research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two (Z)-2-(4-oxo-1,3-thia­zolidin-2-yl­­idene)acetamides

CROSSMARK_Color_square_no_text.svg

aUral Federal University, Mira 19 Ekaterinburg 620002, Russian Federation, and b22 Sofia Kovalevskaya str., Ekaterinburg, 620990, Russian Federation
*Correspondence e-mail: k.l.obydennov@urfu.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 November 2017; accepted 7 November 2017; online 10 November 2017)

The crystal structures of two (oxo­thia­zolidin-2-yl­idene)acetamides, namely (Z)-2-[2-(morpholin-4-yl)-2-oxo­ethyl­idene]thia­zolidin-4-one, C9H12N2O3S, (I), and (Z)-N-(4-meth­oxy­phen­yl)-2-(4-oxo­thia­zolidin-2-yl­idene)acetamide, C12H12N2O3S, (II), are described and compared with a related structure. The Z conformation was observed for both the compounds. In (I), the morpholin-4-yl ring has a chair conformation and its mean plane is inclined to the thia­zolidine ring mean plane by 37.12 (12)°. In (II), the benzene ring is inclined to the mean plane of the thia­zolidine ring by 20.34 (14)°. In the crystal of (I), mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(6) chains along the b-axis direction. The edge-to-edge arrangement of the mol­ecules results in short C—H⋯O and C—H⋯S inter­actions, which consolidate the chain into a ribbon-like structure. In the crystal of (II), two N—H⋯O hydrogen bonds result in the formation of C(8) chains along the b-axis direction and C(6) chains along the c-axis direction. The combination of these inter­actions leads to the formation of layers parallel to the bc plane, enclosing R44(28) rings involving four mol­ecules.

1. Chemical context

Thia­zolidine derivatives are of great biological importance due to their anti­diabetic (Rizos et al., 2016[Rizos, C. V., Kei, A. & Elisaf, M. S. (2016). Arch. Toxicol. 90, 1861-1881.]) and anti­bacterial (Har & Solensky, 2017[Har, D. & Solensky, R. (2017). Immunol. Allergy Clin. North Am. 37, 643-662.]) activity. One such compound, namely (Z)-N-(2-chloro-6-methyl­phen­yl)-2-(3-methyl-4-oxo-1,3-thia­zolidin-2-yl­idene)acetamide (ralitoline), has been found to be effective in a preclinical anti­convulsant evaluation (Löscher & Schmidt, 1994[Löscher, W. & Schmidt, D. (1994). Epilepsy Res. 17, 95-134.]). In view of the importance of 2-(4-oxo­thia­zolidin-2-yl­idene)acetamides, the title compounds, (I)[link] and (II)[link], were synthesized and we report herein on their crystal structures. To date, the crystal structure of only one such compound, viz. (Z)-2-cyano-2-(4-oxo-3-phenyl-1,3-thia­zol­id­in-2-yl­idene)-N-phenyl­acetamide, (III), has been reported (George, 2012[George, R. F. (2012). Eur. J. Med. Chem. 47, 377-386.]).

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. Both compounds crystallize in the monoclinic space group P21/c. The Z conformation about the C8=C9 bond is observed for both compounds and favours S⋯O contacts of 2.6902 (18) and 2.738 (3) Å in (I)[link] and (II)[link], respectively. The morpholine ring in compound (I)[link] adopts a chair conformation. The twist angle between the thia­zolidine (S1/N2/C9–C11) and amide mean planes (O1/N1/C7/C8) is 10.71 (10)° in (I)[link] and 2.36 (14)° in (II)[link]. In (II)[link], the benzene ring plane is inclined to the mean plane of the thia­zolidine ring by 20.60 (12)°. The bond lengths and angles in both compounds are similar to those observed for compound (III), mentioned above.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of title compound (I)[link], with the atom labelling. Displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of title compound (II)[link], with the atom labelling. Displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by N—H⋯O hydrogen bonds forming C(6) chains running parallel to the a-axis direction (Table 1[link] and Fig. 3[link]). The dihedral angle between thia­zolidine mean planes is 6.12 (7)°. There are three non-classical C2—H2A⋯S1i, C5—H5B⋯O3ii and C6—H6B⋯O3iii (Table 1[link]) hydrogen bonds present, linking mol­ecules to form ribbons propagating along [100]; Table 1[link] and Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.79 (3) 2.11 (3) 2.891 (2) 167 (2)
C2—H2A⋯S1i 0.97 2.86 3.627 (2) 137
C5—H5B⋯O3ii 0.97 2.55 3.503 (3) 167
C6—H6B⋯O3iii 0.97 2.41 3.179 (3) 136
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A packing diagram of compound (I)[link]. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (ii) x, y − 1, z; (iii) −x + 1, y − [{3\over 2}], −z + [{3\over 2}].]

In crystal of (II)[link], both amide moieties participate in the formation of N—H⋯O hydrogen bonds (see Table 2[link]). These two types of N—H⋯O hydrogen bonds give rise to the formation of two independent C(8) and C(6) chains, running parallel to the b- and c-axes, respectively (see Figs. 4[link] and 5[link]). Here, the dihedral angle between the thia­zolidine mean planes in the N1—H1⋯O3i and N2—H2⋯O2ii motifs is 79.21 (16)°. The combination of these chain motifs generates a two-dimensional network lying parallel to the bc plane. Each mol­ecule acts as both a double donor and a double acceptor of N—H⋯O hydrogen bonds. The mol­ecules of (II)[link] are linked into aggregated R44(28) tetra­mers, which serve as the building blocks of the layers (see Fig. 6[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.95 (2) 1.94 (2) 2.883 (4) 170 (2)
N2—H2⋯O2ii 0.93 (3) 1.92 (3) 2.828 (4) 164 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
View of the N1—H1⋯O3i C(8) chain motif along the b-axis of compound (II)[link]. Dashed lines represent hydrogen bonds. For clarity, only the bridge H atoms are shown. [Symmetry code: (i) −x, y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 5]
Figure 5
View of the N2—H2⋯O2i C(6) chain motif along the c-axis of the compound (II)[link]. Dashed lines represent hydrogen bonds. For clarity, only the bridge H atoms are shown. [Symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}].]
[Figure 6]
Figure 6
View of the tetra­meric hydrogen-bonded aggregate which serves as the building block of the sheets. [Symmetry code: (i) −x, y + [{1\over 2}], −z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iii) −x, −y + 1, −z + 1.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-methyl­ene-1,3-thia­zolidin-4-one substructure gave nine hits. The compound that most closely resembles the title compounds is 2-cyano-2-(4-oxo-3-phenyl-1,3-thia­zolidin-2-yl­idene)-N-phenyl­acetamide (III) (NEYGUV; George, 2012[George, R. F. (2012). Eur. J. Med. Chem. 47, 377-386.]). Here the amide mean plane [C—C(=O)—N] is inclined to the mean plane of the thia­zolidine ring by 5.09 (16)°, compared to 2.36 (14)° in (II)[link]. The benzene ring is inclined to the to the mean plane of the thia­zolidine ring by 38.10 (15)° compared to 20.34 (14)° in (II)[link]. In the crystal of (III), mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the [010] direction. It should be noted that no crystal structures of 2-methyl­ene-1,3-thia­zolidin-4-one derivatives without a substituent at the N atom in position 3 of the thia­zolidine ring were found.

5. Synthesis and crystallization

Thia­zolidinones (I)[link] and (II)[link] were prepared from cyano­acetamides (see Fig. 7[link]), by a previously described method (Obydennov et al., 2017[Obydennov, K. L., Galushchinskiy, A. N., Kosterina, M. F., Glukhareva, T. V. & Morzherin, Y. Y. (2017). Chem. Heterocycl. Compd, 53, 622-625.]). Pyridine was added dropwise with stirring to cyano­acetamide (15 mmol) in a round-bottom flask until complete dissolution of the cyano­acetamide. 4-Di­methyl­amino­pyridine (DMAP) (18 mg, 0.15 mmol) for (I)[link], and mercapto­acetic acid (3.2 ml, 46 mmol) for (II)[link], were added and the mixtures were refluxed for 12 h. They were then cooled to room temperature and diluted with a 0.5 N HCl solution (5 ml). The precipitates formed of the 1,3-thia­zolidinones, were filtered off. The crude products were additionally purified by refluxing a suspension of the thia­zolidine in MeCN, followed by hot filtration. Colourless crystals of compounds (I)[link] and (II)[link] were obtained by slow evaporation of the respective compound in a solution of DMSO.

[Figure 7]
Figure 7
Reaction scheme for the title compounds.

(Z)-2-[2-(Morpholin-4-yl)-2-oxo­ethyl­idene]-1,3-thia­zolid­in-4-one (I). Yield 1.54 g (45%), white powder, m.p. 503–505 K. 1H NMR spectrum, δ, p.p.m. (J, Hz): 3.42 (4H, t, 4.8 Hz, CH2); 3.54 (2H, s, CH2); 3.57 (4H, t, 4.8 Hz, CH2); 5.83 (1H, s, CH); 11.25 (1H, s, NH).

(Z)-N-(4-Meth­oxy­phen­yl)-2-(4-oxo-1,3-thia­zolidin-2-yl­idene)acetamide (II). Yield 2.85 g (72%), white powder, m.p. 534–536 K. (Obydennov et al., 2017[Obydennov, K. L., Galushchinskiy, A. N., Kosterina, M. F., Glukhareva, T. V. & Morzherin, Y. Y. (2017). Chem. Heterocycl. Compd, 53, 622-625.]). Elemental analysis for C12H12N2O3S; found, %: C 54.31; H 4.67; N 10.72; calculated, %: C 54.53; H 4.58; N 10.60.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the hydrogen atoms were included in calculated positions and refined using the riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms. The NH H atoms were located in difference-Fourier maps and freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C9H12N2O3S C12H12N2O3S
Mr 228.27 264.30
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 295 295
a, b, c (Å) 9.9740 (4), 11.2175 (4), 9.3155 (4) 11.628 (11), 9.057 (6), 11.525 (12)
β (°) 100.389 (4) 101.13 (8)
V3) 1025.16 (7) 1190.8 (18)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.30 2.46
Crystal size (mm) 0.25 × 0.2 × 0.15 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Eos Oxford Diffraction Xcalibur 3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.924, 1.000 0.742, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5512, 2777, 2161 8436, 2040, 1398
Rint 0.017 0.053
(sin θ/λ)max−1) 0.723 0.593
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.154, 1.01 0.043, 0.105, 1.01
No. of reflections 2777 2040
No. of parameters 151 172
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.24 0.22, −0.33
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2011[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013) for (I); CrysAlis CCD (Oxford Diffraction, 2006) for (II). Cell refinement: CrysAlis PRO (Agilent, 2013) for (I); CrysAlis RED (Oxford Diffraction, 2006) for (II). Data reduction: CrysAlis PRO (Agilent, 2013) for (I); CrysAlis RED (Oxford Diffraction, 2006) for (II). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: OLEX (Dolomanov et al., 2009) for (I); SHELXTL (Sheldrick, 2008) for (II). Software used to prepare material for publication: PLATON (Spek, 2009), OLEX (Dolomanov et al., 2009) and publCIF (Westrip, 2010) for (I); SHELXTL (Sheldrick, 2008) for (II).

(Z)-2-[2-(Morpholin-4-yl)-2-oxoethylidene]thiazolidin-4-one (I) top
Crystal data top
C9H12N2O3SF(000) = 480
Mr = 228.27Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 9.9740 (4) ÅCell parameters from 1828 reflections
b = 11.2175 (4) Åθ = 2.8–30.1°
c = 9.3155 (4) ŵ = 0.30 mm1
β = 100.389 (4)°T = 295 K
V = 1025.16 (7) Å3Prism, colourless
Z = 40.25 × 0.2 × 0.15 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2777 independent reflections
Radiation source: Enhance (Mo) X-ray Source2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 15.9555 pixels mm-1θmax = 30.9°, θmin = 2.8°
ω scansh = 148
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1215
Tmin = 0.924, Tmax = 1.000l = 812
5512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41099 (5)0.19996 (4)0.86944 (5)0.04126 (18)
O10.60365 (15)0.17462 (13)0.70341 (18)0.0530 (4)
O30.20314 (15)0.45139 (14)1.00948 (17)0.0587 (4)
O21.01954 (17)0.35357 (18)0.6141 (3)0.0846 (6)
N20.37439 (16)0.42790 (15)0.87892 (17)0.0385 (3)
N10.74687 (16)0.31439 (15)0.6416 (2)0.0475 (4)
C90.45545 (16)0.34471 (15)0.82632 (17)0.0331 (3)
C110.27952 (17)0.38781 (17)0.95594 (19)0.0385 (4)
C70.63595 (18)0.28193 (17)0.6972 (2)0.0394 (4)
C80.55522 (18)0.37426 (17)0.7520 (2)0.0393 (4)
H80.572 (2)0.449 (2)0.737 (2)0.047*
C20.7968 (2)0.43485 (19)0.6280 (3)0.0591 (6)
H2A0.75130.48920.68440.071*
H2B0.77640.45950.52660.071*
C100.2832 (2)0.25413 (19)0.9676 (2)0.0441 (4)
C60.8258 (2)0.2254 (2)0.5779 (3)0.0652 (7)
H6A0.81060.23520.47280.078*
H6B0.79570.14610.59900.078*
C30.9469 (3)0.4400 (3)0.6813 (4)0.0813 (9)
H3A0.97970.51880.66240.098*
H3B0.96520.42750.78610.098*
C50.9720 (2)0.2383 (2)0.6379 (3)0.0647 (6)
H5A0.98760.22230.74190.078*
H5B1.02310.18020.59250.078*
H10A0.302 (3)0.224 (3)1.070 (3)0.075 (8)*
H10B0.195 (4)0.232 (3)0.933 (3)0.089 (10)*
H20.377 (3)0.498 (3)0.869 (2)0.060 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0494 (3)0.0229 (3)0.0547 (3)0.00327 (18)0.0178 (2)0.00108 (17)
O10.0573 (8)0.0254 (7)0.0828 (10)0.0052 (6)0.0301 (7)0.0098 (6)
O30.0605 (9)0.0382 (8)0.0881 (10)0.0025 (7)0.0422 (8)0.0000 (7)
O20.0595 (10)0.0483 (11)0.1621 (18)0.0058 (8)0.0631 (11)0.0175 (12)
N20.0387 (7)0.0234 (8)0.0568 (9)0.0013 (6)0.0173 (6)0.0008 (6)
N10.0405 (8)0.0293 (9)0.0774 (11)0.0024 (6)0.0237 (7)0.0110 (7)
C90.0346 (8)0.0226 (8)0.0419 (8)0.0024 (6)0.0067 (6)0.0032 (6)
C110.0377 (8)0.0302 (9)0.0491 (9)0.0032 (7)0.0119 (7)0.0002 (7)
C70.0377 (8)0.0290 (9)0.0531 (10)0.0011 (7)0.0128 (7)0.0052 (7)
C80.0392 (8)0.0221 (8)0.0597 (10)0.0015 (7)0.0171 (7)0.0013 (7)
C20.0575 (11)0.0298 (10)0.1001 (16)0.0062 (9)0.0408 (11)0.0098 (10)
C100.0476 (10)0.0321 (10)0.0562 (11)0.0026 (8)0.0195 (8)0.0039 (8)
C60.0599 (13)0.0455 (13)0.0992 (18)0.0064 (11)0.0386 (12)0.0288 (12)
C30.0588 (13)0.0460 (15)0.151 (3)0.0153 (11)0.0519 (15)0.0309 (16)
C50.0581 (13)0.0446 (13)0.1004 (18)0.0148 (11)0.0380 (12)0.0041 (12)
Geometric parameters (Å, º) top
S1—C91.7490 (17)C7—C81.459 (2)
S1—C101.803 (2)C8—H80.87 (3)
O1—C71.250 (2)C2—H2A0.9700
O3—C111.214 (2)C2—H2B0.9700
O2—C31.422 (3)C2—C31.490 (3)
O2—C51.408 (3)C10—H10A0.99 (3)
N2—C91.381 (2)C10—H10B0.91 (3)
N2—C111.363 (2)C6—H6A0.9700
N2—H20.79 (3)C6—H6B0.9700
N1—C71.353 (2)C6—C51.472 (3)
N1—C21.454 (3)C3—H3A0.9700
N1—C61.462 (3)C3—H3B0.9700
C9—C81.352 (2)C5—H5A0.9700
C11—C101.503 (3)C5—H5B0.9700
C9—S1—C1092.02 (8)C3—C2—H2B109.6
C5—O2—C3110.09 (19)S1—C10—H10A109.8 (18)
C9—N2—H2127 (2)S1—C10—H10B117 (2)
C11—N2—C9118.05 (16)C11—C10—S1108.05 (13)
C11—N2—H2115 (2)C11—C10—H10A114.0 (17)
C7—N1—C2126.90 (17)C11—C10—H10B104 (2)
C7—N1—C6120.57 (17)H10A—C10—H10B105 (3)
C2—N1—C6112.42 (17)N1—C6—H6A109.6
N2—C9—S1110.91 (12)N1—C6—H6B109.6
C8—C9—S1125.85 (14)N1—C6—C5110.34 (19)
C8—C9—N2123.23 (16)H6A—C6—H6B108.1
O3—C11—N2124.68 (18)C5—C6—H6A109.6
O3—C11—C10124.40 (16)C5—C6—H6B109.6
N2—C11—C10110.91 (16)O2—C3—C2112.8 (2)
O1—C7—N1120.81 (17)O2—C3—H3A109.0
O1—C7—C8120.27 (17)O2—C3—H3B109.0
N1—C7—C8118.92 (17)C2—C3—H3A109.0
C9—C8—C7120.57 (17)C2—C3—H3B109.0
C9—C8—H8119.9 (15)H3A—C3—H3B107.8
C7—C8—H8119.5 (16)O2—C5—C6111.7 (2)
N1—C2—H2A109.6O2—C5—H5A109.3
N1—C2—H2B109.6O2—C5—H5B109.3
N1—C2—C3110.2 (2)C6—C5—H5A109.3
H2A—C2—H2B108.1C6—C5—H5B109.3
C3—C2—H2A109.6H5A—C5—H5B107.9
S1—C9—C8—C71.1 (3)C7—N1—C2—C3133.5 (2)
O1—C7—C8—C98.3 (3)C7—N1—C6—C5130.8 (2)
O3—C11—C10—S1179.35 (16)C2—N1—C7—O1179.8 (2)
N2—C9—C8—C7179.01 (15)C2—N1—C7—C80.6 (3)
N2—C11—C10—S11.38 (19)C2—N1—C6—C552.9 (3)
N1—C7—C8—C9170.79 (18)C10—S1—C9—N22.10 (14)
N1—C2—C3—O253.1 (3)C10—S1—C9—C8177.80 (17)
N1—C6—C5—O257.3 (3)C6—N1—C7—O14.4 (3)
C9—S1—C10—C111.95 (14)C6—N1—C7—C8176.4 (2)
C9—N2—C11—O3179.09 (17)C6—N1—C2—C350.5 (3)
C9—N2—C11—C100.2 (2)C3—O2—C5—C659.6 (3)
C11—N2—C9—S11.7 (2)C5—O2—C3—C257.7 (3)
C11—N2—C9—C8178.18 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.79 (3)2.11 (3)2.891 (2)167 (2)
C2—H2A···S1i0.972.863.627 (2)137
C5—H5B···O3ii0.972.553.503 (3)167
C6—H6B···O3iii0.972.413.179 (3)136
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2.
(Z)-N-(4-Methoxyphenyl)-2-(4-oxothiazolidin-2-ylidene)acetamide (II) top
Crystal data top
C12H12N2O3SF(000) = 552
Mr = 264.30Dx = 1.474 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3173 reflections
a = 11.628 (11) Åθ = 3.8–65.3°
b = 9.057 (6) ŵ = 2.46 mm1
c = 11.525 (12) ÅT = 295 K
β = 101.13 (8)°Prism, colourless
V = 1190.8 (18) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
2040 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 66.2°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1213
Tmin = 0.742, Tmax = 1.000k = 910
8436 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
2040 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12936 (5)0.11898 (8)0.00103 (5)0.0502 (2)
N10.17601 (18)0.4274 (3)0.04195 (17)0.0492 (5)
O10.46385 (19)0.6658 (2)0.43527 (18)0.0749 (6)
C10.2477 (2)0.4870 (3)0.1432 (2)0.0455 (6)
O20.04377 (14)0.2965 (2)0.12198 (14)0.0547 (5)
N20.10328 (18)0.1413 (3)0.21526 (18)0.0512 (6)
C20.3184 (2)0.6044 (3)0.1284 (2)0.0509 (6)
H2A0.31510.64310.05310.061*
O30.24270 (17)0.0064 (2)0.31929 (16)0.0660 (6)
C30.3939 (2)0.6656 (3)0.2224 (2)0.0575 (7)
H3A0.44200.74410.21080.069*
C40.3975 (2)0.6099 (3)0.3341 (2)0.0530 (6)
C50.3311 (2)0.4883 (3)0.3482 (2)0.0552 (7)
H5A0.33760.44680.42300.066*
C60.2555 (2)0.4267 (3)0.2548 (2)0.0510 (6)
H6A0.21010.34550.26630.061*
C70.0826 (2)0.3377 (3)0.0346 (2)0.0450 (6)
C80.0324 (2)0.2893 (3)0.0828 (2)0.0476 (6)
H8A0.06310.32480.14620.057*
C90.0570 (2)0.1951 (3)0.10347 (19)0.0443 (6)
C100.2276 (2)0.0170 (3)0.1101 (2)0.0528 (7)
H10A0.22120.08790.09300.063*
H10B0.30790.04730.11170.063*
C110.1943 (2)0.0481 (3)0.2273 (2)0.0512 (6)
C120.5271 (3)0.7961 (4)0.4254 (3)0.0815 (10)
H12A0.57000.82400.50190.122*
H12B0.47360.87370.39450.122*
H12C0.58070.77960.37300.122*
H10.198 (2)0.461 (3)0.029 (2)0.058 (7)*
H20.068 (3)0.163 (3)0.279 (2)0.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0518 (3)0.0662 (4)0.0356 (3)0.0033 (3)0.0159 (2)0.0037 (3)
N10.0515 (11)0.0638 (14)0.0335 (11)0.0009 (10)0.0108 (9)0.0024 (10)
O10.0742 (13)0.0805 (15)0.0637 (13)0.0219 (11)0.0025 (10)0.0061 (11)
C10.0425 (12)0.0557 (15)0.0392 (13)0.0076 (11)0.0106 (10)0.0008 (11)
O20.0519 (9)0.0796 (13)0.0353 (9)0.0040 (9)0.0151 (8)0.0008 (9)
N20.0537 (12)0.0693 (15)0.0338 (11)0.0037 (11)0.0167 (9)0.0020 (10)
C20.0518 (13)0.0555 (16)0.0470 (14)0.0058 (13)0.0136 (11)0.0108 (12)
O30.0672 (12)0.0876 (15)0.0454 (12)0.0110 (10)0.0165 (9)0.0173 (10)
C30.0524 (14)0.0550 (16)0.0645 (19)0.0025 (12)0.0097 (13)0.0084 (13)
C40.0478 (13)0.0605 (16)0.0496 (15)0.0001 (13)0.0068 (11)0.0057 (13)
C50.0561 (14)0.0723 (19)0.0381 (14)0.0075 (14)0.0113 (11)0.0013 (12)
C60.0526 (13)0.0635 (17)0.0384 (13)0.0071 (13)0.0126 (11)0.0016 (12)
C70.0431 (12)0.0559 (15)0.0384 (14)0.0087 (11)0.0138 (10)0.0031 (11)
C80.0485 (13)0.0624 (17)0.0342 (13)0.0058 (12)0.0141 (10)0.0036 (11)
C90.0471 (12)0.0549 (16)0.0328 (13)0.0093 (12)0.0126 (10)0.0006 (11)
C100.0570 (14)0.0615 (17)0.0430 (15)0.0022 (13)0.0179 (11)0.0034 (12)
C110.0521 (13)0.0652 (17)0.0383 (14)0.0058 (13)0.0138 (11)0.0053 (13)
C120.0685 (19)0.079 (2)0.094 (3)0.0220 (18)0.0093 (17)0.0164 (19)
Geometric parameters (Å, º) top
S1—C91.739 (3)C3—C41.375 (4)
S1—C101.798 (3)C3—H3A0.9300
N1—C71.346 (3)C4—C51.372 (4)
N1—C11.405 (3)C5—C61.370 (4)
N1—H10.96 (3)C5—H5A0.9300
O1—C41.365 (3)C6—H6A0.9300
O1—C121.407 (4)C7—C81.435 (4)
C1—C21.375 (4)C8—C91.330 (4)
C1—C61.384 (3)C8—H8A0.9300
O2—C71.238 (3)C10—C111.501 (4)
N2—C111.339 (4)C10—H10A0.9700
N2—C91.385 (3)C10—H10B0.9700
N2—H20.92 (3)C12—H12A0.9600
C2—C31.373 (4)C12—H12B0.9600
C2—H2A0.9300C12—H12C0.9600
O3—C111.206 (3)
C9—S1—C1092.05 (13)C1—C6—H6A120.4
C7—N1—C1128.8 (2)O2—C7—N1123.1 (2)
C7—N1—H1119.0 (16)O2—C7—C8122.0 (2)
C1—N1—H1112.1 (16)N1—C7—C8114.9 (2)
C4—O1—C12117.4 (2)C9—C8—C7121.7 (2)
C2—C1—C6119.1 (2)C9—C8—H8A119.1
C2—C1—N1117.9 (2)C7—C8—H8A119.1
C6—C1—N1122.8 (2)C8—C9—N2122.8 (2)
C11—N2—C9118.4 (2)C8—C9—S1126.60 (19)
C11—N2—H2121.0 (17)N2—C9—S1110.58 (19)
C9—N2—H2120.5 (18)C11—C10—S1107.8 (2)
C3—C2—C1121.4 (2)C11—C10—H10A110.1
C3—C2—H2A119.3S1—C10—H10A110.1
C1—C2—H2A119.3C11—C10—H10B110.1
C2—C3—C4119.3 (3)S1—C10—H10B110.1
C2—C3—H3A120.3H10A—C10—H10B108.5
C4—C3—H3A120.3O3—C11—N2125.1 (2)
O1—C4—C5115.7 (2)O3—C11—C10123.8 (3)
O1—C4—C3125.0 (3)N2—C11—C10111.1 (2)
C5—C4—C3119.3 (2)O1—C12—H12A109.5
C6—C5—C4121.6 (2)O1—C12—H12B109.5
C6—C5—H5A119.2H12A—C12—H12B109.5
C4—C5—H5A119.2O1—C12—H12C109.5
C5—C6—C1119.1 (3)H12A—C12—H12C109.5
C5—C6—H6A120.4H12B—C12—H12C109.5
C7—N1—C1—C2163.6 (2)C1—N1—C7—C8176.5 (2)
C7—N1—C1—C620.8 (4)O2—C7—C8—C91.5 (4)
C6—C1—C2—C32.0 (4)N1—C7—C8—C9176.9 (2)
N1—C1—C2—C3177.8 (2)C7—C8—C9—N2176.8 (2)
C1—C2—C3—C41.0 (4)C7—C8—C9—S11.6 (4)
C12—O1—C4—C5175.9 (3)C11—N2—C9—C8179.2 (2)
C12—O1—C4—C34.5 (4)C11—N2—C9—S12.2 (3)
C2—C3—C4—O1176.4 (2)C10—S1—C9—C8179.6 (2)
C2—C3—C4—C54.1 (4)C10—S1—C9—N21.85 (19)
O1—C4—C5—C6176.1 (2)C9—S1—C10—C111.19 (19)
C3—C4—C5—C64.2 (4)C9—N2—C11—O3179.9 (2)
C4—C5—C6—C11.2 (4)C9—N2—C11—C101.2 (3)
C2—C1—C6—C51.9 (4)S1—C10—C11—O3178.6 (2)
N1—C1—C6—C5177.4 (2)S1—C10—C11—N20.2 (3)
C1—N1—C7—O21.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.95 (2)1.94 (2)2.883 (4)170 (2)
N2—H2···O2ii0.93 (3)1.92 (3)2.828 (4)164 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Funding information

This work was supported by the Russian Science Foundation (grant No. 16–16-04022).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationGeorge, R. F. (2012). Eur. J. Med. Chem. 47, 377–386.  Web of Science CSD CrossRef CAS PubMed
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHar, D. & Solensky, R. (2017). Immunol. Allergy Clin. North Am. 37, 643–662.  Web of Science CrossRef PubMed
First citationLöscher, W. & Schmidt, D. (1994). Epilepsy Res. 17, 95–134.  PubMed Web of Science
First citationObydennov, K. L., Galushchinskiy, A. N., Kosterina, M. F., Glukhareva, T. V. & Morzherin, Y. Y. (2017). Chem. Heterocycl. Compd, 53, 622–625.  Web of Science CrossRef CAS
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationRizos, C. V., Kei, A. & Elisaf, M. S. (2016). Arch. Toxicol. 90, 1861–1881.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds