)O9—N51.218 (2)
C1—C21.3764 (15)O10—N51.218 (2)
C1—C61.374 (2)N4—C131.460 (2)
C2—C31.374 (2)N5—C151.4638 (19)
C2—H20.93C11—C121.425 (2)
C3—C41.367 (2)C11—C161.3841 (19)
C3—H30.93C11—C171.493 (2)
C4—C51.3668 (15)C12—C131.409 (2)
C5—C61.376 (2)C13—C141.376 (2)
C5—H50.93C14—C151.372 (2)
C6—H60.93C14—H140.93
C7—C81.403 (2)C15—C161.379 (2)
C8—C91.348 (3)C16—H160.93
C8—H80.93
O1—S1—O2120.50 (6)C8—C9—C10133.88 (19)
O1—S1—N2108.78 (6)C9—C10—H10a109.47
O2—S1—N2104.15 (7)C9—C10—H10b109.47
N3—O3—C9108.94 (14)C9—C10—H10c109.47
C4—N1—H1a102.59 (10)H10a—C10—H10b109.47
C4—N1—H1b107.06 (15)H10a—C10—H10c109.47
C4—N1—H1c107.83 (13)H10b—C10—H10c109.47
H1a—N1—H1b124.65 (16)C17—O5—H6a105.28 (11)
H1a—N1—H1c103.41 (14)C12—O6—H6a102.01 (10)
H1b—N1—H1c110.21 (14)O7—N4—O8123.34 (17)
S1—N2—C7124.43 (12)O7—N4—C13118.74 (17)
S1—N2—H2a113.65 (11)O8—N4—C13117.91 (17)
C7—N2—H2a116.39 (12)O9—N5—O10124.03 (14)
O3—N3—C7104.86 (14)O9—N5—C15118.56 (14)
C2—C1—C6120.38 (14)O10—N5—C15117.41 (15)
C1—C2—C3119.57 (16)C12—C11—C16120.99 (14)
C1—C2—H2120.22C12—C11—C17118.93 (12)
C3—C2—H2120.22C16—C11—C17120.07 (13)
C2—C3—C4119.68 (12)O6—C12—C11121.05 (14)
C2—C3—H3120.16O6—C12—C13122.90 (13)
C4—C3—H3120.16C11—C12—C13116.03 (12)
N1—C4—C3120.80 (10)N4—C13—C12120.40 (13)
N1—C4—C5118.09 (15)N4—C13—C14116.57 (15)
C3—C4—C5121.09 (14)C12—C13—C14123.02 (14)
C4—C5—C6119.44 (16)C13—C14—C15118.50 (15)
C4—C5—H5120.28C13—C14—H14120.75
C6—C5—H5120.28C15—C14—H14120.75
C1—C6—C5119.80 (11)N5—C15—C14117.72 (14)
C1—C6—H6120.1N5—C15—C16120.43 (13)
C5—C6—H6120.1C14—C15—C16121.82 (13)
N2—C7—N3117.05 (14)C11—C16—C15119.61 (13)
N2—C7—C8131.01 (14)C11—C16—H16120.19
N3—C7—C8111.93 (15)C15—C16—H16120.19
C7—C8—C9104.20 (16)O4—C17—O5124.29 (16)
C7—C8—H8127.9O4—C17—C11119.59 (13)
C9—C8—H8127.9O5—C17—C11116.11 (13)
O3—C9—C8110.05 (18)O5—H6a—O6156.58 (6)
O3—C9—C10116.07 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···O6i1.0015 (14)2.0683 (10)3.0655 (17)173.55 (7)
N1—H1b···N3ii0.7932 (11)2.2920 (11)3.0393 (15)157.33 (11)
N1—H1c···O4ii0.8315 (15)1.8318 (14)2.663 (2)177.12 (7)
N2—H2a···O50.9703 (12)1.8440 (10)2.7852 (15)162.64 (9)
O5—H6a···O61.2945 (12)1.1837 (11)2.4268 (16)156.58 (6)
O5—H6a···C121.2945 (12)1.9326 (15)2.7490 (19)115.40 (6)
O6—H6a···O51.1837 (11)1.2945 (12)2.4268 (16)156.58 (6)
O6—H6a···C171.1837 (11)2.0485 (15)2.8249 (19)119.42 (7)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.
2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ) top
Crystal data top
C8H13N2O+·C7H3N2O7·H2OZ = 2
Mr = 398.33F(000) = 416
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6691 (3) ÅCell parameters from 6994 reflections
b = 11.3831 (4) Åθ = 2.4–31.6°
c = 12.2900 (5) ŵ = 0.13 mm1
α = 89.727 (2)°T = 100 K
β = 76.771 (2)°Block, yellow
γ = 76.930 (2)°0.52 × 0.13 × 0.10 mm
V = 883.62 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube3042 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.937, Tmax = 0.987k = 1412
17014 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
R[F > 3σ(F)] = 0.038Secondary atom site location: difference Fourier map
wR(F) = 0.086Hydrogen site location: difference Fourier map
S = 1.77H atoms treated by a mixture of independent and constrained refinement
4061 reflectionsWeighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
258 parameters(Δ/σ)max = 0.014
0 restraintsΔρmax = 0.46 e Å3
52 constraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters: 15

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30546 (16)0.17099 (9)0.14963 (8)0.0232 (4)
O20.56653 (17)0.35718 (9)0.01361 (9)0.0316 (4)
O30.48656 (18)0.36691 (9)0.14697 (9)0.0311 (4)
O40.36254 (16)0.00313 (9)0.33889 (8)0.0235 (4)
O50.23753 (16)0.16995 (9)0.24573 (8)0.0255 (4)
O60.07250 (15)0.19153 (8)0.16330 (8)0.0204 (4)
O70.14533 (16)0.02234 (9)0.25238 (8)0.0215 (4)
O80.31889 (16)0.38510 (9)0.41956 (8)0.0221 (4)
N10.30174 (18)0.05930 (11)0.25094 (10)0.0185 (4)
N20.48606 (19)0.31064 (11)0.06125 (10)0.0213 (4)
N30.11898 (17)0.64252 (10)0.66449 (9)0.0147 (4)
N40.23841 (17)0.58259 (10)0.47936 (9)0.0144 (4)
C10.3103 (2)0.11910 (12)0.05547 (11)0.0151 (5)
C20.3895 (2)0.18160 (12)0.05145 (11)0.0154 (5)
C30.3838 (2)0.12419 (13)0.15034 (12)0.0160 (5)
H3a0.4327430.1679180.2186860.0192*
C40.3044 (2)0.00126 (13)0.14615 (11)0.0150 (5)
C50.2281 (2)0.06626 (13)0.04539 (11)0.0148 (5)
H5a0.1769640.1494040.0446560.0177*
C60.2290 (2)0.00871 (12)0.05379 (11)0.0140 (5)
C70.1429 (2)0.08121 (13)0.16123 (11)0.0159 (5)
C80.2598 (2)0.45829 (12)0.49910 (12)0.0158 (5)
C90.2070 (2)0.43367 (13)0.61582 (11)0.0160 (5)
H9a0.2211910.3540140.6363870.0192*
C100.1376 (2)0.52320 (12)0.69587 (11)0.0157 (5)
C110.1694 (2)0.67095 (12)0.55875 (11)0.0141 (5)
C120.1445 (2)0.80006 (12)0.52928 (11)0.0153 (5)
H12a0.1103480.850570.5983710.0184*
C130.0374 (2)0.83589 (13)0.47019 (13)0.0224 (5)
H13a0.0549270.9193180.4526270.0335*
H13b0.1657590.8240460.5184620.0335*
H13c0.0057340.7867630.4024090.0335*
C140.3509 (2)0.82298 (12)0.45745 (12)0.0195 (5)
H14a0.4615270.8005480.4968970.0292*
H14b0.3315150.9070810.4422050.0292*
H14c0.3891040.7756880.388230.0292*
C150.0772 (2)0.50600 (13)0.81821 (12)0.0221 (5)
H15a0.0688940.5452230.8471260.0332*
H15b0.1638950.5403890.8554390.0332*
H15c0.0977930.4212950.8309530.0332*
O1w0.32852 (17)0.60955 (9)0.25340 (8)0.0272 (4)
H1n30.0614150.7068780.7226090.037 (5)*
H1n40.2704670.6022340.4067040.034 (5)*
H2w10.3397290.6751240.2107790.053 (6)*
H1w10.3816110.5399110.209320.055 (6)*
H70.2113640.0637540.2203310.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (6)0.0178 (6)0.0185 (6)0.0038 (5)0.0018 (5)0.0031 (4)
O20.0431 (7)0.0219 (6)0.0232 (6)0.0045 (5)0.0063 (5)0.0044 (5)
O30.0489 (7)0.0181 (6)0.0229 (6)0.0036 (5)0.0053 (5)0.0086 (5)
O40.0291 (6)0.0274 (6)0.0138 (6)0.0083 (5)0.0030 (5)0.0009 (5)
O50.0347 (6)0.0178 (6)0.0235 (6)0.0045 (5)0.0072 (5)0.0058 (5)
O60.0244 (6)0.0142 (6)0.0187 (6)0.0013 (4)0.0004 (4)0.0029 (4)
O70.0284 (6)0.0175 (6)0.0140 (5)0.0009 (5)0.0003 (4)0.0003 (4)
O80.0321 (6)0.0137 (5)0.0176 (6)0.0026 (5)0.0027 (5)0.0025 (4)
N10.0182 (6)0.0202 (7)0.0186 (7)0.0071 (6)0.0047 (5)0.0034 (6)
N20.0240 (7)0.0161 (7)0.0198 (7)0.0035 (6)0.0019 (6)0.0001 (6)
N30.0168 (6)0.0123 (6)0.0136 (6)0.0024 (5)0.0017 (5)0.0006 (5)
N40.0172 (6)0.0117 (6)0.0129 (6)0.0026 (5)0.0014 (5)0.0011 (5)
C10.0133 (7)0.0177 (8)0.0148 (7)0.0064 (6)0.0014 (6)0.0022 (6)
C20.0158 (7)0.0118 (7)0.0176 (8)0.0030 (6)0.0017 (6)0.0008 (6)
C30.0159 (7)0.0184 (8)0.0140 (8)0.0070 (6)0.0012 (6)0.0029 (6)
C40.0146 (7)0.0196 (8)0.0125 (7)0.0073 (6)0.0030 (6)0.0033 (6)
C50.0121 (7)0.0137 (7)0.0188 (8)0.0046 (6)0.0026 (6)0.0007 (6)
C60.0113 (7)0.0154 (7)0.0154 (7)0.0048 (6)0.0015 (6)0.0005 (6)
C70.0130 (7)0.0171 (8)0.0170 (8)0.0048 (6)0.0008 (6)0.0000 (6)
C80.0145 (7)0.0132 (7)0.0193 (8)0.0022 (6)0.0036 (6)0.0001 (6)
C90.0177 (7)0.0110 (7)0.0187 (8)0.0031 (6)0.0036 (6)0.0032 (6)
C100.0137 (7)0.0154 (8)0.0182 (8)0.0033 (6)0.0041 (6)0.0029 (6)
C110.0106 (7)0.0152 (7)0.0161 (8)0.0028 (6)0.0026 (6)0.0012 (6)
C120.0178 (7)0.0114 (7)0.0155 (7)0.0034 (6)0.0014 (6)0.0007 (6)
C130.0218 (8)0.0140 (8)0.0321 (9)0.0033 (6)0.0089 (7)0.0052 (7)
C140.0210 (8)0.0141 (8)0.0218 (8)0.0048 (6)0.0012 (6)0.0004 (6)
C150.0269 (8)0.0194 (8)0.0188 (8)0.0047 (7)0.0034 (6)0.0019 (6)
O1w0.0471 (7)0.0134 (6)0.0163 (6)0.0043 (5)0.0005 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C11.2939 (17)C4—C51.3881 (18)
O1—H71.4329 (9)C5—H5a0.93
O2—N21.2279 (17)C5—C61.3816 (19)
O3—N21.2346 (17)C6—C71.4844 (18)
O4—N11.2304 (15)C8—C91.439 (2)
O5—N11.2321 (15)C9—H9a0.93
O6—C71.2355 (16)C9—C101.3449 (19)
O7—C71.3040 (17)C10—C151.4889 (19)
O7—H71.0191 (9)C11—C121.4936 (19)
O8—C81.2198 (17)C12—H12a0.98
N1—C41.4597 (18)C12—C131.531 (2)
N2—C21.4576 (17)C12—C141.5318 (19)
N3—C101.3963 (18)C13—H13a0.96
N3—C111.3236 (17)C13—H13b0.96
N3—H1n30.9729 (11)C13—H13c0.96
N4—C81.4152 (18)C14—H14a0.96
N4—C111.3303 (17)C14—H14b0.96
N4—H1n40.9085 (11)C14—H14c0.96
C1—C21.4259 (18)C15—H15a0.96
C1—C61.4349 (19)C15—H15b0.96
C2—C31.381 (2)C15—H15c0.96
C3—H3a0.93O1w—H2w10.9169 (10)
C3—C41.3763 (19)O1w—H1w10.9146 (10)
C1—O1—H796.54 (8)N4—C8—C9113.60 (12)
C7—O7—H7101.27 (9)C8—C9—H9a119.24
O4—N1—O5124.04 (12)C8—C9—C10121.51 (13)
O4—N1—C4118.12 (11)H9a—C9—C10119.24
O5—N1—C4117.84 (11)N3—C10—C9118.95 (12)
O2—N2—O3123.42 (12)N3—C10—C15116.00 (11)
O2—N2—C2119.16 (12)C9—C10—C15125.06 (13)
O3—N2—C2117.39 (12)N3—C11—N4118.76 (12)
C10—N3—C11122.45 (11)N3—C11—C12120.45 (12)
C10—N3—H1n3118.37 (11)N4—C11—C12120.78 (12)
C11—N3—H1n3119.14 (11)C11—C12—H12a108.71
C8—N4—C11124.69 (12)C11—C12—C13109.61 (13)
C8—N4—H1n4116.55 (11)C11—C12—C14111.42 (10)
C11—N4—H1n4118.72 (12)H12a—C12—C13108.78
O1—C1—C2124.06 (12)H12a—C12—C14106.87
O1—C1—C6120.40 (11)C13—C12—C14111.36 (12)
C2—C1—C6115.53 (12)C12—C13—H13a109.47
N2—C2—C1120.85 (12)C12—C13—H13b109.47
N2—C2—C3116.56 (11)C12—C13—H13c109.47
C1—C2—C3122.58 (12)H13a—C13—H13b109.47
C2—C3—H3a120.52H13a—C13—H13c109.47
C2—C3—C4118.97 (12)H13b—C13—H13c109.47
H3a—C3—C4120.52C12—C14—H14a109.47
N1—C4—C3118.77 (12)C12—C14—H14b109.47
N1—C4—C5119.38 (12)C12—C14—H14c109.47
C3—C4—C5121.85 (13)H14a—C14—H14b109.47
C4—C5—H5a120.33H14a—C14—H14c109.47
C4—C5—C6119.34 (12)H14b—C14—H14c109.47
H5a—C5—C6120.33C10—C15—H15a109.47
C1—C6—C5121.71 (12)C10—C15—H15b109.47
C1—C6—C7119.30 (12)C10—C15—H15c109.47
C5—C6—C7118.99 (12)H15a—C15—H15b109.47
O6—C7—O7122.20 (12)H15a—C15—H15c109.47
O6—C7—C6121.26 (12)H15b—C15—H15c109.47
O7—C7—C6116.54 (12)H2w1—O1w—H1w1110.00 (10)
O8—C8—N4119.14 (12)O1—H7—O7165.94 (7)
O8—C8—C9127.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12a···O7i0.982.423.3068 (15)151
N3—H1n3···O6i0.9729 (11)1.7539 (9)2.7182 (14)170.48 (8)
N4—H1n4···O1w0.9085 (11)1.8401 (10)2.7348 (15)167.76 (8)
O1w—H2w1···O1ii0.9169 (10)1.8895 (10)2.7886 (14)166.21 (6)
O1w—H1w1···O3iii0.9146 (10)2.0399 (10)2.9352 (14)165.84 (7)
O7—H7···O11.0191 (9)1.4329 (9)2.4340 (13)165.94 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z.
1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR) top
Crystal data top
C9H17N2+·C7H3N2O7F(000) = 800
Mr = 380.35Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabcCell parameters from 1891 reflections
a = 6.1537 (3) Åθ = 3.5–26.6°
b = 19.1541 (14) ŵ = 0.12 mm1
c = 14.5527 (11) ÅT = 200 K
β = 98.343 (6)°Needle, yellow
V = 1697.2 (2) Å30.30 × 0.13 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3339 independent reflections
Graphite monochromator1976 reflections with I > 3σ(I)
Detector resolution: 16.067 pixels mm-1Rint = 0.034
ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 77
Tmin = 0.920, Tmax = 0.990k = 2323
7800 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.33(Δ/σ)max = 0.005
3339 reflectionsΔρmax = 0.36 e Å3
268 parametersΔρmin = 0.24 e Å3
2 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
98 constraintsExtinction coefficient: 2200 (700)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Number of fixed parameters : 10

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O2b0.8418 (3)0.56169 (11)0.78950 (14)0.0440 (8)0.727 (4)
H61b0.8521070.5608190.767070.0359*0.273 (4)
O21b0.7735 (8)0.6569 (3)0.4912 (4)0.048 (2)0.273 (4)
H6b0.8057120.6449670.5072070.0328*0.727 (4)
O11b0.5083 (2)0.68884 (8)0.59278 (11)0.0444 (6)
O12b0.5447 (2)0.64534 (8)0.73586 (12)0.0524 (7)
O31b1.1108 (3)0.45706 (10)0.81717 (14)0.0829 (9)
O32b1.4073 (3)0.47245 (10)0.75770 (13)0.0775 (8)
O51b1.3288 (3)0.55869 (9)0.44602 (12)0.0603 (7)
O52b1.0707 (3)0.63212 (10)0.39870 (12)0.0680 (8)
N3b1.2111 (3)0.48284 (10)0.76049 (14)0.0472 (8)
N5b1.1654 (3)0.59180 (10)0.45701 (14)0.0418 (7)
C1b0.8002 (3)0.60956 (10)0.63903 (15)0.0264 (7)
C2b0.9062 (3)0.56604 (11)0.70954 (15)0.0299 (7)
C3b1.0952 (3)0.53063 (10)0.69140 (15)0.0309 (7)
C4b1.1814 (3)0.53946 (10)0.61042 (15)0.0309 (7)
C5b1.0736 (3)0.58234 (10)0.54290 (14)0.0271 (7)
C6b0.8810 (3)0.61681 (10)0.55538 (15)0.0273 (7)
C11b0.6030 (3)0.65080 (11)0.65583 (18)0.0351 (8)
N1a0.1521 (2)0.82026 (8)0.63826 (12)0.0293 (6)
N8a0.1721 (2)0.76019 (9)0.67283 (12)0.0373 (7)
C2a0.3261 (3)0.85089 (11)0.57022 (15)0.0370 (8)
C3a0.2602 (3)0.91805 (11)0.52679 (15)0.0401 (8)
C4a0.1188 (3)0.90791 (11)0.45061 (16)0.0417 (8)
C5a0.0933 (3)0.86805 (11)0.48032 (14)0.0401 (8)
C6a0.0611 (3)0.79367 (11)0.51423 (14)0.0344 (8)
C7a0.0226 (3)0.79087 (10)0.61288 (14)0.0268 (7)
C9a0.1394 (8)0.7480 (3)0.7694 (4)0.0377 (17)0.687 (4)
C10a0.0234 (5)0.8112 (2)0.8006 (2)0.0388 (12)0.687 (4)
C11a0.1865 (3)0.82334 (13)0.73606 (16)0.0375 (8)
C13a0.192 (2)0.7733 (6)0.7752 (10)0.0377 (17)0.313 (4)
C12a0.0453 (12)0.7700 (5)0.7962 (6)0.0388 (12)0.313 (4)
H4b1.3131230.5163930.6011440.0371*
H8a0.3040170.7430290.6527060.073 (8)*
H10a0.1195150.8525930.8003330.0466*0.686
H21a0.4583930.8592490.6001030.0444*
H22a0.3739110.8163720.5207730.0444*
H31a0.3935230.9448050.5020410.0481*
H32a0.1825750.9486580.5757160.0481*
H41a0.0845640.953950.4252850.0501*
H42a0.205390.8839820.3971030.0501*
H51a0.1805060.8667590.4282860.0482*
H52a0.1868380.8945380.529430.0482*
H61a0.1913560.7651120.5065610.0413*
H62a0.0639470.771620.4741770.0413*
H91a0.0461760.7061490.7725040.0452*0.687 (4)
H92a0.2838330.742650.8087120.0452*0.687 (4)
H11a0.0098730.8034390.8643510.0466*0.686
H12a0.318 (2)0.7965 (9)0.7425 (13)0.045*
H13a0.230 (3)0.8711 (6)0.7485 (13)0.045*
H14a0.1050820.72260.7824360.0466*0.313 (4)
H15a0.0473110.7807680.8625980.0466*0.313 (4)
H16a0.278930.7355190.8091310.0452*0.313 (4)
H17a0.2516970.8206860.7892370.0452*0.313 (4)
H21b0.6218370.6780520.5386280.082 (11)*0.273 (4)
H2b0.7028960.5982910.7744750.082 (11)*0.727 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2b0.0481 (12)0.0570 (16)0.0296 (15)0.0087 (11)0.0152 (10)0.0091 (11)
O21b0.045 (3)0.053 (4)0.046 (4)0.006 (3)0.006 (3)0.023 (3)
O11b0.0369 (8)0.0391 (10)0.0583 (12)0.0136 (7)0.0102 (8)0.0073 (9)
O12b0.0488 (9)0.0643 (12)0.0488 (12)0.0091 (8)0.0232 (8)0.0030 (9)
O31b0.0796 (13)0.0853 (16)0.0753 (16)0.0256 (11)0.0175 (11)0.0533 (13)
O32b0.0728 (12)0.0903 (16)0.0642 (14)0.0483 (11)0.0074 (10)0.0050 (11)
O51b0.0542 (10)0.0650 (12)0.0694 (13)0.0077 (9)0.0350 (9)0.0110 (10)
O52b0.0926 (13)0.0722 (14)0.0455 (12)0.0171 (11)0.0314 (10)0.0241 (10)
N3b0.0575 (13)0.0347 (13)0.0432 (15)0.0005 (11)0.0137 (11)0.0004 (10)
N5b0.0476 (11)0.0400 (13)0.0414 (13)0.0046 (10)0.0193 (10)0.0067 (10)
C1b0.0265 (10)0.0220 (11)0.0303 (13)0.0029 (9)0.0024 (9)0.0023 (10)
C2b0.0337 (11)0.0267 (12)0.0294 (14)0.0061 (10)0.0050 (10)0.0023 (10)
C3b0.0361 (11)0.0233 (12)0.0304 (14)0.0002 (9)0.0053 (10)0.0025 (10)
C4b0.0257 (10)0.0240 (12)0.0413 (15)0.0013 (9)0.0005 (10)0.0053 (11)
C5b0.0295 (10)0.0254 (12)0.0274 (13)0.0052 (9)0.0073 (9)0.0017 (10)
C6b0.0298 (10)0.0218 (12)0.0290 (13)0.0028 (9)0.0003 (9)0.0007 (10)
C11b0.0297 (11)0.0296 (13)0.0464 (16)0.0042 (10)0.0070 (11)0.0061 (12)
N1a0.0249 (8)0.0327 (11)0.0305 (11)0.0026 (8)0.0041 (8)0.0000 (9)
N8a0.0332 (9)0.0493 (12)0.0291 (12)0.0137 (9)0.0037 (8)0.0056 (9)
C2a0.0243 (10)0.0400 (14)0.0451 (15)0.0063 (10)0.0002 (10)0.0020 (12)
C3a0.0374 (12)0.0331 (14)0.0465 (16)0.0071 (10)0.0044 (11)0.0000 (11)
C4a0.0450 (12)0.0397 (15)0.0370 (15)0.0028 (11)0.0060 (11)0.0087 (11)
C5a0.0368 (11)0.0526 (16)0.0319 (14)0.0008 (11)0.0079 (10)0.0091 (12)
C6a0.0355 (11)0.0411 (15)0.0262 (13)0.0079 (10)0.0032 (9)0.0057 (11)
C7a0.0283 (10)0.0224 (12)0.0291 (13)0.0012 (9)0.0025 (9)0.0030 (10)
C9a0.040 (3)0.041 (4)0.0304 (18)0.001 (2)0.001 (2)0.004 (3)
C10a0.049 (2)0.042 (2)0.0270 (17)0.0043 (18)0.0083 (15)0.0029 (19)
C11a0.0367 (12)0.0426 (15)0.0364 (15)0.0003 (11)0.0161 (11)0.0056 (12)
C13a0.040 (3)0.041 (4)0.0304 (18)0.001 (2)0.001 (2)0.004 (3)
C12a0.049 (2)0.042 (2)0.0270 (17)0.0043 (18)0.0083 (15)0.0029 (19)
Geometric parameters (Å, º) top
O2b—C2b1.285 (3)C2a—H22a0.99
O2b—H2b1.103 (2)C3a—C4a1.518 (3)
H61b—C2b0.95C3a—H31a0.99
O21b—C6b1.311 (6)C3a—H32a0.99
O21b—H21b1.303 (6)C4a—C5a1.520 (3)
H6b—C6b0.95C4a—H41a0.99
O11b—C11b1.248 (3)C4a—H42a0.99
O11b—H21b1.1454 (16)C5a—C6a1.530 (3)
O12b—C11b1.272 (3)C5a—H51a0.99
O12b—H2b1.3846 (15)C5a—H52a0.99
O31b—N3b1.205 (3)C6a—C7a1.490 (3)
O32b—N3b1.230 (3)C6a—H61a0.99
O51b—N5b1.219 (3)C6a—H62a0.99
O52b—N5b1.230 (3)C9a—C10a1.508 (6)
N3b—C3b1.466 (3)C9a—C13a0.581 (13)
N5b—C5b1.456 (3)C9a—C12a1.323 (10)
C1b—C2b1.407 (3)C9a—H91a0.99
C1b—C6b1.387 (3)C9a—H92a0.99
C1b—C11b1.497 (3)C9a—H16a0.9922
C2b—C3b1.404 (3)C10a—C11a1.501 (4)
C3b—C4b1.371 (3)C10a—C13a1.358 (14)
C4b—C5b1.375 (3)C10a—H10a0.99
C4b—H4b0.95C10a—H11a0.99
C5b—C6b1.392 (3)C10a—H15a1.207
N1a—C2a1.471 (2)C11a—C12a1.530 (8)
N1a—C7a1.313 (2)C11a—H12a0.977 (15)
N1a—C11a1.470 (3)C11a—H13a0.978 (13)
N8a—C7a1.311 (2)C13a—C12a1.534 (16)
N8a—C9a1.467 (6)C13a—H92a0.9083
N8a—C13a1.498 (15)C13a—H16a0.99
N8a—H8a0.9604 (17)C13a—H17a0.99
C2a—C3a1.514 (3)C12a—H14a0.99
C2a—H21a0.99C12a—H15a0.99
H6b—O21b—H21b102.88N8a—C9a—C13a81.6 (16)
C11b—O12b—H2b98.61 (14)N8a—C9a—C12a118.3 (5)
O31b—N3b—O32b124.0 (2)N8a—C9a—H91a109.47
O31b—N3b—C3b118.6 (2)N8a—C9a—H92a109.47
O32b—N3b—C3b117.4 (2)N8a—C9a—H14a114.78
O51b—N5b—O52b123.6 (2)N8a—C9a—H16a111.65
O51b—N5b—C5b118.57 (18)C10a—C9a—H91a109.47
O52b—N5b—C5b117.83 (18)C10a—C9a—H92a109.47
C2b—C1b—C6b120.82 (17)C13a—C9a—C12a99.9 (15)
C2b—C1b—C11b119.6 (2)C13a—C9a—H91a168.74
C6b—C1b—C11b119.51 (18)C13a—C9a—H14a137.56
O2b—C2b—C1b121.84 (19)C12a—C9a—H92a126.91
O2b—C2b—C3b120.77 (19)C12a—C9a—H16a127.82
H61b—C2b—C1b121.37H91a—C9a—H92a111.59
H61b—C2b—C3b121.37H14a—C9a—H16a126.91
C1b—C2b—C3b117.3 (2)H14a—C9a—H17a129.78
N3b—C3b—C2b120.4 (2)H16a—C9a—H17a77.55
N3b—C3b—C4b117.12 (18)C9a—C10a—C11a109.8 (3)
C2b—C3b—C4b122.44 (18)C11a—C10a—C13a122.2 (6)
C3b—C4b—C5b118.75 (18)C11a—C10a—H10a109.47
C3b—C4b—H4b120.62C11a—C10a—H11a109.47
C5b—C4b—H4b120.62C11a—C10a—H17a132.02
N5b—C5b—C4b118.74 (17)C13a—C10a—H11a116.43
N5b—C5b—C6b119.80 (17)C13a—C10a—H15a108.54
C4b—C5b—C6b121.5 (2)C12a—C10a—H17a124.07
O21b—C6b—C1b118.4 (3)H10a—C10a—H11a109.16
O21b—C6b—C5b122.4 (3)H10a—C10a—H15a132.06
H6b—C6b—C1b120.41H11a—C10a—H17a117.48
H6b—C6b—C5b120.41H15a—C10a—H17a127.34
C1b—C6b—C5b119.17 (18)N1a—C11a—C10a111.6 (2)
O11b—C11b—O12b123.9 (2)N1a—C11a—C12a112.2 (4)
O11b—C11b—C1b119.4 (2)N1a—C11a—H12a108.1 (11)
O12b—C11b—C1b116.70 (19)N1a—C11a—H13a107.3 (12)
C2a—N1a—C7a121.83 (17)C10a—C11a—H12a120.7 (10)
C2a—N1a—C11a116.29 (16)C10a—C11a—H13a105.2 (10)
C7a—N1a—C11a121.87 (16)C12a—C11a—H13a131.8 (11)
C7a—N8a—C9a121.9 (2)H12a—C11a—H13a102.9 (15)
C7a—N8a—C13a122.3 (5)N8a—C13a—C9a75.8 (15)
C7a—N8a—H8a119.53 (19)N8a—C13a—C10a114.0 (9)
C9a—N8a—C13a22.6 (5)N8a—C13a—C12a104.5 (8)
C9a—N8a—H8a118.5 (2)N8a—C13a—H10a113.12
C13a—N8a—H8a114.3 (5)N8a—C13a—H92a112.32
N1a—C2a—C3a114.01 (15)N8a—C13a—H16a109.47
N1a—C2a—H21a109.47N8a—C13a—H17a109.47
N1a—C2a—H22a109.47C9a—C13a—H10a130.08
C3a—C2a—H21a109.47C9a—C13a—H17a167.66
C3a—C2a—H22a109.47C10a—C13a—H92a129.79
H21a—C2a—H22a104.52C10a—C13a—H16a129.35
C2a—C3a—C4a114.39 (18)C12a—C13a—H92a113.84
C2a—C3a—H31a109.47C12a—C13a—H16a109.47
C2a—C3a—H32a109.47C12a—C13a—H17a109.47
C4a—C3a—H31a109.47H10a—C13a—H91a126.53
C4a—C3a—H32a109.47H10a—C13a—H92a130.35
H31a—C3a—H32a104.05H10a—C13a—H16a135.32
C3a—C4a—C5a114.58 (18)H92a—C13a—H17a107.21
C3a—C4a—H41a109.47H16a—C13a—H17a114.05
C3a—C4a—H42a109.47C9a—C12a—C11a119.1 (6)
C5a—C4a—H41a109.47C9a—C12a—H11a111.16
C5a—C4a—H42a109.47C9a—C12a—H15a119.13
H41a—C4a—H42a103.83C10a—C12a—H91a125.59
C4a—C5a—C6a114.44 (16)C10a—C12a—H14a169.66
C4a—C5a—H51a109.47C11a—C12a—C13a109.6 (7)
C4a—C5a—H52a109.47C11a—C12a—H91a130.75
C6a—C5a—H51a109.47C11a—C12a—H14a109.47
C6a—C5a—H52a109.47C11a—C12a—H15a109.47
H51a—C5a—H52a104C13a—C12a—H14a109.47
C5a—C6a—C7a112.99 (17)C13a—C12a—H15a109.47
C5a—C6a—H61a109.47H91a—C12a—H11a130.35
C5a—C6a—H62a109.47H91a—C12a—H15a118.71
C7a—C6a—H61a109.47H11a—C12a—H14a133.54
C7a—C6a—H62a109.47H14a—C12a—H15a109.31
H61a—C6a—H62a105.71O21b—H21b—O11b167.3 (3)
N1a—C7a—N8a121.93 (19)H6b—H21b—O11b152.98
N1a—C7a—C6a120.45 (16)O2b—H2b—O12b166.81 (13)
N8a—C7a—C6a117.59 (17)H61b—H2b—O12b150.18
N8a—C9a—C10a107.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8a—H8a···O11b0.9604 (17)1.9329 (15)2.864 (2)162.83 (11)
C10a—H10a···O32bi0.992.443.248 (4)138
C2a—H21a···O31bii0.992.483.275 (3)137
C6a—H62a···O21biii0.992.443.152 (6)128
C10a—H11a···O21biv0.992.473.033 (7)116
O21b—H21b···O11b1.303 (6)1.1454 (16)2.433 (6)167.3 (3)
O11b—H21b···O21b1.1454 (16)1.303 (6)2.433 (6)167.3 (3)
O12b—H2b···O2b1.3846 (15)1.103 (2)2.471 (2)166.81 (13)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x1, y, z; (iv) x1/2, y+3/2, z+1/2.
4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE) top
Crystal data top
C26H29N2+·C7H3N2O7F(000) = 1256
Mr = 596.63Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.5648 (3) ÅCell parameters from 9909 reflections
b = 12.9374 (3) Åθ = 2.3–28.3°
c = 16.1619 (3) ŵ = 0.10 mm1
β = 103.900 (1)°T = 200 K
V = 2956.22 (11) Å3Block, yellow
Z = 40.51 × 0.26 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
7344 independent reflections
Radiation source: fine-focus sealed tube5724 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.932, Tmax = 1.000k = 1717
29552 measured reflectionsl = 2115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.054Hydrogen site location: difference Fourier map
wR(F) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.80Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0063999998I2)
7344 reflections(Δ/σ)max = 0.044
399 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.28 e Å3
120 constraints
Special details top

Refinement. Number of fixed parameters 6

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25627 (8)0.71181 (9)0.31343 (7)0.0246 (3)
H710.301280.6694740.3499790.035 (4)*
N20.10023 (8)0.56683 (9)0.26575 (7)0.0233 (3)
C10.29865 (11)0.95151 (12)0.41661 (10)0.0334 (5)
H1a0.2458980.9809320.3774220.0401*
C20.33463 (11)0.86695 (12)0.39170 (10)0.0322 (5)
H20.3867650.8354780.4302020.0386*
C30.29839 (12)0.81754 (12)0.30656 (10)0.0333 (5)
H3a0.3505210.8113910.277250.04*
H3b0.2500480.8627410.2705140.04*
C40.17112 (10)0.71678 (11)0.34935 (9)0.0281 (4)
H4a0.1232410.7627040.3135660.0337*
H4b0.1890390.7458970.407670.0337*
C50.12943 (10)0.61031 (11)0.35226 (9)0.0271 (4)
H5a0.073870.6148050.3773370.0326*
H5b0.1771610.5645220.3883860.0326*
C60.18571 (10)0.55563 (11)0.23345 (9)0.0262 (4)
H6a0.2311710.5096060.2718160.0315*
H6b0.1689310.52330.1762720.0315*
C70.23149 (10)0.65944 (12)0.22789 (9)0.0282 (4)
H7a0.2895370.6498130.2070680.0338*
H7b0.1876390.7038270.1864930.0338*
C80.05326 (9)0.46528 (10)0.26756 (8)0.0230 (4)
H80.0992820.4172660.3045420.0276*
C110.33145 (11)1.00535 (12)0.49876 (10)0.0326 (5)
C120.41578 (13)0.97941 (14)0.55685 (10)0.0391 (5)
H120.4549270.9265170.5432050.047*
C130.44278 (15)1.03053 (17)0.63457 (11)0.0502 (6)
H130.4997991.0116580.6740940.0603*
C140.38752 (17)1.10810 (17)0.65451 (12)0.0554 (7)
H140.406881.1431580.7074950.0665*
C150.30389 (15)1.13552 (16)0.59798 (13)0.0516 (7)
H150.2658491.189310.611970.0619*
C160.27570 (13)1.08400 (13)0.52053 (11)0.0397 (5)
H160.2178821.1024360.4819490.0476*
C210.03166 (9)0.47504 (10)0.30647 (8)0.0240 (4)
C220.04272 (11)0.40385 (12)0.36763 (10)0.0315 (5)
H220.0032760.3511980.3853150.0378*
C230.12077 (12)0.40899 (13)0.40333 (11)0.0388 (5)
H230.1277450.3598260.4450560.0466*
C240.18805 (12)0.48544 (13)0.37818 (11)0.0385 (5)
H240.2416770.4883650.4019110.0461*
C250.17687 (11)0.55719 (12)0.31859 (11)0.0351 (5)
H250.2227110.6101740.3017380.0421*
C260.09910 (10)0.55304 (11)0.28271 (9)0.0286 (4)
H260.0918990.6033960.2419580.0344*
C310.02520 (10)0.41880 (11)0.17810 (9)0.0248 (4)
C320.06690 (11)0.32720 (12)0.16027 (10)0.0331 (5)
H320.1124960.29380.2040430.0397*
C330.04254 (13)0.28416 (13)0.07918 (11)0.0392 (5)
H330.0718420.2218930.0677980.047*
C340.02351 (12)0.33108 (13)0.01557 (10)0.0379 (5)
H340.0396380.3018860.0399790.0455*
C350.06672 (12)0.42142 (14)0.03267 (10)0.0385 (5)
H350.1137090.4532380.010920.0461*
C360.04162 (11)0.46550 (12)0.11316 (10)0.0321 (5)
H360.0704830.5283110.1239290.0386*
O10.63327 (8)0.37352 (10)0.53505 (8)0.0392 (4)
O20.58197 (10)0.44006 (14)0.67133 (9)0.0614 (6)
O30.43608 (10)0.48129 (12)0.65684 (9)0.0549 (5)
O40.19464 (9)0.32143 (13)0.44743 (10)0.0569 (5)
O50.22764 (11)0.24248 (13)0.34091 (10)0.0631 (6)
O60.54745 (10)0.23529 (12)0.30214 (8)0.0518 (5)
O70.66627 (9)0.28940 (12)0.40564 (9)0.0507 (5)
N30.49861 (10)0.43835 (11)0.63197 (9)0.0379 (4)
N40.25133 (10)0.29121 (12)0.40756 (10)0.0428 (5)
C90.57563 (13)0.27360 (13)0.37128 (12)0.0398 (6)
C410.54458 (10)0.35627 (11)0.50735 (10)0.0298 (4)
C420.50987 (11)0.30564 (12)0.42622 (10)0.0314 (5)
C430.41587 (11)0.28489 (12)0.39522 (10)0.0329 (5)
H430.3950870.2499010.3423480.0394*
C440.35106 (10)0.31453 (12)0.44039 (10)0.0313 (4)
C450.37850 (10)0.36477 (12)0.51759 (10)0.0305 (4)
H450.3329010.385430.5475960.0366*
C460.47336 (11)0.38456 (11)0.55054 (9)0.0290 (4)
H70.6768410.3216830.4580630.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0221 (6)0.0282 (6)0.0236 (5)0.0039 (4)0.0055 (4)0.0028 (4)
N20.0209 (5)0.0268 (6)0.0227 (5)0.0035 (4)0.0063 (4)0.0032 (4)
C10.0300 (8)0.0358 (8)0.0314 (7)0.0037 (6)0.0017 (6)0.0003 (6)
C20.0301 (7)0.0308 (7)0.0334 (7)0.0076 (6)0.0033 (6)0.0004 (6)
C30.0391 (8)0.0304 (7)0.0318 (7)0.0113 (6)0.0111 (6)0.0022 (6)
C40.0216 (6)0.0331 (7)0.0302 (7)0.0026 (5)0.0075 (5)0.0076 (5)
C50.0248 (7)0.0337 (7)0.0241 (6)0.0051 (5)0.0082 (5)0.0053 (5)
C60.0232 (6)0.0304 (7)0.0265 (6)0.0032 (5)0.0088 (5)0.0047 (5)
C70.0285 (7)0.0344 (7)0.0223 (6)0.0060 (6)0.0073 (5)0.0045 (5)
C80.0197 (6)0.0247 (6)0.0245 (6)0.0003 (5)0.0054 (5)0.0010 (5)
C110.0357 (8)0.0306 (7)0.0307 (7)0.0080 (6)0.0064 (6)0.0006 (6)
C120.0398 (9)0.0415 (9)0.0337 (8)0.0067 (7)0.0042 (7)0.0007 (7)
C130.0523 (11)0.0604 (12)0.0319 (8)0.0142 (9)0.0018 (8)0.0005 (8)
C140.0691 (14)0.0629 (13)0.0354 (9)0.0230 (10)0.0149 (9)0.0159 (8)
C150.0584 (12)0.0455 (10)0.0562 (11)0.0106 (9)0.0242 (10)0.0151 (8)
C160.0392 (9)0.0350 (8)0.0444 (9)0.0049 (7)0.0090 (7)0.0039 (7)
C210.0213 (6)0.0250 (6)0.0255 (6)0.0020 (5)0.0050 (5)0.0024 (5)
C220.0311 (7)0.0329 (8)0.0325 (7)0.0030 (6)0.0114 (6)0.0046 (6)
C230.0426 (9)0.0390 (9)0.0413 (9)0.0005 (7)0.0228 (7)0.0058 (7)
C240.0344 (8)0.0391 (8)0.0493 (9)0.0028 (6)0.0245 (7)0.0078 (7)
C250.0278 (7)0.0336 (8)0.0447 (9)0.0044 (6)0.0104 (6)0.0058 (6)
C260.0269 (7)0.0271 (7)0.0323 (7)0.0015 (5)0.0079 (6)0.0002 (5)
C310.0226 (6)0.0253 (6)0.0282 (6)0.0049 (5)0.0093 (5)0.0016 (5)
C320.0327 (8)0.0296 (7)0.0367 (8)0.0017 (6)0.0076 (6)0.0021 (6)
C330.0437 (9)0.0299 (8)0.0463 (9)0.0014 (7)0.0154 (8)0.0097 (7)
C340.0452 (9)0.0381 (9)0.0313 (8)0.0104 (7)0.0109 (7)0.0090 (6)
C350.0387 (9)0.0451 (9)0.0283 (7)0.0015 (7)0.0017 (7)0.0024 (7)
C360.0316 (8)0.0337 (8)0.0310 (7)0.0020 (6)0.0073 (6)0.0020 (6)
O10.0242 (6)0.0466 (7)0.0449 (6)0.0022 (5)0.0046 (5)0.0065 (5)
O20.0364 (7)0.0954 (12)0.0457 (8)0.0021 (7)0.0029 (6)0.0243 (7)
O30.0459 (8)0.0698 (9)0.0453 (7)0.0153 (7)0.0038 (6)0.0171 (6)
O40.0239 (6)0.0732 (10)0.0713 (9)0.0049 (6)0.0067 (6)0.0008 (8)
O50.0465 (8)0.0774 (11)0.0531 (8)0.0103 (7)0.0120 (7)0.0150 (7)
O60.0595 (9)0.0612 (9)0.0400 (7)0.0066 (7)0.0226 (6)0.0026 (6)
O70.0391 (7)0.0619 (9)0.0567 (8)0.0007 (6)0.0223 (6)0.0035 (6)
N30.0355 (7)0.0405 (8)0.0347 (7)0.0038 (6)0.0023 (6)0.0023 (6)
N40.0303 (7)0.0466 (8)0.0442 (8)0.0012 (6)0.0056 (6)0.0040 (6)
C90.0393 (9)0.0352 (8)0.0491 (10)0.0046 (7)0.0190 (8)0.0095 (7)
C410.0232 (7)0.0277 (7)0.0368 (7)0.0028 (5)0.0038 (6)0.0099 (6)
C420.0330 (8)0.0293 (7)0.0345 (7)0.0049 (6)0.0133 (6)0.0074 (6)
C430.0370 (8)0.0322 (8)0.0284 (7)0.0011 (6)0.0059 (6)0.0030 (6)
C440.0238 (7)0.0334 (8)0.0333 (7)0.0012 (5)0.0000 (6)0.0037 (6)
C450.0255 (7)0.0325 (7)0.0333 (7)0.0060 (6)0.0067 (6)0.0030 (6)
C460.0282 (7)0.0282 (7)0.0282 (7)0.0018 (5)0.0017 (6)0.0016 (5)
Geometric parameters (Å, º) top
N1—H710.9448 (11)C16—H160.95
N1—C31.5141 (19)C21—C221.388 (2)
N1—C41.492 (2)C21—C261.3962 (19)
N1—C71.5036 (18)C22—H220.95
N2—C51.4718 (17)C22—C231.395 (3)
N2—C61.4682 (19)C23—H230.95
N2—C81.4848 (17)C23—C241.383 (2)
C1—H1a0.95C24—H240.95
C1—C21.317 (2)C24—C251.375 (3)
C1—C111.474 (2)C25—H250.95
C2—H20.95C25—C261.392 (2)
C2—C31.494 (2)C26—H260.95
C3—H3a0.99C31—C321.393 (2)
C3—H3b0.99C31—C361.3867 (19)
H3a—H3b1.5869C32—H320.95
C4—H4a0.99C32—C331.389 (2)
C4—H4b0.99C33—H330.95
C4—C51.511 (2)C33—C341.370 (2)
H4a—H4b1.6058C34—H340.95
C5—H5a0.99C34—C351.386 (3)
C5—H5b0.99C35—H350.95
H5a—H5b1.6091C35—C361.387 (2)
C6—H6a0.99C36—H360.95
C6—H6b0.99O1—C411.2810 (17)
C6—C71.512 (2)O2—N31.2281 (18)
H6a—H6b1.6016O3—N31.215 (2)
C7—H7a0.99O4—N41.227 (2)
C7—H7b0.99O5—N41.224 (2)
H7a—H7b1.6014O6—C91.201 (2)
C8—H81O7—C91.319 (2)
C8—C211.522 (2)O7—H70.9238 (15)
C8—C311.5282 (19)N3—C461.456 (2)
C11—C121.396 (2)N4—C441.453 (2)
C11—C161.399 (3)C9—C421.512 (3)
C12—H120.95C41—C421.444 (2)
C12—C131.390 (2)C41—C461.430 (2)
C13—H130.95C42—C431.367 (2)
C13—C141.372 (3)C43—H430.95
C14—H140.95C43—C441.379 (2)
C14—C151.382 (3)C44—C451.378 (2)
C15—H150.95C45—H450.95
C15—C161.390 (3)C45—C461.380 (2)
H71—N1—C3109.70 (10)C15—C16—H16119.61
H71—N1—C4107.37 (11)C8—C21—C22118.95 (12)
H71—N1—C7106.90 (11)C8—C21—C26122.30 (13)
C3—N1—C4112.27 (12)C22—C21—C26118.75 (14)
C3—N1—C7110.59 (11)C21—C22—H22119.72
C4—N1—C7109.82 (10)C21—C22—C23120.56 (14)
C5—N2—C6107.42 (10)H22—C22—C23119.72
C5—N2—C8110.41 (11)C22—C23—H23119.9
C6—N2—C8110.71 (11)C22—C23—C24120.20 (16)
H1a—C1—C2116.52H23—C23—C24119.9
H1a—C1—C11116.52C23—C24—H24120.2
C2—C1—C11126.96 (14)C23—C24—C25119.60 (17)
C1—C2—H2118.03H24—C24—C25120.2
C1—C2—C3123.95 (13)C24—C25—H25119.64
H2—C2—C3118.03C24—C25—C26120.72 (15)
N1—C3—C2112.26 (13)H25—C25—C26119.64
N1—C3—H3a109.47C21—C26—C25120.16 (14)
N1—C3—H3b109.47C21—C26—H26119.92
C2—C3—H3a109.47C25—C26—H26119.92
C2—C3—H3b109.47C8—C31—C32119.98 (11)
H3a—C3—H3b106.54C8—C31—C36121.61 (13)
N1—C4—H4a109.47C32—C31—C36118.41 (13)
N1—C4—H4b109.47C31—C32—H32119.64
N1—C4—C5110.53 (12)C31—C32—C33120.73 (13)
H4a—C4—H4b108.39H32—C32—C33119.64
H4a—C4—C5109.47C32—C33—H33119.85
H4b—C4—C5109.47C32—C33—C34120.30 (16)
N2—C5—C4110.21 (12)H33—C33—C34119.85
N2—C5—H5a109.47C33—C34—H34120.18
N2—C5—H5b109.47C33—C34—C35119.65 (15)
C4—C5—H5a109.47H34—C34—C35120.18
C4—C5—H5b109.47C34—C35—H35119.87
H5a—C5—H5b108.72C34—C35—C36120.25 (14)
N2—C6—H6a109.47H35—C35—C36119.88
N2—C6—H6b109.47C31—C36—C35120.65 (15)
N2—C6—C7110.93 (12)C31—C36—H36119.67
H6a—C6—H6b107.97C35—C36—H36119.68
H6a—C6—C7109.47C41—O1—H7101.64 (10)
H6b—C6—C7109.47C9—O7—H7112.68 (16)
N1—C7—C6110.95 (12)O2—N3—O3123.16 (15)
N1—C7—H7a109.47O2—N3—C46118.72 (15)
N1—C7—H7b109.47O3—N3—C46118.10 (13)
C6—C7—H7a109.47O4—N4—O5122.91 (15)
C6—C7—H7b109.47O4—N4—C44118.79 (14)
H7a—C7—H7b107.95O5—N4—C44118.29 (16)
N2—C8—H8108.39O6—C9—O7122.64 (19)
N2—C8—C21111.04 (11)O6—C9—C42122.44 (16)
N2—C8—C31110.45 (11)O7—C9—C42114.91 (15)
H8—C8—C21107.41O1—C41—C42120.00 (15)
H8—C8—C31108.03O1—C41—C46125.00 (14)
C21—C8—C31111.38 (10)C42—C41—C46115.00 (13)
C1—C11—C12122.33 (15)C9—C42—C41121.64 (14)
C1—C11—C16119.24 (13)C9—C42—C43116.80 (14)
C12—C11—C16118.42 (15)C41—C42—C43121.55 (16)
C11—C12—H12119.81C42—C43—H43119.87
C11—C12—C13120.37 (17)C42—C43—C44120.27 (14)
H12—C12—C13119.81H43—C43—C44119.87
C12—C13—H13119.82N4—C44—C43120.01 (14)
C12—C13—C14120.37 (17)N4—C44—C45118.40 (15)
H13—C13—C14119.82C43—C44—C45121.59 (13)
C13—C14—H14119.8C44—C45—H45120.57
C13—C14—C15120.40 (18)C44—C45—C46118.86 (15)
H14—C14—C15119.8H45—C45—C46120.57
C14—C15—H15120.17N3—C46—C41120.55 (13)
C14—C15—C16119.7 (2)N3—C46—C45116.73 (14)
H15—C15—C16120.17C41—C46—C45122.71 (13)
C11—C16—C15120.77 (16)O1—H7—O7148.96 (9)
C11—C16—H16119.61
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.9448 (11)1.9544 (11)2.8126 (15)150.01 (8)
N1—H71···O2i0.9448 (11)2.3020 (16)3.032 (2)133.62 (8)
C3—H3a···O6ii0.992.403.340 (2)159
C5—H5a···C210.992.472.8777 (19)104
C6—H6b···C310.992.502.8974 (19)104
O7—H7···O10.9238 (15)1.6675 (13)2.505 (2)148.96 (9)
O7—H7···C410.9238 (15)2.2985 (16)2.827 (2)115.91 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.
Overview of the redetermined structures top
REFCODEChemical name original/corrected if necessary
DUJZAKaBis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate
JEVNAAbTetrakis(1H-imidazole-N3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate / tetrakis(1H-imidazole-N3)zinc(II) bis(2-carboxy-4,6-dinitrophenolate)
LUDFULc1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate / phenazine 2-hydroxy-3,5-dinitrobenzoic acid
NUQVEBd2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate) / 2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate) (0.38)/ 2-Amino-5-methylpyridinium 2-carboxy-4,6-dinitrophenolate (0.62)
QIQJADe3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide solvate / 3,5-dinitro-2-hydroxybenzoate (0.55) 2-carboxy-4,6-dinitrophenolate (0.45) N,N-dimethylformamide monosolvate / 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate
SAFGUDfBis(1,10-phenanthroline-5,6-dione-2N,N')silver(I) 2-hydroxy-3,5-dinitrobenzoate / Bis(1,10-phenanthroline-5,6-dione-2N,N')silver(I) 2-carboxy-4,6-dinitrophenolate
SEDKETg3,5-Dimethylpyrazolium 2-carboxy-4,6-dinitrophenolate / 3,5-dimethylpyrazolium 2-hydroxy-3,5-dinitrobenzoate
TIYZIMh3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate
TUJPEVi4-[(5-methylisoxazol-3-yl)aminosulfonyl]anilinium 3,5-dinitrosalicylate
VABZIJj2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolatemonohydrate
WADXORk1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 2-hydroxy-3,5-dinitrobenzoate / 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-hydroxy-3,5-dinitrobenzoate (0.73) / 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-carboxy-4,6-2-carboxy-4,6-dinitrophenolate (0.37)
YAXPOEl4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate
Notes: (a) Zhang & Jian (2009); (b) Huang et al. (2007); (c) Senthil Kumar et al. (2002); (d) Hemamalini & Fun (2010a); (e) Sridhar et al. (2013); (f) Wang et al. (2012); (g) Wei et al. (2012); (h) Yamuna et al. (2014); (i) Malathy et al. (2015); (j) Hemamalini & Fun (2010b); (k) Smith & Lynch (2016); (l) Dayananda et al. (2012).
Hydrogen bonds (Å, °) in the redetermined structures top
The upper entries for each hydrogen bond refer to refinement Method 1: fixed hydrogen-atom positions, which were obtained from the difference electron-density maps, and refined displacement parameters. The lower entries refer to refinement Method 2: refined hydrogen-atom positions and constrained displacement parameters.
D—H···AD—HH···AD···AD—H···A
DUJZAK
O1—H1aa···O80.759 (2)1.859 (2)2.606 (3)167.96 (14)
0.97 (4)1.64 (4)2.603 (3)175 (3)
O2—H2aa···O90.922 (2)1.727 (2)2.631 (3)166.48 (15)
0.75 (4)1.90 (4)2.636 (3)165 (4)
O3—H3b···O91.040 (2)1.495 (2)2.481 (3)155.88 (12)
1.11 (4)1.41 (4)2.480 (3)160 (3)
JEVNAA
O2—H1a···O11.039 (2)1.496 (2)2.498 (2)160.4 (1)
0.89 (2)1.65 (3)2.503 (2)160 (2)
N2—H2a···O30.967 (2)1.890 (2)2.838 (3)165.9 (1)
0.84 (2)2.02 (2)2.845 (3)169 (2)
N4—H4a···O1i0.943 (2)1.924 (1)2.784 (2)150.6 (1)
0.86 (2)1.95 (2)2.792 (2)165 (2)
LUDFUL
O3—H3a···O21.059 (1)1.530 (1)2.513 (2)151.7 (1)
1.06 (2)1.51 (2)2.516 (2)156 (2)
O1—H1a···N31.163 (1)1.416 (1)2.552 (2)163.2 (1)
1.14 (2)1.44 (2)2.552 (2)166 (2)
NUQVEB
O7—H1o7···O10.919 (1)1.531 (1)2.4202 (12)161.55 (6)
1.14 (2)1.31 (2)2.4178 (12)163 (2)
O1—H1o1···O70.931 (1)1.513 (1)2.4202 (12)163.52 (6)
1.31 (2)1.14 (2)2.4178 (12)163 (2)
N2—H2a···O7ii0.892 (1)2.079 (1)2.9655 (14)172.84 (6)
0.87 (1)2.095 (14)2.9674 (14)176.5 (12)
N2—H2b···O1iii0.846 (1)2.165 (1)2.8526 (14)138.40 (6)
0.88 (2)2.146 (14)2.852 (1)137.3 (11)
N2—H2b···O2iii0.846 (1)2.413 (1)3.1741 (14)150.02 (6)
0.88 (2)2.384 (14)3.1736 (15)150.3 (11)
N1—H1···O6ii0.898 (1)1.783 (1)2.6781 (13)174.83 (6)
0.90 (1)1.784 (14)2.6773 (14)173.3 (13)
QIQJAD
N3—H3n···O20.862 (2)1.994 (2)2.854 (2)174.8 (1)
0.81 (3)2.05 (3)2.854 (3)175 (3)
N3—H4n···O8iv0.863 (2)2.059 (1)2.921 (2)176.9 (1)
0.85 (2)2.07 (2)2.920 (2)173 (3)
N2—H2n···O10.897 (2)1.831 (2)2.728 (2)177.5 (1)
0.81 (3)1.93 (3)2.731 (2)171 (2)
N5—H5n···N4v0.866 (1)2.141 (1)2.9992 (19)171.1 (1)
0.84 (2)2.17 (2)2.999 (2)171 (2)
N5—H6n···O8vi0.863 (2)2.041 (2)2.760 (2)140.2 (1)
0.78 (2)2.12 (3)2.764 (2)141 (2)
O3—H3o···O10.926 (1)1.562 (1)2.4572 (18)161.3 (1)
0.99 (3)1.49 (3)2.4569 (19)164 (3)
SAFGUD
O8—H7···O71.155 (4)1.346 (4)2.462 (6)159.6 (3)
1.05 (7)1.57 (7)2.452 (7)138 (6)
SEDKET
O1—H2a···O21.22 (5)1.34 (5)2.476 (3)149 (5)
1.27 (3)1.29 (3)2.477 (3)151 (3)
O2—H2a···O11.34 (5)1.22 (5)2.476 (3)149 (5)
1.29 (3)1.27 (3)2.477 (3)151 (3)
N1—H1···O1vii1.11 (5)1.92 (5)2.799 (4)133 (3)
0.99 (4)2.00 (3)2.804 (4)137 (3)
N1—H1···O7vii1.11 (5)1.94 (5)2.850 (4)137 (3)
0.99 (4)2.03 (3)2.855 (4)140 (3)
N2—H2···O30.96 (3)1.77 (3)2.685 (4)158 (3)
0.99 (3)1.75 (3)2.684 (4)157 (3)
TIYZIM
O2b—H2b···O1b0.982 (1)1.516 (1)2.4473 (16)156.3 (1)
1.02 (2)1.48 (2)2.4476 (16)156 (2)
N3a—H3aa···N1aaviii0.904 (1)1.932 (1)2.797 (2)159.6 (1)
0.911.922.797 (2)162
N3a—H3ab···O2bix0.901 (1)2.565 (1)3.1297 (17)121.4 (1)
0.912.583.1298 (17)120
N3a—H3ab···O2bix0.901 (1)2.565 (1)3.1297 (17)121.4 (1)
0.912.583.1297 (18)120
N3a—H3ab···O3bix0.901 (1)2.072 (1)2.9537 (17)165.8 (1)
0.912.062.9542 (17)165
N3a—H3ac···O1bx0.893 (1)2.061 (1)2.815 (2)141.5 (1)
0.912.032.815 (2)144
N3a—H3ac···O7bx0.893 (1)2.484 (1)2.9712 (19)114.7 (1)
0.912.462.9706 (19)116
TUJPEV
O6—H6a···O51.184 (1)1.295 (1)2.4268 (16)156.58 (6)
1.24 (2)1.21 (2)2.4280 (17)165.3 (14)
N1—H1a···O6xi1.002 (1)2.068 (1)3.0655 (17)173.55 (7)
0.892.243.0694 (17)155
N1—H1b···N3v0.793 (1)2.292 (1)3.0393 (15)157.3 (1)
0.892.203.0382 (15)157
N1—H1c···O4v0.832 (2)1.831 (1)2.663 (2)177.1 (1)
0.891.772.660 (2)175
N2—H2a···O50.970 (1)1.844 (1)2.7852 (15)162.64 (9)
0.827 (17)1.986 (16)2.7900 (16)164.0 (18)
VABZIJ
N3—H1n3···O6x0.973 (1)1.754 (1)2.7182 (14)170.48 (8)
0.91 (1)1.823 (14)2.7214 (14)170.8 (15)
N4—H1n4···O1w0.909 (1)1.840 (1)2.7348 (15)167.76 (8)
0.91 (2)1.833 (15)2.7323 (16)172.0 (15)
O1w—H2w1···O1xii0.917 (1)1.890 (1)2.7886 (14)166.21 (6)
0.82 (2)1.995 (19)2.7906 (15)162.7 (16)
O1w—H1w1—O3iii0.915 (1)2.040 (1)2.9352 (14)165.84 (7)
0.89 (2)2.064 (18)2.9357 (15)168.0 (17)
O7—H7···O11.019 (1)1.433 (1)2.4340 (13)165.94 (7)
0.96 (2)1.505 (16)2.4358 (13)162.0 (16)
WADXOR
N8a—H8a···O11b0.960 (2)1.933 (2)2.864 (2)162.83 (11)
0.91 (2)1.96 (2)2.869 (2)174.1 (17)
O11b—H21b···O21b1.145 (2)1.303 (6)2.433 (6)167.3 (3)
1.07 (9)1.48 (9)2.430 (6)145 (7)
O2b—H2b···O12b1.103 (2)1.385 (2)2.471 (2)166.81 (13)
0.91 (3)1.61 (3)2.475 (3)159 (3)
YAXPOE
N1—H71···O1iv0.945 (1)1.954 (1)2.813 (2)150.01 (8)
0.90 (2)1.98 (2)2.812 (2)154.0 (19)
N1—H71···O2iv0.945 (1)2.302 (2)3.032 (2)133.62 (8)
0.90 (2)2.36 (2)3.034 (2)131.8 (17)
O7—H7···O10.924 (2)1.668 (1)2.505 (2)148.96 (9)
0.92 (3)1.71 (3)2.504 (2)142 (2)
Symmetry codes: (i) -x + 3/2, -y + 1/2, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 2, -z + 1; (vi) x - 1, y + 1, z; (vii) -x + 1, y + 1/2, -z + 1; (viii) -x, -y, -z; (ix) x + 1, y, z; (x) -x, -y + 1, -z + 1; (xi) -x, -y + 2, -z + 1; (xii) x, y + 1, z.
Overview of selected structures with different forms of the molecules: 2-hydroxy-3,5-dinitrobenzoic acid (I); 2-hydroxy-3,5-dinitrobenzoate (II); 2-carboxy-4,6-dinitrophenolate (III); 3,5-dinitro-2-oxidobenzoate (IV) top
The structures are ordered by ascending pKα value of the base. The corresponding values of (q1 + q2), D13, D1, D2 and D5 (cf. Fig. 1) are also given.
RefcodeBase and its form present in the structurepKαΔpKαType(q1 + q2) (Å)D13 (Å)D1 (Å)D2 (Å)D5 (Å)Remarks
1GORXAMa1,4-dioxane-3.9-6.08I0.204 0.1962.547 2.5451.219 1.2201.337 1.3361.307 1.300Two independent molecules
2GORXEQa1,4-dioxane-3.9-6.08I0.2352.6011.2061.3431.319
3GORXEQ01a1,4-dioxane-3.9-6.08I0.1972.5311.2221.3461.302
4AJEBOGb4-cyanopyridinium1.92-0.26III0.0032.5231.3241.281.213
5ABULAMc2-aminoanilinium<2<-0.18III0.0112.4471.3091.2821.219
6PIDCAIc2-Aminoanilinium<2<-0.18III0.0092.441.3141.2851.229Wrongly attached hydrogen due to CO distances. Originally determined as type II but it should be III.
7PERBARd3-carbamoylpyridinium3.351.2II0.172.4521.2871.3291.239Wrongly attached hydrogen due to CO distances. Originally determined as type II but it is probably III. Disorder present in the structure.
8GIFMUEe1-naphthylammonium3.921.74III0.0112.4881.311.2791.224
9MIPROSf8-aminoquinolinium3.951.77II0.0722.4081.2781.3001.237The bridging H is situated about the centre.
10ABUKUFg4-chloroanilinium3.981.80II0.0942.4351.2761.2971.242
11YIVHIWh4-iodoanilinium4.181.63II0.1292.4611.2851.3211.228
12GIFNUFi1,10-phenanthrolinium4.272.09II0.0962.4281.2801.2971.232Determined as the type III but it is probably II (Fig. 1). The chemical name was correct.
13FOXHADj2-(pyridin-2-yl)pyridinium4.332.15II0.0472.421.3071.2921.228100 K; the reported hydrogen H3 is situated out of the plane formed by C···O bonds and is superficial.
14KEZJIJj2-(pyridin-2-yl)pyridinium4.332.15III0.072.4221.2931.2961.231CO distances are about equal. The recalculation has shown that the bridging hydrogen is about the centre of the hydrogen bond, slightly closer to atom O2, which forms a shorter CO bond.
15KEZJIJ01j2-(pyridin-2-yl)pyridinium4.332.15III0.0662.4231.2951.2991.221CO distances are about equal, the hydrogen is attached to the O atom forming a shorter CO bond.
16FICXIZkcytosinium4.602.42II0.0982.4231.2851.3101.234The type according to the CO distances should be II; the bridging hydrogen was wrongly attached.
17ABUJUElanilinium4.602.42II0.1292.4481.2801.3231.231
18ABUKOZm4-fluoroanilinium4.652.47II0.1422.4651.2731.3251.252
19GIFMOYnquinolinium4.852.67III0.052.4141.2941.2851.235The title molecule has similarly long CO distances.
20ZAJHATo2-amminobenzoic acid4.962.78II0.1352.4611.2821.3241.227
21AJEBIAppyridinium5.233.05I and II0.142 0.1632.458 2.5821.2501.3081.257Two independent molecules
22EGABOFq2-methylquinolinium5.713.53II0.2852.4111.2071.3591.244outlier
23AJECEX01r2,6-diaminopyridin-1-ium6.133.95II0.072 0.1212.435 2.4641.298 1.2951.309 1.3321.241 1.237One of the title molecules has similarly long CO distances.
24AJECIBs2-aminopyrimidinium6.824.64II0.114 0.1452.466 2.4731.277 1.2701.308 1.3231.241 1.238
25TUMWABt1H-imidazol-3-ium6.954.77III-0.012.4571.3201.2791.214
26LUMJOUuhydrazinium8.125.94III0.0142.4591.3181.2751.211
27SEDKETv3,5-dimethylpyrazolium96.82III0.0372.4811.3001.2821.224
28SEDKETv (corrected)3,5-dimethylpyrazolium96.82II0.0272.4761.3051.2771.229The bridging hydrogen after recalculation is closer to oxygen O1, which forms the shorter CO bond (C12—O1).
29LUDDETwbenzylammonium9.337.15III0.0022.4831.3051.2691.218
30LUDDET01wbenzylammonium9.337.15III1.311 1.3111.275 1.2791.217 1.219
31INELUIx1-phenylethylammonium9.797.61III0.009 0.0092.467 2.4821.309 1.3201.272 1.2771.221 1.214
32MILLOIydicyclohexylammonium10.48.22III0.0282.4641.2891.2731.225The CO distances of the title molecule are similar.
33ACIFATz4-sulfamoylanilinium10.68.42III0.0282.4621.3151.2871.209
34EGUTIJaamethylammonium10.68.42III0.0112.4811.3141.2761.218
35EGUTOPbbtriethylammonium10.788.6II0.0822.4291.2751.2861.248
36EGUTOP01bbtriethylammonium10.788.6II0.0722.4191.2751.2881.242
37FOGZILccdiethylammonium11.098.91III0.0042.4891.3081.2701.217
38XEBFAMddpiperidinium C5H11N11.289.1II and IV0.078 0.0612.586 2.7361.219 1.2341.278 1.2531.255 1.271One molecule of DNSA (I) is fully ionized, the other is in form II.
39YEJZAOeeguanidinium12.510.32II0.0792.4151.2911.3051.235
40YEJZAO01eeguanidinium12.510.32II0.0732.4151.2921.3001.239
References for the pKα values: (a) https://chemaxon.com/products/calculators-and-predictors\hashpka; (b) https://www.chemicalbook.com/ProductMSDSDetailCB0688145_EN.htm; (c) Dean (1987); (d) https://pubchem.ncbi.nlm.nih.gov/compound/nicotinamide\hashsection=pKa; (e) https://labs.chem.ucsb.edu/zhang/liming/pdf/pKas_of_Organic_Acids_and_Bases.pdf; (f) https://binarystore.wiley.com/store/10.1002/jcc.23068/asset/supinfo/JCC_23068_sm_SuppInfo.pdf?v=1&s=e864a51d58b4cdc175f6b69c92ceddb546201e3b; (g) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (h) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (i) https://chemicalland21.com/specialtychem/finechem/1,10-PHENANTHROLINE.htm; (j) https://www.chemicalbook.com/ProductMSDSDetailCB5195697_EN.htm; (k) https://www.drugfuture.com/chemdata/cytosine.html; (l) https://pubchem.ncbi.nlm.nih.gov/compound/aniline\hashsection=pKa; (m) https://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (n) Hosmane & Liebman (2009); (o) https://www.csun.edu/\~hcchm003/321/Ka.pdf; (p) https://pubchem.ncbi.nlm.nih.gov/compound/pyridine\hashsection=Dissociation-Constants; (q) https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23068; (r) https://www.chemicalbook.com/ProductMSDSDetailCB0236195_EN.htm; (s) https://pubchem.ncbi.nlm.nih.gov/compound/2-aminopyridine\hashsection=Dissociation-Constants; (t) https://pubchem.ncbi.nlm.nih.gov/compound/imidazole\hashsection=pKa; (u) https://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf; (v) https://www.chemicalbook.com/ProductMSDSDetailCB2707394_EN.htm; (w) https://pubchem.ncbi.nlm.nih.gov/compound/benzylamine\hashsection=pKa; (x) https://www.drugbank.ca/drugs/DB04325; (z) https://pubchem.ncbi.nlm.nih.gov/compound/dicyclohexylamine\hashsection=Dissociation-Constants; (z) https://pubchem.ncbi.nlm.nih.gov/compound/sulfanilamide\hashsection=Dissociation-Constants; (aa) https://pubchem.ncbi.nlm.nih.gov/compound/methylamine\hashsection=pKa; (ab) https://pubchem.ncbi.nlm.nih.gov/compound/triethylamine\hashsection=Dissociation-Constants; (ac) https://pubchem.ncbi.nlm.nih.gov/compound/diethylamine\hashsection=Dissociation-Constants; (ad) https://pubchem.ncbi.nlm.nih.gov/compound/piperidine\hashsection=Dissociation-Constants; (ae) https://pubchem.ncbi.nlm.nih.gov/compound/guanidine\hashsection=pKa.

References to publications with the chemical names of the determined compounds (original and corrected ones if necessary): (1) Senthil Kumar et al. (1999): 3,5-dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (1:1)]; (2) Senthil Kumar et al. (1999): 3,5-dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (2:1); (3) Senthil Kumar et al. (1999): 3,5-dinitrosalicylic acid 1,4-dioxane solvate, 3,5-dinitrosalicylic acid 1,4-dioxane (2:1); (4) Smith et al. (2003a): 4-cyanopyridinium 3,5-dinitrosalicylate, 4-cyanopyridinium 3,5-dinitrosalicylate 2-carboxy-4,6-dinitrophenolate; (5) Smith et al. (2011): 2-aminoanilinium 2-carboxy-4,6-dinitrophenolate; (6) Khan et al. (2013): 2-aminoanilinium 2-hydroxy-3,5-dinitrobenzoate, 2-aminoanilinium 2-carboxy-4,6-dinitrophenolate; (7) Jin et al. (2013): 3-carbamoylpyridinium 2-carboxy-4,6-dinitrophenolate, 3-carbamoylpyridinium 2-hydroxy-3,5-dinitrobenzoate; (8) Healy & White (2007): 1-naphthylammonium 3,5-dinitrosalicylate, 1-naphthylammonium 2-carboxy-4,6-dinitrophenolate; (9) Smith et al. (2001b): 8-aminoquinolinium 3,5-dinitrosalicylate; (10) Smith et al. (2011): 4-chloroanilinium 2-hydroxy-3,5-dinitrobenzoate; (11) Jones et al. (2014): (4-iodoanilinium 2-hydroxy-3,5-dinitrobenzoate; (12) Smith et al. (2007): 1,10-Phenanthrolinium 3,5-dinitrosalicylate; (13) Singh et al. (2014): 2-(pyridin-2-yl)pyridinium 2-hydroxy-3,5-dinitrobenzoate; (14) Song et al. (2007): 2,2'-bipyridinium 2-carboxy-4,6-dinitrophenolate; (15) Smith et al. (2007): 2,2'-bipyridinium 2-carboxy-4,6-dinitrophenolate; (16) Smith et al. (2005a): cytosinium 3,5-dinitrosalicylate, cytosinium 2-carboxy-4,6-dinitrophenolate; (17) Smith et al. (2011): anilinium 2-hydroxy-3,5-dinitrobenzoate; (18) Smith et al. (2011): 4-fluoroanilinium 2-hydroxy-3,5-dinitrobenzoate; (19) Smith, et al. (2007): quinolinium 3,5-dinitrosalicylate, quinolinium 2-carboxy-4,6-dinitrophenolate; (20) Smith et al. (1995): 3,5-dinitrosalicylic acid 2-aminobenzoic acid, 2-ammoniumbenzoic acid 2-carboxy-4,6-dinitrophenolate; (21) Smith et al. (2003b): pyridinium 3,5-dinitrosalicylate 3,5-dinitrosalicylic acid; (22) Zhang et al. (2014): 2-methylquinolinium 2-hydroxy-3,5-dinitrobenzoate; (23) Gao et al. (2015): 2,6-diaminopyridin-1-ium 2-hydroxy-3,5-dinitrobenzoate; (24) Smith et al. (2003a): 2-aminopyrimidinium 3,5-dinitrosalicylate ethanol solvate, 2-aminopyrimidinium 3,5-dinitrosalicylate ethanol (2:2:1); (25) Jin et al. (2015b): 1H-imidazol-3-ium 2-carboxy-4,6-dinitrophenolate; (26) Fu et al. (2015): hydrazinium 2-carboxy-4,6-dinitrophenolate; (27) Wei et al. (2012): (3,5-Dimethylpyrazolium 2-carboxy-4,6-dinitrophenolate); (28) this work: (3,5-dimethylpyrazolium 2-hydroxy-3,5-dinitrobenzoate; (29) Smith et al. (2002b): benzylammonium 3,5-dinitrosalicylate, benzylammonium 2-carboxy-4,6-dinitrophenolate; (30) Jin et al. (2015a): benzylammonium 2-carboxy-4,6-dinitrophenolate; (31) Smith, Wermuth & White (2003): (S)-(-)-1-phenylethylaminium 3,5-dinitrosalicylate, (S)-(-)-1-phenylethylaminium 2-carboxy-4,6-dinitrophenolate; (32) Ng et al. (2001): dicyclohexylammonium 2-carboxy-4,6-dinitrophenolate; (33) Smith et al. (2001c): 4-ammoniobenzenesulfonamide 3,5-dinitrosalicylate, 4-ammoniobenzenesulfonamide 2-carboxy-4,6-dinitrophenolate; (34) Smith et al. (2002a): methylammonium 3,5-dinitrosalicylate, methylammonium 2-carboxy-4,6-dinitrophenolate; (35) Smith et al. (2002a): triethylammonium 3,5-dinitrosalicylate; (36) Rajkumar & Chandramohan (2017): triethylammonium 2-hydroxy-3,5-dinitrobenzoate; (37) Smith et al. (2005b): diethylammonium 3,5-dinitrosalicylate, diethylammonium 2-carboxy-4,6-dinitrophenolate; (38) Smith et al. (2006): tris(piperidinium) bis(3,5-dinitrosalicylate) monohydrate, tris(piperidinium) 2-hydroxy-3,5-dinitrobenzoate 2-olate-3,5-dinitrobenzoate monohydrate; (39) Smith et al. (2001a): guanidinium 3,5-dinitrosalicylate; (40) Fu et al. (2015): guanidinium 3,5-dinitrosalicylate.
 

Funding information

The author expresses gratitude for the support provided by Project NPU I – LO1603 of the Ministry of Education of the Czech Republic to the Institute of Physics of the Academy of Sciences of the Czech Republic.

References

First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDean, J. A. (1987). Handbook of Organic Chemistry, pp. 8–46 New York, NY: McGraw-Hill Book Co.  Google Scholar
First citationFu, X., Liu, X., Sun, P., Zhang, S., Yang, Q., Wei, Q., Xie, G., Chen, S. & Fan, X. (2015). J. Anal. Appl. Pyrolysis, 114, 79–90.  CrossRef Google Scholar
First citationGao, X., Zhang, H., Wen, X., Liu, B., Jin, S. & Wang, D. (2015). J. Mol. Struct. 1093, 82–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028.  CrossRef CAS Web of Science Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, pp. 81–147. New York: Oxford University Press.  Google Scholar
First citationGilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 34, 34–44.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1194–o1195.  CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2950–o2951.  CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2747.  CrossRef IUCr Journals Google Scholar
First citationHosmane, R. S. & Liebman, J. F. (2009). Struct. Chem. 20, 693–697.  CrossRef Google Scholar
First citationHuang, F., Song, W.-D. & Li, S.-D. (2007). Acta Cryst. E63, m388–m389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1995). Crystallogr. Rev. 4, 213–254.  CrossRef Google Scholar
First citationJin, S., Lin, Z., Wang, D., Chen, G., Ji, Z., Huang, T. & Zhou, Y. (2015a). J. Chem. Crystallogr. 45, 159–168.  CrossRef Google Scholar
First citationJin, S., Wang, D., Linhe, Q., Fu, M., Wu, S. & Ren, J. (2013). J. Chem. Crystallogr. 43, 258–265.  CrossRef Google Scholar
First citationJin, S., Zhang, H., Liu, H., Wen, X., Li, M. & Wang, D. (2015b). J. Mol. Struct. 1096, 157–170.  CrossRef Google Scholar
First citationJones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849–5858.  CrossRef Google Scholar
First citationKhan, I. M., Ahmad, A. & Ullah, M. F. (2013). Spectrochim. Acta A, 102, 82–87.  CrossRef Google Scholar
First citationMalathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618–620.  CrossRef IUCr Journals Google Scholar
First citationMüller, P. (2009). Crystallogr. Rev. 15, 57–83.  Google Scholar
First citationNg, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRajkumar, M. & Chandramohan, A. (2017). J. Mol. Struct. 1134, 762–769.  CrossRef Google Scholar
First citationSenthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074.  CrossRef Google Scholar
First citationSenthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002). Acta Cryst. E58, o865–o866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Khan, I. M., Ahmad, A. & Javed, S. (2014). J. Mol. Liq. 191, 142–150.  CrossRef Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, o640–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Lynch, D. E. (2016). Acta Cryst. E72, 382–386.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmith, G. & Wermuth, U. D. (2014). Acta Cryst. E70, 430–434.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002a). Aust. J. Chem. 55, 349–356.  CrossRef Google Scholar
First citationSmith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001b). Aust. J. Chem. 54, 165–170.  CrossRef Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2002b). Acta Cryst. E58, o845–o847.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. E61, o746–o748.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610–o613.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003a). Aust. J. Chem. 56, 707–713.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2001c). Acta Cryst. E57, o1036–o1038.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2003b). Acta Cryst. E59, o1977–o1979.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o1836–o1838.  CrossRef IUCr Journals Google Scholar
First citationSobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513–3560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSong, W.-D., Guo, X.-X. & Yu, L. (2007). Acta Cryst. E63, o1890–o1891.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Nanubolu, J. B. & Ravikumar, K. (2013). Acta Cryst. C69, 1164–1169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Samuel, E., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, m76.  CrossRef IUCr Journals Google Scholar
First citationWei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.  CSD CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o318–o319.  CrossRef IUCr Journals Google Scholar
First citationZhang, C.-L. & Jian, F.-F. (2009). Acta Cryst. E65, m1521.  CrossRef IUCr Journals Google Scholar
First citationZhang, J., Jin, S., Tao, L., Liu, B. & Wang, D. (2014). J. Mol. Struct. 1072, 208–220.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds