research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and catalytic activity in reductive amination of di­chlorido­(η6-p-cymene)(2′-di­cyclo­hexyl­phosphanyl-2,6-di­meth­­oxy­biphen­yl-κP)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aMendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation, bResearch Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dNational Research Centre Kurchatov Institute, 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
*Correspondence e-mail: alexey.a.tsygankov@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 February 2018; accepted 5 March 2018; online 9 March 2018)

The title compound, [RuCl2(C10H14)(C26H35O2P)] (I), crystallizes in the monoclinic space group P21/c with two crystallographically independent mol­ecules (A and B) in the asymmetric unit. The geometries of both mol­ecules are very similar and distinguished only by the twist angles of the two benzene rings in the phosphine substituents [89.54 (14) and 78.36 (14)° for mol­ecules A and B, respectively]. The Ru atoms have classical pseudo-tetra­hedral piano-stool coordination environments. The conformation of each mol­ecule is stabilized by intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions. The two mol­ecules are linked by a C—H⋯Cl hydrogen bond. In the crystal, the mol­ecules are further linked by C—H⋯ π inter­actions, forming –ABAB– chains propagating along the a-axis direction. Complex I is an active catalyst for reductive amination reaction. The catalytic activity of this complex can be explained by the lability of the p-cymene ligand, which can be replaced by two-electron ligands such as CO or amine.

1. Chemical context

The design of new organometallic complexes is important for the development of new catalytic processes as well as for understanding those already known. Recently, a new method­ology for reductive amination in the presence of carbon monoxide as the reducing agent, catalysed by rhodium (Chusov & List, 2014[Chusov, D. & List, B. (2014). Angew. Chem. Int. Ed. 53, 5199-5201.]; Afanasyev et al., 2016[Afanasyev, O. I., Tsygankov, A. A., Usanov, D. L., Perekalin, D. S., Shvydkiy, N. V., Maleev, V. I., Kudinov, A. R. & Chusov, D. (2016). ACS Catal. 6, 2043-2046.]; Yagafarov et al., 2015[Yagafarov, N. Z., Usanov, D. L., Moskovets, A. P., Kagramanov, N. D., Maleev, V. I. & Chusov, D. (2015). ChemCatChem, 7, 2590-2593.]), iridium (Moskovets et al., 2017[Moskovets, A. P., Usanov, D. L., Afanasyev, O. I., Fastovskiy, V. A., Molotkov, A. P., Muratov, K. M., Denisov, G. L., Zlotskii, S. S., Smol'yakov, A. F., Loginov, D. A. & Chusov, D. (2017). Org. Biomol. Chem. 15, 6384-6387.]; Molotkov et al., 2017[Molotkov, A. P., Vinogradov, M. M., Moskovets, A. P., Chusova, O., Timofeev, S. V., Fastovskiy, V. A., Nelyubina, Y. V., Pavlov, A. A., Chusov, D. A. & Loginov, D. A. (2017). Eur. J. Inorg. Chem. 2, 1-11.]) and ruthenium (Kolesnikov et al., 2015[Kolesnikov, P. N., Yagafarov, N. Z., Usanov, D. L., Maleev, V. I. & Chusov, D. (2015). Org. Lett. 17, 173-175.]; Afanasyev et al., 2017[Afanasyev, O. I., Tsygankov, A. A., Usanov, D. L., Perekalin, D. S., Samoylova, A. D. & Chusov, D. (2017). Synthesis, 49, 2640-2651.]) has been described. This protocol is based on the de­oxy­genation potential of CO and does not require an external hydrogen source. This methodology is therefore potentially more selective for those substrates bearing groups that are sensitive to hydrogenation. As a result of the high cost of rhodium and iridium, the development of new catalytic systems based on more abundant metals is important. It has previously been shown that addition of phosphines to ruthenium systems, which were supposed to stabilize catalytic species, dramatically decreases the activity of the catalytic system. To further understand this process and the role of phosphines, the title complex, I, was synthesized and its crystal structure and catalytic properties are reported herein.

[Scheme 1]

Such η6-arene RuII complexes with piano-stool coordination are known to be active catalysts in different processes (Therrien, 2009[Therrien, B. (2009). Coord. Chem. Rev. 253, 493-519.]), including hydrogenation (Moldes et al., 1998[Moldes, I., de la Encarnación, E., Ros, J., Alvarez-Larena, Á., & Piniella, J. F. (1998). J. Organomet. Chem. 566, 165-174.]), hydro­boration (Kaithal et al., 2016[Kaithal, A., Chatterjee, B. & Gunanathan, C. (2016). Org. Lett. 18, 3402-3405.]), transfer hydrogenation (Aznar et al., 2013[Aznar, R., Grabulosa, A., Mannu, A., Muller, G., Sainz, D., Moreno, V., Font-Bardia, M., Calvet, T. & Lorenzo, J. (2013). Organometallics, 32, 2344-2362.]; Cerón-Camacho et al., 2006[Cerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A Chem. 247, 124-129.]; Clavero et al., 2016[Clavero, P., Grabulosa, A., Rocamora, M., Muller, G. & Font-Bardia, M. (2016). Dalton Trans. 45, 8513-8531.]) and isomerization of allylic alcohols (Díaz-Álvarez et al., 2006[Díaz-Álvarez, A. E., Crochet, P., Zablocka, M., Duhayon, C., Cadierno, V., Gimeno, J. & Majoral, J. P. (2006). Adv. Synth. Catal. 348, 1671-1679.]; Baraut et al., 2015[Baraut, J., Massard, A., Chotard, F., Bodio, E., Picquet, M., Richard, P., Borguet, Y., Nicks, F., Demonceau, A. & Le Gendre, P. (2015). Eur. J. Inorg. Chem. 2015, 2671-2682.]). Moreover, such complexes have shown promising medicinal properties (Naza­rov et al., 2014[Nazarov, A. A., Hartinger, C. G. & Dyson, P. J. (2014). J. Organomet. Chem. 751, 251-260.]), including anti­cancer activity (Chuklin et al., 2017[Chuklin, P., Chalermpanaphan, V., Nhukeaw, T., Saithong, S., Chainok, K., Phongpaichit, S., Ratanaphan, A. & Leesakul, N. (2017). J. Organomet. Chem. 846, 242-250.]).

2. Structural commentary

The title compound, I, crystallizes in the monoclinic space group P21/c with two crystallographically independent mol­ecules (A and B, comprising Ru1 and Ru2, respectively) in the asymmetric unit (Fig. 1[link]). The geometries of both mol­ecules are very similar, as illustrated in Fig. 2[link], showing the mol­ecular overlap of the inverted mol­ecule B on mol­ecule A [r.m.s. deviation of 0.227 Å; Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])]. They are distinguished only by the twist angles of the two benzene rings in the phosphine substituents [89.54 (14)° for A and 78.36 (14)° for B].

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular overlap of the inverted mol­ecule B (red) on mol­ecule A (blue). H atoms have been omitted for clarity.

The ruthenium atom in each mol­ecule has a classical pseudo-tetra­hedral piano-stool coordination environment, being ligated by two chlorides, the phosphine 2-di­cyclo­hexyl­phosphino-2,6′-di­meth­oxy­biphenyl (SPhos) and an η6-p-cymene ligand. Owing to steric hinderance, the average Ru—C [2.248 (3) Å], Ru—P [2.4194 (11) Å] and Ru—Cl [2.4455 (11) Å] bond lengths are slightly elongated in comparison with those observed previously in related ruthenium complexes (Muller & Davis, 2012[Muller, A. & Davis, W. L. (2012). Acta Cryst. E68, m1446-m1447.]; Granville et al., 2012[Granville, S. L., Welch, G. C. & Stephan, D. W. (2012). Inorg. Chem. 51, 4711-4721.]). The bond angles Cl—Ru—Cl [88.04 (4)° for A and 86.26 (4)° for B] and Cl—Ru—P [87.23 (4) and 87.53 (4) for A and 87.86 (4), 87.28 (4)° for B] fall within the normal range for known analogous complexes. The meth­oxy groups are coplanar to the parent benzene rings (r.m.s. deviations are 0.070 Å for A and 0.082 Å for B). In each mol­ecule there are intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π contacts present (see Table 1[link]), and the two mol­ecules are linked by the C38–H38⋯Cl1 hydrogen bond (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg8 are the centroids of rings C17–C22 and C53–C58, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.95 2.50 3.328 (6) 146
C30—H30A⋯Cl2 0.99 2.74 3.552 (4) 139
C45—H45C⋯Cl3 0.98 2.79 3.577 (5) 137
C46—H46C⋯Cl4 0.98 2.68 3.302 (4) 122
C62—H62A⋯O3 0.99 2.58 3.261 (6) 126
C66—H66B⋯Cl4 0.99 2.71 3.388 (4) 126
C72—H72A⋯Cl3 0.99 2.78 3.617 (6) 143
C38—H38⋯Cl1 0.95 2.70 3.376 (4) 129
C33—H33BCg3 0.99 2.97 3.703 (5) 132
C69—H69ACg8 0.99 2.91 3.649 (6) 132
C60—H60BCg3i 0.98 2.84 3.655 (6) 142
C24—H24BCg8ii 0.98 2.85 3.710 (6) 147
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 3]
Figure 3
A view of the C—H⋯Cl hydrogen bonds (dashed lines) and the C—H⋯π inter­actions (blue arrows) leading to the formation of chains along [100]; see Table 1[link] for details. Only the H atoms involved in these inter­actions are shown, and the centroid in mol­ecule A is red, while the centroid in mol­ecule B is blue.

3. Supra­molecular features

In the crystal of I, mol­ecules are linked by a C—H⋯Cl hydrogen bond and C—H⋯π inter­actions forming –ABAB– chains propagating along [100]; details are shown in Fig. 3[link] and Table 1[link]. The overall packing in the crystal structure of I is illustrated in Fig. 4[link]. There are no other significant inter­molecular inter­actions present in the crystal structure.

[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound I. The inter­molecular inter­actions are shown as dashed lines (see Table 1[link]), and only those H atoms involved in these inter­actions have been included.

4. Catalytic activity

The catalytic activity was investigated in a model reductive amination reaction between p-tolu­aldehyde and p-anisidine in conditions similar to those reported previously for ruthenium systems (Fig. 5[link]). We were delighted to find out that complex I was active and furnished the desired amine in 61% yield. The catalytic activity of this complex can be explained by the lability of the p-cymene ligand, which can be replaced by two-electron ligands such as CO or amine. The role of the phosphine ligand is in the stabilization of catalytically active species [RuCl2SPhosLx]. Inter­estingly, the dimeric precursor of I – [Ru(p-cymene)Cl]2Cl2 – was two times less active (the amine yield is 34%), which can be explained by dissociation of the p-cymene ligands followed by aggregation of non-stabil­ized RhCl species. In summary, complex I is an active catalyst for reductive amination, and further tuning of phosphine ligands may result in even more active complexes.

[Figure 5]
Figure 5
A model reductive amination reaction between p-tolu­aldehyde and p-anisidine catalyzed by complex I.

5. Procedure for reductive amination

A glass vial in a 10 ml stainless steel autoclave was charged with 0.5 mol% of the catalyst, CH3CN, 1.2 equiv. of the p-anisidine and 1 equiv. of the p-tolualdehyde (the use of a glass vial is crucial: inter­action of the catalyst with the metal surface inside the autoclave can lead to decreased catalytic activity). The autoclave was sealed, flushed three times with 5 bar of carbon monoxide (CO), and then charged with 50 bar of CO. The reactor was placed in an oil bath preheated to 413 K. After the indicated time, the reactor was cooled to room temperature and depressurized. The residue was purified by flash chromatography on silica gel using di­chloro­methane as eluent. 1H NMR [400 MHz, CDCl3, δ (ppm), J (Hz)]: 7.27 (d, J = 8.1, 2H), 7.16 (d, J = 8.1, 2H), 6.79 (d, J = 8.8, 2H), 6.61 (d, J = 8.8, 2H), 4.25 (s, 2H), 3.75 (s, 3H), 2.36 (s, 3H).

6. Synthesis and crystallization

To a di­chloro­methane (7 ml) solution of [(p-cymene)RuCl2]2 (0.050 g, 0.082 mmol) was added SPhos (69 mg, 0.168 mmol). The dark-orange solution was stirred at room temperature for 24 h. The mixture was partially evaporated under reduced pressure, and the complex precipitated with diethyl ether (10 ml) to give a dark-orange solid (37 mg, 66%). Dark-orange prismatic crystals were obtained by slow diffusion of pentane into the di­chloro­methane solution of complex I.

Spectroscopic data: 1H NMR [CDCl3, 600 MHz, 230 K, δ (ppm), J (Hz)]: 8.24 (dd, J = 13.1, 7.7, 1H), 7.43–7.31 (m, 3H), 6.86 (d, J = 7.2, 1H), 6.71 (dd, J = 23.2, 7.2, 2H), 5.46 (d, J = 6.2, 1H), 5.32 (d, J = 6.2, 1H), 5.16 (d, J = 6.1, 1H), 5.05 (d, J = 5.8, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 2.72–2.52 (m, 3H), 2.40 (q, J = 12.9, 1H), 1.93 (d, J = 12.1, 1H), 1.73 (q, J = 12.6, 1H), 1.61 (s, 4H), 1.65–1.43 (m, 6H), 1.39–1.26 (m, 4H), 1.18 (dd, J = 17.5, 6.8, 6H), 1.26–1.14 (m, 1H), 1.08–0.92 (m, 3H), 0.42 (q, J = 13.2, 1H), 0.10 (q, J = 13.2, 1H). 13C NMR [CDCl3, 151 MHz, 230 K, δ (ppm), J (Hz)]: 158.3, 157.5, 139.6 (d, J = 27.6), 136.3, 135.9 (d, J = 15.1), 132.5 (d, J = 6.3), 130.0, 128.9, 127.6 (d, J = 10.5), 119.9, 110.5, 104.1, 104.0, 95.4, 88.9, 88.4, 86.9 (d, J = 6.4), 80.4 (d, J = 10.1), 55.8, 55.7, 41.4 (d, J = 18.3), 35.9 (d, J = 18.4), 33.4, 30.8, 30.0, 29.3, 28.6 (d, J = 7.6), 28.0 (d, J = 8.9), 27.6 (d, J = 14.5), 27.5, 26.8 (d, J = 14.2), 26.6, 25.4, 22.6, 22.4, 17.3. 31P NMR [CDCl3, 121 MHz, 220 K, δ (ppm)]: 39.06.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed in calculated positions and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [RuCl2(C10H14)(C26H35O2P)]
Mr 716.69
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 19.790 (4), 19.950 (4), 20.225 (4)
β (°) 118.17 (3)
V3) 7039 (3)
Z 8
Radiation type Synchrotron, λ = 0.96260 Å
μ (mm−1) 1.52
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.730, 0.850
No. of measured, independent and observed [I > 2σ(I)] reflections 85347, 15331, 11898
Rint 0.080
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.07
No. of reflections 15331
No. of parameters 768
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.92, −1.77
Computer programs: MARCCD (Doyle, 2011[Doyle, R. A. (2011). MARCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF(Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The X-ray diffraction study was carried out on the `Belok' beamline of the National Research Center Kurchatov Institute (Moscow, Russian Federation) using a Rayonix SX165 CCD detector.

A rather large number of reflections (ca 100) were omitted in the final cycles of refinement for the following reasons:

(1) In order to achieve better I/σ statistics for high-angle reflections we selected exposure times to allow a small fraction of intensity overloads in the low-angle part of the detector. These low-angle reflections with imprecisely measured intensities were excluded from the final cycles of refinement.

2) In the present setup of the synchrotron diffractometer, the low-temperature device eclipses a small region of the image-plate detector near the high-angle limit. This small shadowed region was not masked during integration of the diffraction frames, which erroneously resulted in zero intensity of some reflections.

3) The quality of the single crystal chosen for the diffraction experiment was not perfect. Some systematic intensity distortions may be due to extinction and defects present in the crystal.

Supporting information


Computing details top

Data collection: MARCCD (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF(Westrip, 2010).

Dichlorido(η6-p-cymene)(2'-dicyclohexylphosphanyl-2,6-dimethoxybiphenyl-κP)ruthenium(II) top
Crystal data top
[RuCl2(C10H14)(C26H35O2P)]F(000) = 2992
Mr = 716.69Dx = 1.353 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.96260 Å
a = 19.790 (4) ÅCell parameters from 600 reflections
b = 19.950 (4) Åθ = 3.2–35.0°
c = 20.225 (4) ŵ = 1.52 mm1
β = 118.17 (3)°T = 100 K
V = 7039 (3) Å3Prism, dark-orange
Z = 80.20 × 0.15 × 0.10 mm
Data collection top
Rayonix SX165 CCD
diffractometer
11898 reflections with I > 2σ(I)
φ scanRint = 0.080
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.2°
Tmin = 0.730, Tmax = 0.850h = 2523
85347 measured reflectionsk = 2525
15331 independent reflectionsl = 2624
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0738P)2 + 8.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
15331 reflectionsΔρmax = 1.92 e Å3
768 parametersΔρmin = 1.77 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (1)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.39465 (2)0.34941 (2)0.26968 (2)0.02059 (11)
Cl10.37597 (5)0.31613 (4)0.37623 (5)0.0248 (2)
Cl20.30004 (5)0.26463 (4)0.19505 (5)0.0264 (2)
P10.49089 (5)0.26228 (4)0.30732 (5)0.0197 (2)
O10.70112 (16)0.17532 (12)0.34952 (16)0.0293 (6)
O20.63517 (16)0.39635 (13)0.25883 (17)0.0329 (6)
C10.3772 (2)0.41199 (16)0.1694 (2)0.0237 (8)
C20.3194 (2)0.42974 (17)0.1905 (2)0.0275 (9)
H20.26680.42750.15400.033*
C30.3389 (3)0.45023 (17)0.2638 (3)0.0325 (10)
H30.29960.46300.27560.039*
C40.4174 (3)0.45222 (16)0.3212 (2)0.0322 (10)
C50.4762 (2)0.43513 (17)0.3016 (2)0.0266 (8)
H50.52870.43750.33820.032*
C60.4548 (2)0.41436 (16)0.2261 (2)0.0255 (8)
H60.49390.40180.21390.031*
C70.3581 (3)0.39964 (19)0.0878 (2)0.0339 (9)
H70.40040.37200.08820.041*
C80.3595 (3)0.46815 (19)0.0540 (2)0.0371 (10)
H8A0.32000.49710.05490.056*
H8B0.34950.46220.00210.056*
H8C0.40990.48890.08340.056*
C90.2837 (4)0.3638 (3)0.0395 (3)0.075 (2)
H9A0.28570.31850.05900.113*
H9B0.27570.36110.01210.113*
H9C0.24120.38860.04010.113*
C100.4381 (3)0.4735 (2)0.4003 (3)0.0489 (13)
H10A0.40280.45250.41540.073*
H10B0.43420.52240.40210.073*
H10C0.49070.45950.43450.073*
C110.5865 (2)0.30029 (17)0.3731 (2)0.0235 (8)
C120.6558 (2)0.30373 (18)0.3684 (2)0.0255 (8)
C130.7216 (2)0.3298 (2)0.4312 (2)0.0331 (9)
H130.76870.33090.42940.040*
C140.7204 (3)0.3538 (2)0.4953 (3)0.0359 (10)
H140.76590.37020.53650.043*
C150.6510 (2)0.35352 (19)0.4982 (2)0.0315 (9)
H150.64870.37080.54090.038*
C160.5856 (2)0.32755 (18)0.4379 (2)0.0269 (8)
H160.53870.32800.44010.032*
C170.6690 (2)0.28524 (18)0.3027 (2)0.0249 (8)
C180.6972 (2)0.22167 (18)0.2973 (2)0.0258 (8)
C190.7185 (2)0.2073 (2)0.2411 (2)0.0316 (9)
H190.73720.16420.23800.038*
C200.7113 (3)0.2582 (2)0.1901 (3)0.0359 (10)
H200.72530.24910.15210.043*
C210.6841 (2)0.3218 (2)0.1940 (2)0.0335 (9)
H210.68000.35570.15940.040*
C220.6627 (2)0.33488 (19)0.2500 (2)0.0279 (8)
C230.7143 (3)0.10637 (19)0.3367 (3)0.0392 (11)
H23A0.67700.09320.28560.059*
H23B0.70860.07740.37280.059*
H23C0.76630.10180.34290.059*
C240.6260 (3)0.4486 (2)0.2060 (3)0.0403 (11)
H24A0.59010.43370.15510.060*
H24B0.67570.45860.20870.060*
H24C0.60590.48910.21810.060*
C250.4883 (2)0.19855 (17)0.3755 (2)0.0226 (8)
H250.49130.22670.41770.027*
C260.5590 (2)0.15215 (17)0.4139 (2)0.0257 (8)
H26A0.55640.11640.37890.031*
H26B0.60660.17820.42880.031*
C270.5592 (2)0.12113 (19)0.4837 (2)0.0310 (9)
H27A0.56740.15700.52070.037*
H27B0.60220.08900.50720.037*
C280.4830 (2)0.08444 (19)0.4640 (2)0.0325 (9)
H28A0.47940.04390.43430.039*
H28B0.48350.06980.51100.039*
C290.4117 (2)0.12857 (19)0.4191 (2)0.0309 (9)
H29A0.36490.10120.40320.037*
H29B0.41050.16520.45160.037*
C300.4126 (2)0.15879 (17)0.3496 (2)0.0248 (8)
H30A0.36810.18900.32320.030*
H30B0.40920.12260.31460.030*
C310.5014 (2)0.21346 (17)0.2328 (2)0.0235 (8)
H310.55640.19990.25450.028*
C320.4824 (2)0.25709 (17)0.1633 (2)0.0253 (8)
H32A0.51470.29790.17910.030*
H32B0.42810.27130.14070.030*
C330.4959 (3)0.2195 (2)0.1038 (2)0.0327 (9)
H33A0.48130.24870.05960.039*
H33B0.55100.20850.12480.039*
C340.4483 (3)0.15464 (19)0.0796 (2)0.0358 (10)
H34A0.39310.16590.05330.043*
H34B0.46060.12940.04440.043*
C350.4661 (3)0.11097 (19)0.1486 (2)0.0325 (9)
H35A0.52020.09620.17150.039*
H35B0.43340.07040.13220.039*
C360.4525 (2)0.14818 (17)0.2079 (2)0.0264 (8)
H36A0.46660.11880.25190.032*
H36B0.39750.15960.18680.032*
Ru20.11771 (2)0.45313 (2)0.25706 (2)0.02841 (11)
Cl30.20723 (6)0.54512 (4)0.31822 (6)0.0308 (2)
Cl40.12802 (6)0.48211 (5)0.14440 (6)0.0320 (2)
P20.01492 (6)0.53415 (5)0.21645 (6)0.0281 (2)
O30.19526 (16)0.61509 (13)0.16977 (16)0.0319 (6)
O40.12390 (17)0.40226 (15)0.28418 (18)0.0409 (7)
C370.1490 (3)0.39587 (19)0.3650 (3)0.0339 (10)
C380.2032 (2)0.37920 (18)0.3386 (2)0.0293 (9)
H380.25640.38460.37160.035*
C390.1800 (3)0.35547 (18)0.2664 (3)0.0356 (10)
H390.21750.34430.25150.043*
C400.0995 (3)0.34759 (19)0.2137 (3)0.0403 (11)
C410.0448 (3)0.3627 (2)0.2383 (3)0.0414 (11)
H410.00830.35680.20530.050*
C420.0702 (3)0.38710 (19)0.3141 (3)0.0375 (11)
H420.03320.39740.32980.045*
C430.1769 (3)0.4108 (2)0.4482 (3)0.0438 (12)
H430.13490.43470.45280.053*
C440.1908 (4)0.3431 (2)0.4895 (3)0.0590 (15)
H44A0.14300.31740.46840.088*
H44B0.20840.35120.54300.088*
H44C0.23000.31780.48350.088*
C450.2497 (4)0.4544 (2)0.4859 (3)0.0578 (15)
H45A0.29200.43170.48280.087*
H45B0.26330.46160.53860.087*
H45C0.24000.49780.46010.087*
C460.0759 (3)0.3237 (2)0.1349 (3)0.0546 (14)
H46A0.02010.32710.10470.082*
H46B0.09160.27700.13640.082*
H46C0.10060.35160.11260.082*
C470.0779 (2)0.48924 (18)0.1583 (2)0.0298 (9)
C480.1455 (2)0.48246 (18)0.1672 (2)0.0281 (8)
C490.2067 (2)0.44357 (19)0.1142 (2)0.0315 (9)
H490.25130.43870.12020.038*
C500.2050 (2)0.41191 (19)0.0536 (2)0.0336 (9)
H500.24740.38620.01920.040*
C510.1395 (2)0.4188 (2)0.0443 (3)0.0364 (10)
H510.13720.39790.00330.044*
C520.0778 (2)0.45664 (19)0.0960 (3)0.0339 (10)
H520.03370.46070.08920.041*
C530.1596 (2)0.50943 (19)0.2295 (2)0.0295 (9)
C540.1899 (2)0.5741 (2)0.2270 (2)0.0300 (9)
C550.2122 (2)0.5943 (2)0.2811 (3)0.0364 (10)
H550.23160.63810.28010.044*
C560.2050 (3)0.5477 (2)0.3363 (3)0.0449 (12)
H560.22070.56050.37210.054*
C570.1756 (3)0.4836 (2)0.3403 (3)0.0434 (11)
H570.17050.45330.37870.052*
C580.1536 (2)0.4648 (2)0.2865 (3)0.0345 (10)
C590.2050 (3)0.68606 (19)0.1768 (3)0.0354 (10)
H59A0.19900.71030.13770.053*
H59B0.16620.70160.22620.053*
H59C0.25620.69440.17110.053*
C600.1214 (3)0.3521 (2)0.3364 (3)0.0505 (13)
H60A0.10260.30990.32650.076*
H60B0.17300.34550.33050.076*
H60C0.08700.36690.38770.076*
C610.0064 (2)0.59682 (19)0.1432 (3)0.0315 (9)
H610.00100.56870.09940.038*
C620.0677 (2)0.6395 (2)0.1133 (3)0.0362 (10)
H62A0.11190.61020.10320.043*
H62B0.06270.67300.15150.043*
C630.0813 (3)0.6754 (2)0.0408 (3)0.0420 (11)
H63A0.12780.70360.02260.050*
H63B0.09000.64170.00170.050*
C640.0122 (3)0.7195 (2)0.0542 (3)0.0448 (11)
H64A0.02130.74040.00630.054*
H64B0.00660.75590.08980.054*
C650.0622 (3)0.6782 (2)0.0862 (3)0.0376 (10)
H65A0.10580.70820.09660.045*
H65B0.05850.64480.04840.045*
C660.0772 (2)0.64132 (19)0.1594 (3)0.0343 (10)
H66A0.08560.67440.19910.041*
H66B0.12360.61310.17710.041*
C670.0060 (2)0.58350 (19)0.2913 (2)0.0314 (9)
H670.04880.59780.27010.038*
C680.0244 (3)0.5391 (2)0.3605 (3)0.0365 (10)
H68A0.07850.52420.38300.044*
H68B0.00860.49880.34440.044*
C690.0115 (3)0.5774 (2)0.4203 (3)0.0453 (11)
H69A0.04330.58960.39930.054*
H69B0.02520.54810.46440.054*
C700.0610 (3)0.6411 (3)0.4448 (3)0.0511 (13)
H70A0.04970.66670.48030.061*
H70B0.11590.62840.47090.061*
C710.0452 (3)0.6850 (2)0.3772 (3)0.0515 (13)
H71A0.08010.72410.39440.062*
H71B0.00800.70200.35520.062*
C720.0558 (3)0.6480 (2)0.3162 (3)0.0380 (10)
H72A0.11050.63590.33570.046*
H72B0.04100.67780.27240.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0215 (2)0.01744 (15)0.02680 (18)0.00103 (10)0.01469 (15)0.00164 (10)
Cl10.0269 (5)0.0244 (4)0.0302 (5)0.0029 (3)0.0192 (4)0.0034 (3)
Cl20.0258 (5)0.0221 (4)0.0314 (5)0.0006 (3)0.0137 (4)0.0002 (3)
P10.0193 (5)0.0175 (4)0.0245 (5)0.0013 (3)0.0122 (4)0.0013 (3)
O10.0334 (17)0.0230 (13)0.0375 (16)0.0036 (11)0.0216 (14)0.0033 (11)
O20.0303 (17)0.0280 (14)0.0454 (18)0.0040 (12)0.0220 (15)0.0080 (12)
C10.031 (2)0.0181 (16)0.0247 (19)0.0002 (15)0.0151 (18)0.0124 (14)
C20.026 (2)0.0175 (16)0.039 (2)0.0127 (15)0.0153 (19)0.0206 (15)
C30.041 (3)0.0167 (17)0.055 (3)0.0120 (16)0.036 (3)0.0093 (16)
C40.058 (3)0.0095 (16)0.036 (2)0.0049 (16)0.029 (2)0.0083 (14)
C50.027 (2)0.0149 (16)0.033 (2)0.0127 (15)0.0110 (19)0.0028 (14)
C60.029 (2)0.0179 (16)0.041 (2)0.0032 (15)0.026 (2)0.0066 (15)
C70.045 (3)0.030 (2)0.029 (2)0.0005 (18)0.020 (2)0.0018 (16)
C80.057 (3)0.029 (2)0.036 (2)0.0077 (19)0.031 (2)0.0073 (17)
C90.084 (5)0.106 (5)0.023 (3)0.053 (4)0.014 (3)0.001 (3)
C100.086 (4)0.031 (2)0.045 (3)0.015 (2)0.043 (3)0.0092 (19)
C110.023 (2)0.0212 (17)0.028 (2)0.0001 (14)0.0136 (18)0.0002 (14)
C120.024 (2)0.0229 (18)0.033 (2)0.0020 (15)0.0155 (19)0.0021 (15)
C130.019 (2)0.042 (2)0.038 (2)0.0065 (17)0.013 (2)0.0056 (18)
C140.026 (3)0.042 (2)0.033 (2)0.0061 (18)0.009 (2)0.0090 (18)
C150.033 (3)0.032 (2)0.031 (2)0.0037 (17)0.015 (2)0.0080 (16)
C160.022 (2)0.0285 (19)0.032 (2)0.0003 (16)0.0147 (19)0.0007 (16)
C170.024 (2)0.0261 (18)0.029 (2)0.0012 (15)0.0156 (18)0.0018 (15)
C180.020 (2)0.0291 (19)0.031 (2)0.0022 (15)0.0135 (18)0.0022 (15)
C190.025 (2)0.035 (2)0.040 (2)0.0033 (17)0.020 (2)0.0004 (17)
C200.033 (3)0.046 (2)0.037 (2)0.0030 (19)0.024 (2)0.0013 (19)
C210.033 (3)0.039 (2)0.035 (2)0.0063 (18)0.021 (2)0.0060 (18)
C220.020 (2)0.0284 (19)0.034 (2)0.0024 (16)0.0126 (19)0.0013 (16)
C230.047 (3)0.027 (2)0.054 (3)0.0074 (19)0.032 (3)0.0035 (19)
C240.037 (3)0.031 (2)0.058 (3)0.0012 (18)0.026 (3)0.0140 (19)
C250.023 (2)0.0211 (17)0.028 (2)0.0020 (14)0.0153 (18)0.0023 (14)
C260.024 (2)0.0211 (17)0.033 (2)0.0013 (15)0.0141 (19)0.0007 (14)
C270.034 (3)0.0260 (19)0.035 (2)0.0056 (17)0.018 (2)0.0036 (16)
C280.040 (3)0.0262 (19)0.035 (2)0.0031 (17)0.021 (2)0.0091 (16)
C290.035 (3)0.0265 (19)0.039 (2)0.0015 (17)0.025 (2)0.0033 (16)
C300.026 (2)0.0222 (17)0.029 (2)0.0007 (15)0.0156 (18)0.0022 (14)
C310.022 (2)0.0205 (17)0.030 (2)0.0032 (14)0.0147 (18)0.0001 (14)
C320.030 (2)0.0198 (17)0.031 (2)0.0030 (15)0.0182 (19)0.0006 (14)
C330.044 (3)0.032 (2)0.028 (2)0.0043 (18)0.023 (2)0.0001 (16)
C340.046 (3)0.032 (2)0.028 (2)0.0030 (18)0.016 (2)0.0031 (16)
C350.043 (3)0.0243 (19)0.030 (2)0.0005 (17)0.017 (2)0.0013 (15)
C360.028 (2)0.0201 (17)0.031 (2)0.0002 (15)0.0135 (19)0.0012 (14)
Ru20.0228 (2)0.02222 (17)0.0449 (2)0.00017 (11)0.01981 (17)0.00099 (12)
Cl30.0262 (6)0.0247 (4)0.0429 (6)0.0014 (4)0.0175 (5)0.0024 (4)
Cl40.0266 (6)0.0308 (5)0.0447 (6)0.0016 (4)0.0219 (5)0.0013 (4)
P20.0206 (6)0.0250 (5)0.0415 (6)0.0002 (4)0.0170 (5)0.0031 (4)
O30.0325 (17)0.0276 (14)0.0412 (17)0.0050 (12)0.0221 (15)0.0003 (12)
O40.0315 (18)0.0410 (17)0.0512 (19)0.0036 (13)0.0204 (16)0.0143 (14)
C370.039 (3)0.0228 (19)0.045 (3)0.0032 (17)0.024 (2)0.0075 (17)
C380.023 (2)0.0211 (18)0.043 (2)0.0086 (15)0.015 (2)0.0097 (16)
C390.037 (3)0.0180 (18)0.061 (3)0.0073 (16)0.031 (3)0.0024 (18)
C400.051 (3)0.0177 (19)0.056 (3)0.0084 (18)0.028 (3)0.0107 (18)
C410.032 (3)0.0228 (19)0.069 (3)0.0147 (18)0.024 (3)0.002 (2)
C420.036 (3)0.0231 (19)0.069 (3)0.0000 (17)0.037 (3)0.0077 (19)
C430.055 (3)0.031 (2)0.058 (3)0.007 (2)0.037 (3)0.004 (2)
C440.086 (5)0.039 (3)0.062 (4)0.004 (3)0.043 (3)0.009 (2)
C450.088 (5)0.044 (3)0.043 (3)0.015 (3)0.033 (3)0.000 (2)
C460.067 (4)0.035 (2)0.060 (3)0.013 (2)0.029 (3)0.004 (2)
C470.024 (2)0.0261 (19)0.043 (2)0.0002 (16)0.019 (2)0.0018 (17)
C480.023 (2)0.0249 (18)0.038 (2)0.0020 (15)0.0152 (19)0.0018 (16)
C490.022 (2)0.035 (2)0.041 (2)0.0005 (17)0.018 (2)0.0035 (17)
C500.024 (2)0.031 (2)0.041 (2)0.0032 (17)0.012 (2)0.0031 (17)
C510.030 (3)0.035 (2)0.045 (3)0.0006 (18)0.018 (2)0.0094 (19)
C520.023 (2)0.033 (2)0.051 (3)0.0003 (17)0.022 (2)0.0068 (18)
C530.020 (2)0.034 (2)0.036 (2)0.0034 (16)0.0142 (19)0.0003 (17)
C540.022 (2)0.038 (2)0.033 (2)0.0036 (17)0.0148 (19)0.0007 (17)
C550.026 (2)0.045 (2)0.043 (3)0.0018 (18)0.020 (2)0.011 (2)
C560.042 (3)0.062 (3)0.040 (3)0.004 (2)0.027 (3)0.006 (2)
C570.038 (3)0.056 (3)0.041 (3)0.009 (2)0.023 (2)0.000 (2)
C580.020 (2)0.041 (2)0.044 (3)0.0018 (17)0.016 (2)0.0069 (19)
C590.031 (3)0.0247 (19)0.054 (3)0.0037 (17)0.023 (2)0.0037 (18)
C600.041 (3)0.048 (3)0.055 (3)0.001 (2)0.017 (3)0.022 (2)
C610.023 (2)0.028 (2)0.047 (3)0.0004 (16)0.020 (2)0.0025 (17)
C620.025 (2)0.031 (2)0.055 (3)0.0028 (17)0.021 (2)0.0000 (19)
C630.030 (3)0.032 (2)0.060 (3)0.0019 (18)0.018 (2)0.005 (2)
C640.039 (3)0.033 (2)0.061 (3)0.001 (2)0.022 (3)0.007 (2)
C650.031 (3)0.031 (2)0.054 (3)0.0008 (18)0.023 (2)0.0019 (19)
C660.026 (2)0.029 (2)0.052 (3)0.0005 (17)0.022 (2)0.0025 (18)
C670.023 (2)0.030 (2)0.043 (2)0.0002 (16)0.018 (2)0.0059 (17)
C680.025 (2)0.042 (2)0.041 (3)0.0032 (18)0.014 (2)0.0039 (19)
C690.034 (3)0.060 (3)0.046 (3)0.002 (2)0.022 (2)0.010 (2)
C700.034 (3)0.070 (3)0.054 (3)0.006 (2)0.024 (3)0.027 (3)
C710.045 (3)0.046 (3)0.073 (4)0.007 (2)0.036 (3)0.027 (3)
C720.028 (3)0.035 (2)0.051 (3)0.0016 (18)0.018 (2)0.0119 (19)
Geometric parameters (Å, º) top
Ru1—C62.205 (3)Ru2—C412.228 (4)
Ru1—C52.227 (3)Ru2—C422.230 (4)
Ru1—C42.247 (3)Ru2—C402.244 (4)
Ru1—C22.258 (3)Ru2—C382.263 (4)
Ru1—C12.266 (3)Ru2—C392.265 (4)
Ru1—C32.270 (3)Ru2—C372.276 (4)
Ru1—P12.4206 (10)Ru2—P22.4181 (11)
Ru1—Cl12.4441 (10)Ru2—Cl32.4426 (11)
Ru1—Cl22.4445 (11)Ru2—Cl42.4508 (11)
P1—C111.884 (4)P2—C471.877 (4)
P1—C311.886 (4)P2—C671.883 (4)
P1—C251.893 (4)P2—C611.884 (4)
O1—C181.379 (4)O3—C541.380 (5)
O1—C231.446 (4)O3—C591.445 (4)
O2—C221.387 (5)O4—C581.390 (5)
O2—C241.443 (5)O4—C601.438 (5)
C1—C61.419 (6)C37—C421.416 (7)
C1—C21.443 (5)C37—C381.445 (6)
C1—C71.528 (5)C37—C431.532 (7)
C2—C31.405 (6)C38—C391.391 (6)
C2—H20.9500C38—H380.9500
C3—C41.435 (7)C39—C401.448 (7)
C3—H30.9500C39—H390.9500
C4—C51.435 (6)C40—C411.420 (6)
C4—C101.513 (6)C40—C461.510 (7)
C5—C61.440 (5)C41—C421.453 (7)
C5—H50.9500C41—H410.9500
C6—H60.9500C42—H420.9500
C7—C91.509 (7)C43—C451.541 (7)
C7—C81.535 (5)C43—C441.544 (6)
C7—H71.0000C43—H431.0000
C8—H8A0.9800C44—H44A0.9800
C8—H8B0.9800C44—H44B0.9800
C8—H8C0.9800C44—H44C0.9800
C9—H9A0.9800C45—H45A0.9800
C9—H9B0.9800C45—H45B0.9800
C9—H9C0.9800C45—H45C0.9800
C10—H10A0.9800C46—H46A0.9800
C10—H10B0.9800C46—H46B0.9800
C10—H10C0.9800C46—H46C0.9800
C11—C121.419 (5)C47—C521.418 (6)
C11—C161.428 (5)C47—C481.437 (5)
C12—C131.420 (6)C48—C491.411 (6)
C12—C171.516 (5)C48—C531.513 (6)
C13—C141.394 (6)C49—C501.394 (6)
C13—H130.9500C49—H490.9500
C14—C151.400 (6)C50—C511.400 (6)
C14—H140.9500C50—H500.9500
C15—C161.393 (6)C51—C521.397 (6)
C15—H150.9500C51—H510.9500
C16—H160.9500C52—H520.9500
C17—C181.411 (5)C53—C541.414 (6)
C17—C221.417 (5)C53—C581.416 (6)
C18—C191.414 (5)C54—C551.417 (5)
C19—C201.407 (6)C55—C561.407 (6)
C19—H190.9500C55—H550.9500
C20—C211.394 (6)C56—C571.392 (7)
C20—H200.9500C56—H560.9500
C21—C221.408 (5)C57—C581.401 (6)
C21—H210.9500C57—H570.9500
C23—H23A0.9800C59—H59A0.9800
C23—H23B0.9800C59—H59B0.9800
C23—H23C0.9800C59—H59C0.9800
C24—H24A0.9800C60—H60A0.9800
C24—H24B0.9800C60—H60B0.9800
C24—H24C0.9800C60—H60C0.9800
C25—C261.546 (5)C61—C621.550 (6)
C25—C301.552 (5)C61—C661.558 (5)
C25—H251.0000C61—H611.0000
C26—C271.540 (5)C62—C631.537 (6)
C26—H26A0.9900C62—H62A0.9900
C26—H26B0.9900C62—H62B0.9900
C27—C281.549 (6)C63—C641.540 (6)
C27—H27A0.9900C63—H63A0.9900
C27—H27B0.9900C63—H63B0.9900
C28—C291.542 (6)C64—C651.538 (6)
C28—H28A0.9900C64—H64A0.9900
C28—H28B0.9900C64—H64B0.9900
C29—C301.537 (5)C65—C661.551 (6)
C29—H29A0.9900C65—H65A0.9900
C29—H29B0.9900C65—H65B0.9900
C30—H30A0.9900C66—H66A0.9900
C30—H30B0.9900C66—H66B0.9900
C31—C321.541 (5)C67—C681.546 (6)
C31—C361.558 (5)C67—C721.553 (6)
C31—H311.0000C67—H671.0000
C32—C331.544 (5)C68—C691.551 (6)
C32—H32A0.9900C68—H68A0.9900
C32—H32B0.9900C68—H68B0.9900
C33—C341.538 (6)C69—C701.537 (7)
C33—H33A0.9900C69—H69A0.9900
C33—H33B0.9900C69—H69B0.9900
C34—C351.538 (6)C70—C711.527 (8)
C34—H34A0.9900C70—H70A0.9900
C34—H34B0.9900C70—H70B0.9900
C35—C361.539 (5)C71—C721.535 (6)
C35—H35A0.9900C71—H71A0.9900
C35—H35B0.9900C71—H71B0.9900
C36—H36A0.9900C72—H72A0.9900
C36—H36B0.9900C72—H72B0.9900
C6—Ru1—C537.92 (14)C41—Ru2—C4238.05 (18)
C6—Ru1—C467.73 (14)C41—Ru2—C4037.03 (17)
C5—Ru1—C437.40 (15)C42—Ru2—C4067.57 (16)
C6—Ru1—C266.40 (14)C41—Ru2—C3878.30 (17)
C5—Ru1—C278.81 (15)C42—Ru2—C3865.82 (15)
C4—Ru1—C266.52 (16)C40—Ru2—C3866.44 (17)
C6—Ru1—C136.97 (15)C41—Ru2—C3966.45 (17)
C5—Ru1—C167.67 (14)C42—Ru2—C3978.11 (15)
C4—Ru1—C179.89 (14)C40—Ru2—C3937.45 (18)
C2—Ru1—C137.20 (13)C38—Ru2—C3935.77 (16)
C6—Ru1—C378.43 (14)C41—Ru2—C3767.52 (18)
C5—Ru1—C366.58 (15)C42—Ru2—C3736.61 (17)
C4—Ru1—C337.03 (17)C40—Ru2—C3779.91 (17)
C2—Ru1—C336.15 (15)C38—Ru2—C3737.12 (14)
C1—Ru1—C366.44 (14)C39—Ru2—C3766.26 (15)
C6—Ru1—P193.14 (10)C41—Ru2—P296.33 (13)
C5—Ru1—P196.05 (11)C42—Ru2—P294.49 (11)
C4—Ru1—P1123.63 (13)C40—Ru2—P2122.70 (14)
C2—Ru1—P1152.93 (10)C38—Ru2—P2154.49 (11)
C1—Ru1—P1116.23 (10)C39—Ru2—P2160.14 (12)
C3—Ru1—P1160.65 (13)C37—Ru2—P2117.74 (11)
C6—Ru1—Cl1147.88 (11)C41—Ru2—Cl3162.00 (14)
C5—Ru1—Cl1110.06 (10)C42—Ru2—Cl3124.32 (13)
C4—Ru1—Cl185.41 (10)C40—Ru2—Cl3147.92 (13)
C2—Ru1—Cl1119.60 (10)C38—Ru2—Cl390.39 (11)
C1—Ru1—Cl1156.45 (10)C39—Ru2—Cl3111.60 (12)
C3—Ru1—Cl190.82 (10)C37—Ru2—Cl395.02 (12)
P1—Ru1—Cl187.23 (4)P2—Ru2—Cl387.86 (4)
C6—Ru1—Cl2124.08 (11)C41—Ru2—Cl4111.36 (14)
C5—Ru1—Cl2161.65 (10)C42—Ru2—Cl4149.39 (13)
C4—Ru1—Cl2147.67 (13)C40—Ru2—Cl485.79 (13)
C2—Ru1—Cl289.81 (11)C38—Ru2—Cl4118.01 (10)
C1—Ru1—Cl294.58 (10)C39—Ru2—Cl489.98 (12)
C3—Ru1—Cl2111.66 (12)C37—Ru2—Cl4154.97 (11)
P1—Ru1—Cl287.53 (4)P2—Ru2—Cl487.28 (4)
Cl1—Ru1—Cl288.04 (4)Cl3—Ru2—Cl486.26 (4)
C11—P1—C31108.60 (17)C47—P2—C67108.53 (18)
C11—P1—C2596.86 (17)C47—P2—C6197.24 (19)
C31—P1—C25106.60 (16)C67—P2—C61106.12 (18)
C11—P1—Ru1108.18 (11)C47—P2—Ru2108.16 (12)
C31—P1—Ru1119.13 (13)C67—P2—Ru2117.37 (14)
C25—P1—Ru1115.06 (11)C61—P2—Ru2117.35 (12)
C18—O1—C23116.7 (3)C54—O3—C59117.3 (3)
C22—O2—C24117.6 (3)C58—O4—C60117.9 (4)
C6—C1—C2117.3 (3)C42—C37—C38117.2 (4)
C6—C1—C7120.0 (3)C42—C37—C43121.7 (4)
C2—C1—C7122.2 (4)C38—C37—C43120.3 (4)
C6—C1—Ru169.20 (19)C42—C37—Ru269.9 (2)
C2—C1—Ru171.12 (18)C38—C37—Ru271.0 (2)
C7—C1—Ru1137.1 (2)C43—C37—Ru2138.6 (3)
C3—C2—C1121.5 (4)C39—C38—C37122.1 (4)
C3—C2—Ru172.4 (2)C39—C38—Ru272.2 (2)
C1—C2—Ru171.69 (19)C37—C38—Ru271.9 (2)
C3—C2—H2119.2C39—C38—H38118.9
C1—C2—H2119.2C37—C38—H38118.9
Ru1—C2—H2129.1Ru2—C38—H38129.6
C2—C3—C4120.9 (4)C38—C39—C40120.9 (4)
C2—C3—Ru171.5 (2)C38—C39—Ru272.0 (2)
C4—C3—Ru170.62 (19)C40—C39—Ru270.5 (2)
C2—C3—H3119.5C38—C39—H39119.6
C4—C3—H3119.5C40—C39—H39119.6
Ru1—C3—H3131.3Ru2—C39—H39130.6
C3—C4—C5118.7 (4)C41—C40—C39118.3 (4)
C3—C4—C10120.8 (4)C41—C40—C46122.0 (5)
C5—C4—C10120.5 (4)C39—C40—C46119.7 (4)
C3—C4—Ru172.3 (2)C41—C40—Ru270.9 (2)
C5—C4—Ru170.53 (19)C39—C40—Ru272.1 (2)
C10—C4—Ru1129.9 (3)C46—C40—Ru2128.4 (3)
C4—C5—C6119.3 (4)C40—C41—C42120.0 (4)
C4—C5—Ru172.1 (2)C40—C41—Ru272.1 (2)
C6—C5—Ru170.21 (19)C42—C41—Ru271.0 (2)
C4—C5—H5120.3C40—C41—H41120.0
C6—C5—H5120.3C42—C41—H41120.0
Ru1—C5—H5129.8Ru2—C41—H41129.2
C1—C6—C5122.1 (3)C37—C42—C41121.5 (4)
C1—C6—Ru173.83 (19)C37—C42—Ru273.5 (2)
C5—C6—Ru171.87 (19)C41—C42—Ru270.9 (2)
C1—C6—H6119.0C37—C42—H42119.2
C5—C6—H6119.0C41—C42—H42119.2
Ru1—C6—H6127.5Ru2—C42—H42128.8
C9—C7—C1116.4 (4)C37—C43—C45114.9 (4)
C9—C7—C8110.5 (4)C37—C43—C44107.7 (4)
C1—C7—C8106.9 (3)C45—C43—C44109.9 (4)
C9—C7—H7107.6C37—C43—H43108.0
C1—C7—H7107.6C45—C43—H43108.0
C8—C7—H7107.6C44—C43—H43108.0
C7—C8—H8A109.5C43—C44—H44A109.5
C7—C8—H8B109.5C43—C44—H44B109.5
H8A—C8—H8B109.5H44A—C44—H44B109.5
C7—C8—H8C109.5C43—C44—H44C109.5
H8A—C8—H8C109.5H44A—C44—H44C109.5
H8B—C8—H8C109.5H44B—C44—H44C109.5
C7—C9—H9A109.5C43—C45—H45A109.5
C7—C9—H9B109.5C43—C45—H45B109.5
H9A—C9—H9B109.5H45A—C45—H45B109.5
C7—C9—H9C109.5C43—C45—H45C109.5
H9A—C9—H9C109.5H45A—C45—H45C109.5
H9B—C9—H9C109.5H45B—C45—H45C109.5
C4—C10—H10A109.5C40—C46—H46A109.5
C4—C10—H10B109.5C40—C46—H46B109.5
H10A—C10—H10B109.5H46A—C46—H46B109.5
C4—C10—H10C109.5C40—C46—H46C109.5
H10A—C10—H10C109.5H46A—C46—H46C109.5
H10B—C10—H10C109.5H46B—C46—H46C109.5
C12—C11—C16118.3 (3)C52—C47—C48117.4 (4)
C12—C11—P1130.7 (3)C52—C47—P2111.3 (3)
C16—C11—P1110.9 (3)C48—C47—P2131.3 (3)
C11—C12—C13117.7 (3)C49—C48—C47118.2 (4)
C11—C12—C17128.2 (4)C49—C48—C53113.5 (3)
C13—C12—C17114.1 (3)C47—C48—C53128.3 (4)
C14—C13—C12123.1 (4)C50—C49—C48123.2 (4)
C14—C13—H13118.5C50—C49—H49118.4
C12—C13—H13118.5C48—C49—H49118.4
C13—C14—C15119.0 (4)C49—C50—C51118.8 (4)
C13—C14—H14120.5C49—C50—H50120.6
C15—C14—H14120.5C51—C50—H50120.6
C16—C15—C14119.3 (4)C52—C51—C50119.4 (4)
C16—C15—H15120.4C52—C51—H51120.3
C14—C15—H15120.4C50—C51—H51120.3
C15—C16—C11122.4 (4)C51—C52—C47123.0 (4)
C15—C16—H16118.8C51—C52—H52118.5
C11—C16—H16118.8C47—C52—H52118.5
C18—C17—C22117.8 (3)C54—C53—C58118.3 (4)
C18—C17—C12121.7 (3)C54—C53—C48122.5 (4)
C22—C17—C12119.9 (3)C58—C53—C48118.5 (3)
O1—C18—C17115.1 (3)O3—C54—C53115.7 (3)
O1—C18—C19123.3 (3)O3—C54—C55123.4 (4)
C17—C18—C19121.6 (3)C53—C54—C55120.9 (4)
C20—C19—C18118.5 (4)C56—C55—C54118.2 (4)
C20—C19—H19120.8C56—C55—H55120.9
C18—C19—H19120.8C54—C55—H55120.9
C21—C20—C19121.5 (4)C57—C56—C55122.5 (4)
C21—C20—H20119.2C57—C56—H56118.7
C19—C20—H20119.2C55—C56—H56118.7
C20—C21—C22119.1 (4)C56—C57—C58118.3 (4)
C20—C21—H21120.5C56—C57—H57120.9
C22—C21—H21120.5C58—C57—H57120.9
O2—C22—C21123.6 (3)O4—C58—C57123.9 (4)
O2—C22—C17115.0 (3)O4—C58—C53114.3 (4)
C21—C22—C17121.5 (4)C57—C58—C53121.9 (4)
O1—C23—H23A109.5O3—C59—H59A109.5
O1—C23—H23B109.5O3—C59—H59B109.5
H23A—C23—H23B109.5H59A—C59—H59B109.5
O1—C23—H23C109.5O3—C59—H59C109.5
H23A—C23—H23C109.5H59A—C59—H59C109.5
H23B—C23—H23C109.5H59B—C59—H59C109.5
O2—C24—H24A109.5O4—C60—H60A109.5
O2—C24—H24B109.5O4—C60—H60B109.5
H24A—C24—H24B109.5H60A—C60—H60B109.5
O2—C24—H24C109.5O4—C60—H60C109.5
H24A—C24—H24C109.5H60A—C60—H60C109.5
H24B—C24—H24C109.5H60B—C60—H60C109.5
C26—C25—C30111.3 (3)C62—C61—C66111.1 (3)
C26—C25—P1116.1 (2)C62—C61—P2112.9 (3)
C30—C25—P1116.8 (3)C66—C61—P2118.4 (3)
C26—C25—H25103.5C62—C61—H61104.3
C30—C25—H25103.5C66—C61—H61104.3
P1—C25—H25103.5P2—C61—H61104.3
C27—C26—C25108.2 (3)C63—C62—C61109.6 (3)
C27—C26—H26A110.1C63—C62—H62A109.8
C25—C26—H26A110.1C61—C62—H62A109.8
C27—C26—H26B110.1C63—C62—H62B109.8
C25—C26—H26B110.1C61—C62—H62B109.8
H26A—C26—H26B108.4H62A—C62—H62B108.2
C26—C27—C28111.9 (3)C62—C63—C64110.9 (4)
C26—C27—H27A109.2C62—C63—H63A109.5
C28—C27—H27A109.2C64—C63—H63A109.5
C26—C27—H27B109.2C62—C63—H63B109.5
C28—C27—H27B109.2C64—C63—H63B109.5
H27A—C27—H27B107.9H63A—C63—H63B108.0
C29—C28—C27113.0 (3)C65—C64—C63111.2 (4)
C29—C28—H28A109.0C65—C64—H64A109.4
C27—C28—H28A109.0C63—C64—H64A109.4
C29—C28—H28B109.0C65—C64—H64B109.4
C27—C28—H28B109.0C63—C64—H64B109.4
H28A—C28—H28B107.8H64A—C64—H64B108.0
C30—C29—C28111.1 (3)C64—C65—C66111.7 (4)
C30—C29—H29A109.4C64—C65—H65A109.3
C28—C29—H29A109.4C66—C65—H65A109.3
C30—C29—H29B109.4C64—C65—H65B109.3
C28—C29—H29B109.4C66—C65—H65B109.3
H29A—C29—H29B108.0H65A—C65—H65B107.9
C29—C30—C25108.5 (3)C65—C66—C61108.7 (4)
C29—C30—H30A110.0C65—C66—H66A109.9
C25—C30—H30A110.0C61—C66—H66A109.9
C29—C30—H30B110.0C65—C66—H66B109.9
C25—C30—H30B110.0C61—C66—H66B109.9
H30A—C30—H30B108.4H66A—C66—H66B108.3
C32—C31—C36109.3 (3)C68—C67—C72109.8 (4)
C32—C31—P1111.4 (2)C68—C67—P2110.9 (3)
C36—C31—P1113.8 (2)C72—C67—P2114.0 (3)
C32—C31—H31107.3C68—C67—H67107.3
C36—C31—H31107.3C72—C67—H67107.3
P1—C31—H31107.3P2—C67—H67107.3
C31—C32—C33112.3 (3)C67—C68—C69111.7 (4)
C31—C32—H32A109.1C67—C68—H68A109.3
C33—C32—H32A109.1C69—C68—H68A109.3
C31—C32—H32B109.1C67—C68—H68B109.3
C33—C32—H32B109.1C69—C68—H68B109.3
H32A—C32—H32B107.9H68A—C68—H68B108.0
C34—C33—C32110.6 (3)C70—C69—C68110.0 (4)
C34—C33—H33A109.5C70—C69—H69A109.7
C32—C33—H33A109.5C68—C69—H69A109.7
C34—C33—H33B109.5C70—C69—H69B109.7
C32—C33—H33B109.5C68—C69—H69B109.7
H33A—C33—H33B108.1H69A—C69—H69B108.2
C35—C34—C33110.1 (3)C71—C70—C69110.9 (4)
C35—C34—H34A109.6C71—C70—H70A109.5
C33—C34—H34A109.6C69—C70—H70A109.5
C35—C34—H34B109.6C71—C70—H70B109.5
C33—C34—H34B109.6C69—C70—H70B109.5
H34A—C34—H34B108.1H70A—C70—H70B108.0
C34—C35—C36112.6 (3)C70—C71—C72113.4 (4)
C34—C35—H35A109.1C70—C71—H71A108.9
C36—C35—H35A109.1C72—C71—H71A108.9
C34—C35—H35B109.1C70—C71—H71B108.9
C36—C35—H35B109.1C72—C71—H71B108.9
H35A—C35—H35B107.8H71A—C71—H71B107.7
C35—C36—C31110.1 (3)C71—C72—C67110.5 (4)
C35—C36—H36A109.6C71—C72—H72A109.5
C31—C36—H36A109.6C67—C72—H72A109.5
C35—C36—H36B109.6C71—C72—H72B109.5
C31—C36—H36B109.6C67—C72—H72B109.5
H36A—C36—H36B108.1H72A—C72—H72B108.1
C6—C1—C2—C31.6 (5)C42—C37—C38—C390.0 (5)
C7—C1—C2—C3170.8 (3)C43—C37—C38—C39170.0 (3)
Ru1—C1—C2—C354.8 (3)Ru2—C37—C38—C3954.2 (3)
C6—C1—C2—Ru153.2 (3)C42—C37—C38—Ru254.2 (3)
C7—C1—C2—Ru1134.4 (3)C43—C37—C38—Ru2135.8 (3)
C1—C2—C3—C42.0 (5)C37—C38—C39—C401.2 (6)
Ru1—C2—C3—C452.5 (3)Ru2—C38—C39—C4052.9 (3)
C1—C2—C3—Ru154.5 (3)C37—C38—C39—Ru254.1 (3)
C2—C3—C4—C52.2 (5)C38—C39—C40—C412.0 (6)
Ru1—C3—C4—C555.0 (3)Ru2—C39—C40—C4155.6 (3)
C2—C3—C4—C10179.3 (3)C38—C39—C40—C46178.1 (4)
Ru1—C3—C4—C10126.4 (3)Ru2—C39—C40—C46124.5 (4)
C2—C3—C4—Ru152.8 (3)C38—C39—C40—Ru253.6 (3)
C3—C4—C5—C62.1 (5)C39—C40—C41—C421.7 (6)
C10—C4—C5—C6179.4 (3)C46—C40—C41—C42178.4 (4)
Ru1—C4—C5—C653.8 (3)Ru2—C40—C41—C4254.5 (3)
C3—C4—C5—Ru155.9 (3)C39—C40—C41—Ru256.2 (3)
C10—C4—C5—Ru1125.5 (3)C46—C40—C41—Ru2123.9 (4)
C2—C1—C6—C51.5 (5)C38—C37—C42—C410.3 (5)
C7—C1—C6—C5171.0 (3)C43—C37—C42—C41170.2 (4)
Ru1—C1—C6—C555.6 (3)Ru2—C37—C42—C4154.4 (3)
C2—C1—C6—Ru154.1 (3)C38—C37—C42—Ru254.7 (3)
C7—C1—C6—Ru1133.3 (3)C43—C37—C42—Ru2135.4 (4)
C4—C5—C6—C11.8 (5)C40—C41—C42—C370.6 (6)
Ru1—C5—C6—C156.5 (3)Ru2—C41—C42—C3755.6 (3)
C4—C5—C6—Ru154.7 (3)C40—C41—C42—Ru255.0 (3)
C6—C1—C7—C9149.8 (4)C42—C37—C43—C45148.6 (4)
C2—C1—C7—C938.0 (6)C38—C37—C43—C4541.8 (5)
Ru1—C1—C7—C958.7 (6)Ru2—C37—C43—C4553.4 (6)
C6—C1—C7—C886.2 (4)C42—C37—C43—C4488.6 (5)
C2—C1—C7—C886.0 (4)C38—C37—C43—C4481.0 (5)
Ru1—C1—C7—C8177.3 (3)Ru2—C37—C43—C44176.3 (4)
C31—P1—C11—C128.6 (4)C67—P2—C47—C52173.9 (3)
C25—P1—C11—C12118.7 (4)C61—P2—C47—C5264.2 (3)
Ru1—P1—C11—C12122.0 (3)Ru2—P2—C47—C5257.7 (3)
C31—P1—C11—C16169.5 (3)C67—P2—C47—C486.9 (4)
C25—P1—C11—C1659.4 (3)C61—P2—C47—C48116.7 (4)
Ru1—P1—C11—C1659.8 (3)Ru2—P2—C47—C48121.4 (4)
C16—C11—C12—C134.5 (5)C52—C47—C48—C490.5 (6)
P1—C11—C12—C13173.6 (3)P2—C47—C48—C49178.5 (3)
C16—C11—C12—C17173.0 (3)C52—C47—C48—C53177.4 (4)
P1—C11—C12—C179.0 (6)P2—C47—C48—C531.7 (6)
C11—C12—C13—C142.1 (6)C47—C48—C49—C500.4 (6)
C17—C12—C13—C14175.7 (4)C53—C48—C49—C50177.8 (4)
C12—C13—C14—C151.1 (6)C48—C49—C50—C510.0 (6)
C13—C14—C15—C161.8 (6)C49—C50—C51—C520.3 (6)
C14—C15—C16—C110.7 (6)C50—C51—C52—C470.2 (7)
C12—C11—C16—C153.9 (5)C48—C47—C52—C510.2 (6)
P1—C11—C16—C15174.5 (3)P2—C47—C52—C51179.0 (3)
C11—C12—C17—C1895.8 (5)C49—C48—C53—C5494.7 (5)
C13—C12—C17—C1886.7 (5)C47—C48—C53—C5488.3 (5)
C11—C12—C17—C2292.6 (5)C49—C48—C53—C5875.2 (5)
C13—C12—C17—C2285.0 (5)C47—C48—C53—C58101.8 (5)
C23—O1—C18—C17167.6 (4)C59—O3—C54—C53163.0 (3)
C23—O1—C18—C1911.5 (5)C59—O3—C54—C5516.5 (6)
C22—C17—C18—O1179.3 (3)C58—C53—C54—O3179.2 (4)
C12—C17—C18—O18.9 (5)C48—C53—C54—O39.2 (6)
C22—C17—C18—C190.2 (6)C58—C53—C54—C551.3 (6)
C12—C17—C18—C19172.0 (4)C48—C53—C54—C55171.2 (4)
O1—C18—C19—C20179.3 (4)O3—C54—C55—C56179.2 (4)
C17—C18—C19—C200.2 (6)C53—C54—C55—C561.4 (6)
C18—C19—C20—C210.2 (6)C54—C55—C56—C571.2 (7)
C19—C20—C21—C220.6 (7)C55—C56—C57—C581.0 (7)
C24—O2—C22—C212.0 (6)C60—O4—C58—C575.3 (6)
C24—O2—C22—C17178.8 (4)C60—O4—C58—C53175.3 (4)
C20—C21—C22—O2179.8 (4)C56—C57—C58—O4179.7 (4)
C20—C21—C22—C170.7 (6)C56—C57—C58—C531.0 (7)
C18—C17—C22—O2179.5 (3)C54—C53—C58—O4179.5 (4)
C12—C17—C22—O27.5 (5)C48—C53—C58—O49.1 (5)
C18—C17—C22—C210.3 (6)C54—C53—C58—C571.1 (6)
C12—C17—C22—C21171.7 (4)C48—C53—C58—C57171.4 (4)
C11—P1—C25—C2653.1 (3)C47—P2—C61—C6257.1 (3)
C31—P1—C25—C2658.7 (3)C67—P2—C61—C6254.7 (3)
Ru1—P1—C25—C26166.9 (2)Ru2—P2—C61—C62171.8 (2)
C11—P1—C25—C30172.4 (3)C47—P2—C61—C66170.7 (3)
C31—P1—C25—C3075.9 (3)C67—P2—C61—C6677.6 (3)
Ru1—P1—C25—C3058.6 (3)Ru2—P2—C61—C6655.9 (3)
C30—C25—C26—C2761.2 (4)C66—C61—C62—C6359.2 (5)
P1—C25—C26—C27161.8 (3)P2—C61—C62—C63165.2 (3)
C25—C26—C27—C2855.3 (4)C61—C62—C63—C6457.5 (5)
C26—C27—C28—C2952.5 (4)C62—C63—C64—C6556.4 (5)
C27—C28—C29—C3052.8 (4)C63—C64—C65—C6656.2 (5)
C28—C29—C30—C2556.3 (4)C64—C65—C66—C6156.3 (4)
C26—C25—C30—C2962.2 (4)C62—C61—C66—C6558.0 (4)
P1—C25—C30—C29161.3 (2)P2—C61—C66—C65169.0 (3)
C11—P1—C31—C3292.0 (3)C47—P2—C67—C6885.1 (3)
C25—P1—C31—C32164.6 (3)C61—P2—C67—C68171.3 (3)
Ru1—P1—C31—C3232.3 (3)Ru2—P2—C67—C6837.9 (3)
C11—P1—C31—C36143.8 (3)C47—P2—C67—C72150.4 (3)
C25—P1—C31—C3640.4 (3)C61—P2—C67—C7246.8 (4)
Ru1—P1—C31—C3691.8 (3)Ru2—P2—C67—C7286.7 (3)
C36—C31—C32—C3357.2 (4)C72—C67—C68—C6957.4 (5)
P1—C31—C32—C33176.2 (3)P2—C67—C68—C69175.7 (3)
C31—C32—C33—C3457.2 (5)C67—C68—C69—C7057.7 (5)
C32—C33—C34—C3555.0 (5)C68—C69—C70—C7155.3 (5)
C33—C34—C35—C3656.3 (5)C69—C70—C71—C7255.2 (5)
C34—C35—C36—C3157.0 (5)C70—C71—C72—C6754.9 (5)
C32—C31—C36—C3556.0 (4)C68—C67—C72—C7154.8 (5)
P1—C31—C36—C35178.7 (3)P2—C67—C72—C71179.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg8 are the centroids of rings C17–C22 and C53–C58, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.503.328 (6)146
C30—H30A···Cl20.992.743.552 (4)139
C45—H45C···Cl30.982.793.577 (5)137
C46—H46C···Cl40.982.683.302 (4)122
C62—H62A···O30.992.583.261 (6)126
C66—H66B···Cl40.992.713.388 (4)126
C72—H72A···Cl30.992.783.617 (6)143
C38—H38···Cl10.952.703.376 (4)129
C33—H33B···Cg30.992.973.703 (5)132
C69—H69A···Cg80.992.913.649 (6)132
C60—H60B···Cg3i0.982.843.655 (6)142
C24—H24B···Cg8ii0.982.853.710 (6)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Funding information

This work was supported in part by the RUDN University Program (No. 5–100). Synchrotron radiation-based single-crystal X-ray diffraction measurements were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007).

References

First citationAfanasyev, O. I., Tsygankov, A. A., Usanov, D. L., Perekalin, D. S., Samoylova, A. D. & Chusov, D. (2017). Synthesis, 49, 2640–2651.  CAS Google Scholar
First citationAfanasyev, O. I., Tsygankov, A. A., Usanov, D. L., Perekalin, D. S., Shvydkiy, N. V., Maleev, V. I., Kudinov, A. R. & Chusov, D. (2016). ACS Catal. 6, 2043–2046.  Web of Science CrossRef CAS Google Scholar
First citationAznar, R., Grabulosa, A., Mannu, A., Muller, G., Sainz, D., Moreno, V., Font-Bardia, M., Calvet, T. & Lorenzo, J. (2013). Organometallics, 32, 2344–2362.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaraut, J., Massard, A., Chotard, F., Bodio, E., Picquet, M., Richard, P., Borguet, Y., Nicks, F., Demonceau, A. & Le Gendre, P. (2015). Eur. J. Inorg. Chem. 2015, 2671–2682.  Web of Science CSD CrossRef CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A Chem. 247, 124–129.  Google Scholar
First citationChuklin, P., Chalermpanaphan, V., Nhukeaw, T., Saithong, S., Chainok, K., Phongpaichit, S., Ratanaphan, A. & Leesakul, N. (2017). J. Organomet. Chem. 846, 242–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationChusov, D. & List, B. (2014). Angew. Chem. Int. Ed. 53, 5199–5201.  CAS Google Scholar
First citationClavero, P., Grabulosa, A., Rocamora, M., Muller, G. & Font-Bardia, M. (2016). Dalton Trans. 45, 8513–8531.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíaz-Álvarez, A. E., Crochet, P., Zablocka, M., Duhayon, C., Cadierno, V., Gimeno, J. & Majoral, J. P. (2006). Adv. Synth. Catal. 348, 1671–1679.  Google Scholar
First citationDoyle, R. A. (2011). MARCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGranville, S. L., Welch, G. C. & Stephan, D. W. (2012). Inorg. Chem. 51, 4711–4721.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaithal, A., Chatterjee, B. & Gunanathan, C. (2016). Org. Lett. 18, 3402–3405.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolesnikov, P. N., Yagafarov, N. Z., Usanov, D. L., Maleev, V. I. & Chusov, D. (2015). Org. Lett. 17, 173–175.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoldes, I., de la Encarnación, E., Ros, J., Alvarez-Larena, Á., & Piniella, J. F. (1998). J. Organomet. Chem. 566, 165–174.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolotkov, A. P., Vinogradov, M. M., Moskovets, A. P., Chusova, O., Timofeev, S. V., Fastovskiy, V. A., Nelyubina, Y. V., Pavlov, A. A., Chusov, D. A. & Loginov, D. A. (2017). Eur. J. Inorg. Chem. 2, 1–11.  Google Scholar
First citationMoskovets, A. P., Usanov, D. L., Afanasyev, O. I., Fastovskiy, V. A., Molotkov, A. P., Muratov, K. M., Denisov, G. L., Zlotskii, S. S., Smol'yakov, A. F., Loginov, D. A. & Chusov, D. (2017). Org. Biomol. Chem. 15, 6384–6387.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A. & Davis, W. L. (2012). Acta Cryst. E68, m1446–m1447.  CSD CrossRef IUCr Journals Google Scholar
First citationNazarov, A. A., Hartinger, C. G. & Dyson, P. J. (2014). J. Organomet. Chem. 751, 251–260.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTherrien, B. (2009). Coord. Chem. Rev. 253, 493–519.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYagafarov, N. Z., Usanov, D. L., Moskovets, A. P., Kagramanov, N. D., Maleev, V. I. & Chusov, D. (2015). ChemCatChem, 7, 2590–2593.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds