research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Four pyrrole derivatives used as building blocks in the synthesis of minor-groove binders

CROSSMARK_Color_square_no_text.svg

aWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bSchool of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 January 2017; accepted 23 January 2017; online 27 January 2017)

The title nitro­pyrrole-based compounds, C7H8N2O4, (I) (ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate), its derivative C12H14N2O4, (II) [ethyl 4-nitro-1-(4-pent­yn­yl)-1H-pyrrole-2-carboxyl­ate], C15H26N4O3, (III) {N-[3-(di­methyamino)prop­yl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide}, and C20H27N9O5, (IV) {1-(3-azido­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)eth­yl]-1H-pyrrole-2-carboxamide}, are inter­mediates used in the synthesis of modified DNA minor-groove binders. In all four compounds, the nitro groups lie in the plane of the pyrrole ring. In compounds (I) and (II), the ester groups also lie in the plane of the pyrrole ring. In compound (III), both of the other substituents lie out of the plane of the pyrrole ring. In the case of compound (IV), the coplanarity extends to the second pyrrole ring and through both amide groups. In the crystals of all four compounds, layer-like structures are formed, via a combination of N—H⋯O and C—H⋯O hydrogen bonds for (I), (III) and (IV), but by only C—H⋯O hydrogen bonds for (II).

1. Chemical context

Over the past two decades, the field of minor-groove binders (MGBs) has expanded vastly and now these compounds display a wide spectrum of biological activities, such as anti­bacterial, anti­fungal, anti­parasitic and anti­cancer activities. A large number of structural modifications have been carried out on the original, naturally occurring compounds distamycin and netropsin, in order to optimize their biological activities (Lang et al., 2014[Lang, S., Khalaf, A. I., Breen, D., Huggan, J. K., Clements, C. J., MacKay, S. P. & Suckling, C. J. (2014). Med. Chem. Res. 23, 1170-1179.]). In addition to modifying the biological activities, structural changes have been made to the head group, tail group and the heterocyclic moieties in order to modulate their solubility, selectivity and the degree of binding to the minor groove of DNA (Alniss et al., 2014[Alniss, H. Y., Salvia, M., Sadikov, M., Golovchenko, I., Anthony, N. G., Khalaf, A. I., MacKay, S. P., Suckling, C. J. & Parkinson, J. A. (2014). ChemBioChem, 15, 1978-1990.]). We have recently turned to developing MGB-biotin hybrid mol­ecules to be used as novel biochemical probes in order to determine the mechanism of action of MGBs. Structural information is important in this field, as inter­molecular contacts are important for minor-groove binding and mol­ecular conformation is relevant to structure–activity and model building (Chenoweth & Dervan, 2009[Chenoweth, D. M. & Dervan, P. B. (2009). PNAS, 106, 13175-1319.]). This paper details the crystal structures of a number of key building blocks that have facilitated this mol­ecular probe development.

2. Structural commentary

Compound (I)[link], illustrated in Fig. 1[link], was produced as an inter­mediate in the synthesis of ethyl 4-nitro-1-(4-pentyn­yl)-1H-pyrrole-2-carboxyl­ate (II)[link]. Its mol­ecular structure is essentially planar with both the nitro and the ester functionalities coplanar with the pyrrole ring; torsion angles O1—N1—C2—C1 and N2—C4—C5—O3 are −1.5 (4) and 4.4 (4)°, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling and 50% probability displacement ellipsoids.

Compound (II)[link], illustrated in Fig. 2[link], is an alkyne-functionalized derivative of (I)[link] which allows for late stage diversification, and introduction of biological probe moieties, such as biotin, through application of robust click-chemistry methods. As with (I)[link], the nitro and ester groups are approximately coplanar with the plane of the pyrrole ring. Here torsion angles O4—N2—C3—C2 and N1—C1—C5—O1 are 178.43 (14) and −8.1 (2)°, respectively. However, the overall planarity of the mol­ecule is broken by the pentynyl function, with torsion angle C1—N1—C8—C9 being 86.21 (17)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling and 50% probability displacement ellipsoids.

The mol­ecular structure of compound (III)[link] is shown in Fig. 3[link]. It has the same 4-nitro pyrrole core as compounds (I)[link] and (II)[link] but has an amide substituent rather than an ester, and the pyrrole N atom now bears an iso-pentyl fragment. The introduction of the basic tail group, in this case the di­methyl­amino­propyl moiety, is a crucial feature for biological activity in these MGBs. The nitro group is again coplanar with the pyrrole ring, with torsion angle O2—N2—C2—C1 = 179.34 (15)°, but both the other substituents lie out of the plane of the pyrrole ring.

[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], with the atom labelling and 50% probability displacement ellipsoids.

The final structure reported, compound (IV)[link], is illustrated in Fig. 4[link]. It is another example of a compound containing a moiety that can be functionalized with click chemistry, this time an azide. Here, there are two pyrrole rings present, one of which is a 4-nitro pyrrole as found in compounds (I)[link], (II)[link] and (III)[link]. As with the previous structures, the nitro group is essentially coplanar with the pyrrole ring [torsion angle O4—N6—C15—C14 = −2.8 (3)°] and this coplanarity extends to the second pyrrole ring and through both amide groups [torsion angles O3—C12—C13—N5, C12—N4—C10—C11 and O2—C7—C8—N3 are 3.1 (3), 5.5 (3) and −2.9 (3)°, respectively]. The amide O atoms and the pyrrole N atoms are all mutually syn with respect to the mol­ecular axis running through them.

[Figure 4]
Figure 4
The mol­ecular structure of compound (IV)[link], with the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal of (I)[link], a primary hydrogen-bonding inter­action is formed, as would be expected, between the N—H donor and the carbonyl acceptor. This gives a centrosymmetric R22(10) motif. A weaker secondary centrosymmetric R22(10) hydrogen-bonding motif is also present; see Fig. 5[link] and Table 1[link]. This is formed by a pyrrole C—H donor and an O atom of the nitro group. Both hydrogen-bonded ring motifs are approximately coplanar with mol­ecular (I)[link] and thus a two-dimensional supra­molecular structure results with layers of mol­ecules parallel to plane (10[\overline{1}]). Inter­actions between the layers are both through dipole-to-dipole contacts [nitro-to-carbonyl N⋯C distance = 3.174 (4) Å] and through ππ contacts [closest C-to-C distance, C1⋯C4, is 3.304 (4) Å]. The layered structure of (I)[link] seems to be reflected in its crystal morphology. The samples were stacked thin plates. An approximately single sample was obtained by cutting – but some degree of non-single nature is reflected in the slightly high R factors and the higher than expected residual electron density.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O3i 0.90 (4) 2.00 (5) 2.872 (3) 163 (4)
C1—H1⋯O1ii 0.95 2.34 3.203 (4) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
The crystal packing of compound (I)[link], viewed along the c axis. The inter­molecular interactions (See Table 1[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

In the crystal of (II)[link], as no strong hydrogen-bond donor is present, the supra­molecular contacts are limited to non-classical C—H⋯O hydrogen bonds (Table 2[link] and Fig. 6[link]), which combine to give layers parallel to the bc plane, and ππ contacts [C5⋯C4i = 3.319 (2) Å; symmetry code: (i) 2 − x, −y, 1 − z] that link the layers. In contrast to (I)[link] there are no dipole–dipole-type contacts involving the nitro group and, perhaps surprisingly, the carbonyl group is not involved in the inter­molecular hydrogen bonding. There is a short intra­molecular contact [O1⋯C8 = 2.925 (2), O1⋯H8A = 2.41 Å] which may disfavour inter­molecular bonding here.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.95 2.53 3.323 (2) 141
C10—H10B⋯O3ii 0.99 2.51 3.337 (2) 141
C12—H12⋯O4iii 0.95 2.40 3.262 (2) 151
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
The crystal packing of compound (II)[link], viewed along the a axis. The inter­molecular interactions (See Table 2[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

In the crystal of (III)[link], the amide N—H group can be described as acting as a bifurcated donor giving two hydrogen bonds (Table 3[link] and Fig. 7[link]), forming a short contact with the amide C=O group and a much longer contact to an O atom of a nitro group. These combine to give an R24(16) motif, shown in Fig. 7[link]. The carbonyl group also makes an intra­molecular C—H-to-O contact similar to that found in the structure of (II)[link] [O3⋯C5 = 2.970 (2), O3⋯H5A = 2.40 Å; see Table 4[link]]; however, here, with a strong N—H hydrogen-bond donor available, this is not enough to prevent O3 taking part in other contacts. The structure of (III)[link], composed of hydrogen-bonded layers parallel to the bc plane, features no short ππ or dipole–dipole contacts.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O3i 0.91 (1) 2.01 (1) 2.895 (2) 165 (2)
C5—H5A⋯O2ii 0.99 2.54 3.460 (2) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O5i 0.83 (2) 2.36 (2) 3.176 (2) 171 (2)
N4—H2N⋯O2ii 0.88 (2) 2.02 (2) 2.864 (2) 162 (2)
C2—H2A⋯O4iii 0.99 2.53 3.498 (3) 165
C6—H6B⋯O3iv 0.99 2.58 3.354 (3) 135
C9—H9⋯O5i 0.95 2.43 3.322 (2) 156
C14—H14⋯O2ii 0.95 2.46 3.317 (3) 149
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 7]
Figure 7
The crystal packing of compound (III)[link], viewed along the a axis. The inter­molecular interactions (See Table 3[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

In the crystal of (IV)[link], there are two classical N—H⋯O hydrogen bonds (Table 4[link] and Fig. 8[link]) that involve both of the amide N—H groups, but surprisingly only one of the potential amide C=O acceptors. The other acceptor O atom is O5 of the nitro group. These hydrogen bonds combine to give layers parallel to the bc plane. As with (II)[link], the reason for the second amide carbonyl group not acting as a classical hydrogen-bond acceptor may lie with a short intra­molecular contact [O3⋯C11 = 2.765 (3) Å, O3⋯H11 = 2.27 Å; see Table 4[link]]. The remaining shortest inter­molecular contact involves the terminal N atom of the N3 group. This forms a short contact with the methyl carbon C17 [N9⋯C17ii 2.968 (3) Å; symmetry code: (ii) = −x + 1, −y, −z + 1) and these contacts form the primary bridges between the layers described above.

[Figure 8]
Figure 8
The crystal packing of compound (IV)[link], viewed along the a axis. The inter­molecular interactions (See Table 4[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded zero hits for 4-nitro­pyrrole-2-carboxyl­ates and only 12 hits for 4-nitro­pyrrole-2-carboxamides. One of the latter, viz. dimeth­yl{3-[1-methyl-4-(1-methyl-4-nitro­pyrrole-2-carboxamido)­pyrrole-2-carboxamido]­prop­yl}ammonium chloride methanol solvate (RACBAZ; Lu et al., 2003[Lu, L., Zhu, M., Li, J. & Yang, P. (2003). Acta Cryst. E59, o417-o419.]), has a (4-nitro­pyrrole-2-carboxamido)­pyrrole-2-carboxamide unit present, as in compound (IV)[link]. Here, the conformation of this unit is slightly more planar than that for compound (IV)[link]. For example, the two pyrrole rings are inclined to one another by 3.7 (2)° compared to 9.3 (1)° in compound (IV)[link].

5. Synthesis and crystallization

Ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate (I). 4-Nitro-1H-pyrrole-2-carb­oxy­lic acid was dissolved in thionyl chloride (10 mL) and heated under reflux for 2 h. Excess thionyl chloride was removed under reduced pressure and the acid chloride so formed was dissolved in di­chloro­methane (25 mL, dry) to which ethanol (10 mL) and TEA (2 mL) were added. The stirring was continued at room temperature overnight. Solvent and excess reagents were removed under reduced pressure and the residue was partitioned between brine (50 mL) and ethyl acetate (100 mL). After the extraction, the water layer was extracted again with ethyl acetate (2 × 100 mL). The combined organic extracts were dried (Na2SO4), filtered and the solvent removed under reduced pressure. The crude product obtained was applied to a silica gel column and eluted with 1/2 ethyl acetate/n-hexane. The required product was obtained as a brown solid (1.070 g, 93%), m.p. 445–447 K [reference m.p. 447–448 K, Lee et al., 1988[Lee, M., Coulter, D. M. & Lown, J. W. (1988). J. Org. Chem. 53, 1855-1859.]]. IR: 750, 775, 808, 841, 961, 1017, 1086, 1119, 1148, 1204, 1263, 1316, 1364, 1383, 1420, 14670, 1503, 1566, 1684, 3264 cm−1. 1H NMR (DMSO-d6): 9.81(1H, br), 7.77(1H, dd, J = 3.5 Hz & J = 1.6 Hz), 7.41(1H, dd, J = 2.6 Hz & J = 1.8 Hz), 4.41(2H, qt, J = 7.1 Hz), 1.4(3H, q, J = 7.1 Hz). HRESIMS: found 185.0555; calculated 185.0557.

Ethyl 4-nitro-1-(4-pentyn­yl)-1H-pyrrole-2-carboxyl­ate (II). Ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate (0.230 g, 1.25 mmol) was dissolved in acetone (25 mL) to which sodium carbonate (0.395 g, 3.73 mmol), tetra­butyl­ammonium iodide (0.462 g, 1.25 mmol), and propyl bromide solution 80 weight % in toluene (1.50 mL) were added. The reaction mixture was heated under reflux for 6 h after which time it was left stirring at room temperature overnight. Water and ethyl acetate were added to the reaction mixture. After extraction, the organic layers were collected, dried (Na2SO4), filtered and the solvent removed under reduced pressure. The crude product was applied to a silica gel column and eluted with (1/4 ethyl acetate/n-hexane, RF = 0.35). The required product was obtained as a white solid (0.270 g, 83%), m.p. 335–337 K [It was obtained as a colourless oil by Satam et al., 2014[Satam, V., Patil, P., Babu, B., Rice, T., Porte, A., Alger, S., Zeller, M. & Lee, M. (2014). Synth. Commun. 44, 968-975.]]. IR: 754, 808, 864, 1018, 1084, 1107, 1165, 1188, 1250, 1285, 1312, 1364, 1383, 1422, 1497, 1533, 1717 cm−1. 1H NMR (CDCl3): 7.70 (1H, d, J = 2.0 Hz), 7.46 (1H, d, J = 2.0 Hz), 4.53 (2H, t, J = 6.8 Hz), 4.35 (2H, q, J = 7.2 Hz), 2.24 (2H, dt, J = 6.7 Hz & J = 2.7 Hz), 2.09 (1H, t, J = 2.7 Hz), 2.07 (2H, qt, J = 6.7 Hz), 1.40 (3H, t, J = 7.1 Hz). HRESIMS: found 251.1010; calculated 251.1026.

N-[3-(Di­methyl­amino)­prop­yl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide (III). Following Khalaf et al., 2004[Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133-2156.], 4-nitro-N-isopropyl-pyrrole-2-carb­oxy­lic acid (0.315g, 1.39 mmol) was dissolved in thionyl chloride (5 mL) and heated at reflux for 4 h. The excess thionyl chloride was removed under reduced pressure at 323 K to give the acid chloride as a white solid that was used without further purification. 3-(Di­methyl­amino)­propyl­amine (0.25 mL, 2.47 mmol) was dissolved in THF (20 mL, dry) to which N-methyl­morpholine (0.25 mL) was added at room temperature with stirring. The acid chloride was dissolved in THF (5 mL, dry) and added dropwise to the amine solution at room temperature with stirring. The reaction mixture was then left stirring at room temperature overnight. Following this, the solvent was removed under reduced pressure at 323 K and then the crude product was extracted with aqueous potassium carbonate solution (25 mL, 10% w/v) and di­chloro­methane (2 × 50 mL). The organic layer was collected, dried (Na2SO4), and filtered, and the solvent was removed under reduced pressure. The crude product was purified by chromatography over silica gel using 100:100:1 methanol/ethyl acetate/tri­ethyl­amine to give the required product as a pale-yellow solid (410 mg, 95%), m.p. 345–346 K. IR (KBr): 1656, 1637, 1565, 1534, 1498, 1417, 1333 cm−1. 1H NMR (CDCl3): 0.95 (6H, d, J = 6.5 Hz), 1.57–1.76 (5H, m), 2.32 (6H, s), 2.51 (2H, t, J = 10.3 Hz), 3.47–3.51 (2H, quintet, J = 4.8 Hz), 4.40–4.44 (2H, q, J = 7.5 Hz), 6.92 (1H, d, J = 1.9 Hz), 7.56 (1H, d, J = 1.9 Hz), 8.61 (1H, s, br, CONH). HRESIMS: found 310.20031; calculated 310.20049.

1-(3-Azido­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)eth­yl]-1H-pyrrole-2-carboxamide (IV). 1-(3-chloro­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-(2-morpholino­eth­yl)-1H-pyrrole-2-carboxamide (100 mg, 0.214 mmol) was dissolved in DMF (5 mL, anhydrous) to which was added sodium azide (41.7 mg, 0.642 mmol). This solution was heated at 333 K overnight with stirring and then the DMF was removed in vacuo. The resulting residue was dissolved in ethyl acetate (10 mL), washed with water (3 x 10 mL) and the organic layer was reduced in volume by rotary evaporation to approximately 1 mL and the product was obtained as a crystalline solid after several hours (81 mg, 80%). IR: 3357, 3294, 3140, 2954, 2857, 2805, 2097, 1617, 1496, 1303, 1115 cm−1. 1H NMR (DMSO): 10.26 (1H, s), 8.18 (1H, d, J = 1.6 Hz), 8.00 (1H, t, J = 5.6 Hz), 7.58 (1H, d, J = 1.6 Hz), 7.27 (1H, d, J = 1.6 Hz), 6.85 (1H, d, J = 1.6 Hz), 4.34 (2H, t, J = 6.4 Hz), 3.96 (3H, s), 3.58 (4H, t, J = 4.4 Hz), 3.25–3.30 (4H, m), 2.40–2.45 (6H, m), 1.93 (2H, pentet, J = 6.8Hz). HRESIMS: found 474.2202; calculated 474.2208.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The H atoms bound to N were located in difference Fourier maps and freely refined for (I)[link] and (IV)[link]. In compound (III)[link], the N—H distance was restrained to be 0.93 (1) Å. For all structures, C-bound H atoms were placed in the expected geometrical positions and treated as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C7H8N2O4 C12H14N2O4 C15H26N4O3 C20H27N9O5
Mr 184.15 250.25 310.40 473.51
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 123 123 123 123
a, b, c (Å) 11.0318 (13), 10.4108 (13), 7.1659 (8) 7.8839 (4), 16.1443 (7), 10.2058 (5) 17.5744 (7), 11.3718 (6), 8.7299 (4) 11.2809 (4), 16.4528 (6), 12.5130 (5)
β (°) 96.734 (10) 104.472 (5) 92.076 (4) 106.542 (4)
V3) 817.32 (17) 1257.78 (10) 1743.55 (14) 2226.32 (14)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.13 0.10 0.08 0.11
Crystal size (mm) 0.35 × 0.25 × 0.02 0.38 × 0.14 × 0.06 0.40 × 0.30 × 0.04 0.30 × 0.28 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.679, 1.000 0.918, 1.000 0.995, 1.000 0.828, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4995, 1604, 1240 6098, 2745, 2133 8252, 3971, 2873 14949, 4852, 3295
Rint 0.038 0.025 0.030 0.038
(sin θ/λ)max−1) 0.617 0.639 0.650 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.210, 1.17 0.041, 0.100, 1.03 0.053, 0.145, 1.03 0.049, 0.128, 1.03
No. of reflections 1604 2745 3971 4852
No. of parameters 123 164 206 316
No. of restraints 0 0 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.30 0.22, −0.24 0.33, −0.27 0.29, −0.32
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate top
Crystal data top
C7H8N2O4F(000) = 384
Mr = 184.15Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0318 (13) ÅCell parameters from 1975 reflections
b = 10.4108 (13) Åθ = 3.2–28.3°
c = 7.1659 (8) ŵ = 0.13 mm1
β = 96.734 (10)°T = 123 K
V = 817.32 (17) Å3Plate, colourless
Z = 40.35 × 0.25 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
1604 independent reflections
Radiation source: fine-focus sealed tube1240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1313
Tmin = 0.679, Tmax = 1.000k = 1112
4995 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.5276P]
where P = (Fo2 + 2Fc2)/3
1604 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6535 (2)0.5757 (2)0.6758 (3)0.0334 (7)
O20.8216 (2)0.5067 (2)0.8325 (3)0.0321 (6)
O30.6242 (2)0.0697 (2)0.6309 (3)0.0284 (6)
O40.79942 (18)0.0218 (2)0.8128 (3)0.0225 (6)
N10.7216 (2)0.4878 (3)0.7390 (3)0.0254 (7)
N20.5700 (2)0.1948 (3)0.6026 (3)0.0211 (6)
C10.5726 (3)0.3226 (3)0.6068 (4)0.0203 (7)
H10.51020.37880.55300.024*
C20.6831 (3)0.3584 (3)0.7041 (4)0.0189 (7)
C30.7498 (3)0.2472 (3)0.7609 (4)0.0181 (7)
H30.82870.24280.83000.022*
C40.6769 (2)0.1465 (3)0.6954 (4)0.0179 (7)
C50.6964 (3)0.0084 (3)0.7088 (4)0.0192 (7)
C60.8251 (3)0.1596 (3)0.8261 (5)0.0290 (8)
H6A0.82140.19780.69910.035*
H6B0.76450.20340.89540.035*
C70.9511 (3)0.1739 (4)0.9291 (5)0.0325 (9)
H7A1.01000.12980.85920.049*
H7B0.97200.26530.94060.049*
H7C0.95330.13601.05460.049*
H1N0.513 (4)0.143 (4)0.546 (6)0.055 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (14)0.0233 (14)0.0415 (14)0.0062 (10)0.0014 (10)0.0016 (10)
O20.0239 (12)0.0294 (14)0.0408 (13)0.0063 (10)0.0050 (10)0.0058 (10)
O30.0227 (12)0.0247 (13)0.0359 (13)0.0045 (10)0.0039 (9)0.0034 (10)
O40.0213 (11)0.0189 (12)0.0253 (11)0.0015 (9)0.0053 (8)0.0002 (9)
N10.0263 (14)0.0236 (15)0.0270 (14)0.0008 (12)0.0057 (11)0.0002 (11)
N20.0139 (12)0.0293 (16)0.0189 (12)0.0021 (11)0.0031 (9)0.0010 (11)
C10.0167 (14)0.0271 (18)0.0164 (14)0.0020 (13)0.0010 (11)0.0031 (12)
C20.0165 (14)0.0216 (17)0.0182 (14)0.0004 (12)0.0002 (11)0.0002 (12)
C30.0134 (14)0.0238 (17)0.0166 (13)0.0028 (11)0.0007 (11)0.0024 (11)
C40.0136 (13)0.0249 (17)0.0144 (13)0.0017 (12)0.0019 (10)0.0029 (12)
C50.0181 (14)0.0230 (17)0.0165 (13)0.0004 (13)0.0015 (11)0.0020 (12)
C60.0251 (17)0.0252 (18)0.0348 (18)0.0019 (14)0.0047 (13)0.0023 (14)
C70.0238 (17)0.033 (2)0.0397 (19)0.0033 (15)0.0013 (14)0.0006 (15)
Geometric parameters (Å, º) top
O1—N11.236 (3)C2—C31.406 (4)
O2—N11.237 (3)C3—C41.371 (4)
O3—C51.225 (4)C3—H30.9500
O4—C51.322 (3)C4—C51.455 (4)
O4—C61.464 (4)C6—C71.502 (4)
N1—C21.426 (4)C6—H6A0.9900
N2—C11.331 (5)C6—H6B0.9900
N2—C41.380 (4)C7—H7A0.9800
N2—H1N0.90 (4)C7—H7B0.9800
C1—C21.383 (4)C7—H7C0.9800
C1—H10.9500
C5—O4—C6114.6 (2)C3—C4—C5131.1 (3)
O1—N1—O2123.1 (3)N2—C4—C5120.3 (3)
O1—N1—C2118.7 (3)O3—C5—O4124.7 (3)
O2—N1—C2118.2 (3)O3—C5—C4122.8 (3)
C1—N2—C4109.8 (2)O4—C5—C4112.5 (2)
C1—N2—H1N129 (3)O4—C6—C7106.9 (3)
C4—N2—H1N121 (3)O4—C6—H6A110.3
N2—C1—C2107.2 (3)C7—C6—H6A110.3
N2—C1—H1126.4O4—C6—H6B110.3
C2—C1—H1126.4C7—C6—H6B110.3
C1—C2—C3109.0 (3)H6A—C6—H6B108.6
C1—C2—N1124.7 (3)C6—C7—H7A109.5
C3—C2—N1126.3 (3)C6—C7—H7B109.5
C4—C3—C2105.3 (3)H7A—C7—H7B109.5
C4—C3—H3127.3C6—C7—H7C109.5
C2—C3—H3127.3H7A—C7—H7C109.5
C3—C4—N2108.7 (3)H7B—C7—H7C109.5
C4—N2—C1—C20.0 (3)C2—C3—C4—C5179.4 (3)
N2—C1—C2—C30.0 (3)C1—N2—C4—C30.0 (3)
N2—C1—C2—N1179.8 (3)C1—N2—C4—C5179.5 (2)
O1—N1—C2—C11.5 (4)C6—O4—C5—O31.7 (4)
O2—N1—C2—C1178.1 (3)C6—O4—C5—C4178.3 (2)
O1—N1—C2—C3178.3 (3)C3—C4—C5—O3175.0 (3)
O2—N1—C2—C32.1 (4)N2—C4—C5—O34.4 (4)
C1—C2—C3—C40.1 (3)C3—C4—C5—O44.9 (4)
N1—C2—C3—C4179.8 (3)N2—C4—C5—O4175.7 (2)
C2—C3—C4—N20.1 (3)C5—O4—C6—C7173.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O3i0.90 (4)2.00 (5)2.872 (3)163 (4)
C1—H1···O1ii0.952.343.203 (4)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate top
Crystal data top
C12H14N2O4F(000) = 528
Mr = 250.25Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2521 reflections
a = 7.8839 (4) Åθ = 3.2–29.3°
b = 16.1443 (7) ŵ = 0.10 mm1
c = 10.2058 (5) ÅT = 123 K
β = 104.472 (5)°Rod, colourless
V = 1257.78 (10) Å30.38 × 0.14 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2745 independent reflections
Radiation source: fine-focus sealed tube2133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 109
Tmin = 0.918, Tmax = 1.000k = 2017
6098 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.3332P]
where P = (Fo2 + 2Fc2)/3
2745 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67236 (15)0.08852 (7)0.29527 (11)0.0320 (3)
O20.66323 (13)0.10194 (6)0.51291 (11)0.0242 (3)
O30.8949 (2)0.18072 (8)0.77978 (13)0.0489 (4)
O41.00887 (15)0.25558 (7)0.64857 (12)0.0325 (3)
N10.84828 (15)0.07104 (8)0.37170 (12)0.0192 (3)
N20.93141 (17)0.19300 (8)0.67172 (14)0.0261 (3)
C10.77664 (17)0.01969 (9)0.45352 (15)0.0190 (3)
C20.79676 (18)0.05720 (9)0.57710 (15)0.0204 (3)
H20.76080.03650.65300.024*
C30.88142 (18)0.13247 (9)0.56798 (15)0.0203 (3)
C40.91140 (18)0.13959 (9)0.44135 (15)0.0201 (3)
H40.96670.18480.40910.024*
C50.69928 (18)0.06124 (9)0.40866 (15)0.0210 (3)
C60.5915 (2)0.18454 (9)0.48267 (17)0.0276 (4)
H6A0.67480.22010.45010.033*
H6B0.48000.18220.41170.033*
C70.5610 (2)0.21857 (11)0.61188 (19)0.0391 (5)
H7A0.67230.22050.68110.059*
H7B0.51230.27460.59590.059*
H7C0.47850.18280.64300.059*
C80.86099 (19)0.05609 (10)0.23232 (15)0.0222 (3)
H8A0.88120.00370.22050.027*
H8B0.96260.08690.21640.027*
C90.69648 (19)0.08289 (10)0.12910 (15)0.0237 (3)
H9A0.67430.14230.14230.028*
H9B0.59530.05090.14310.028*
C100.7135 (2)0.06919 (10)0.01578 (16)0.0285 (4)
H10A0.60220.08520.08010.034*
H10B0.80690.10570.03230.034*
C110.75444 (19)0.01676 (11)0.04200 (16)0.0285 (4)
C120.7889 (2)0.08626 (12)0.0585 (2)0.0377 (4)
H120.81670.14240.07180.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (7)0.0269 (6)0.0227 (6)0.0082 (5)0.0050 (5)0.0042 (5)
O20.0289 (5)0.0186 (5)0.0261 (6)0.0061 (4)0.0089 (5)0.0016 (5)
O30.0915 (11)0.0352 (8)0.0284 (7)0.0224 (7)0.0306 (7)0.0113 (6)
O40.0432 (7)0.0192 (6)0.0359 (7)0.0106 (5)0.0112 (5)0.0032 (5)
N10.0202 (6)0.0199 (6)0.0171 (7)0.0005 (5)0.0038 (5)0.0017 (5)
N20.0341 (7)0.0188 (7)0.0256 (8)0.0030 (6)0.0078 (6)0.0017 (6)
C10.0194 (7)0.0173 (7)0.0197 (8)0.0006 (6)0.0037 (6)0.0021 (6)
C20.0224 (7)0.0180 (7)0.0212 (8)0.0011 (6)0.0064 (6)0.0017 (6)
C30.0215 (7)0.0177 (7)0.0208 (8)0.0011 (6)0.0033 (6)0.0007 (6)
C40.0195 (7)0.0162 (7)0.0237 (8)0.0013 (6)0.0040 (6)0.0017 (6)
C50.0200 (7)0.0201 (8)0.0223 (8)0.0023 (6)0.0040 (6)0.0006 (6)
C60.0293 (8)0.0173 (8)0.0356 (10)0.0048 (6)0.0072 (7)0.0019 (7)
C70.0462 (10)0.0295 (10)0.0397 (11)0.0126 (8)0.0073 (8)0.0070 (8)
C80.0244 (7)0.0247 (8)0.0184 (8)0.0011 (6)0.0069 (6)0.0003 (6)
C90.0266 (7)0.0234 (8)0.0200 (8)0.0036 (6)0.0036 (6)0.0004 (6)
C100.0357 (9)0.0288 (9)0.0192 (8)0.0015 (7)0.0035 (7)0.0010 (7)
C110.0243 (8)0.0374 (10)0.0238 (9)0.0022 (7)0.0058 (6)0.0050 (7)
C120.0326 (9)0.0337 (10)0.0506 (12)0.0030 (8)0.0173 (8)0.0146 (9)
Geometric parameters (Å, º) top
O1—C51.2064 (18)C6—H6A0.9900
O2—C51.3399 (18)C6—H6B0.9900
O2—C61.4512 (18)C7—H7A0.9800
O3—N21.2235 (17)C7—H7B0.9800
O4—N21.2336 (16)C7—H7C0.9800
N1—C41.3420 (19)C8—C91.515 (2)
N1—C11.3926 (18)C8—H8A0.9900
N1—C81.4707 (18)C8—H8B0.9900
N2—C31.4221 (19)C9—C101.534 (2)
C1—C21.372 (2)C9—H9A0.9900
C1—C51.466 (2)C9—H9B0.9900
C2—C31.401 (2)C10—C111.464 (2)
C2—H20.9500C10—H10A0.9900
C3—C41.376 (2)C10—H10B0.9900
C4—H40.9500C11—C121.177 (2)
C6—C71.502 (2)C12—H120.9500
C5—O2—C6115.49 (12)H6A—C6—H6B108.6
C4—N1—C1109.00 (12)C6—C7—H7A109.5
C4—N1—C8122.81 (12)C6—C7—H7B109.5
C1—N1—C8128.18 (12)H7A—C7—H7B109.5
O3—N2—O4122.99 (13)C6—C7—H7C109.5
O3—N2—C3118.42 (13)H7A—C7—H7C109.5
O4—N2—C3118.59 (13)H7B—C7—H7C109.5
C2—C1—N1108.50 (13)N1—C8—C9111.85 (11)
C2—C1—C5128.60 (13)N1—C8—H8A109.2
N1—C1—C5122.87 (13)C9—C8—H8A109.2
C1—C2—C3105.63 (13)N1—C8—H8B109.2
C1—C2—H2127.2C9—C8—H8B109.2
C3—C2—H2127.2H8A—C8—H8B107.9
C4—C3—C2109.36 (13)C8—C9—C10111.30 (12)
C4—C3—N2124.15 (13)C8—C9—H9A109.4
C2—C3—N2126.49 (14)C10—C9—H9A109.4
N1—C4—C3107.50 (12)C8—C9—H9B109.4
N1—C4—H4126.2C10—C9—H9B109.4
C3—C4—H4126.2H9A—C9—H9B108.0
O1—C5—O2124.15 (14)C11—C10—C9112.91 (13)
O1—C5—C1125.78 (14)C11—C10—H10A109.0
O2—C5—C1110.08 (13)C9—C10—H10A109.0
O2—C6—C7106.78 (13)C11—C10—H10B109.0
O2—C6—H6A110.4C9—C10—H10B109.0
C7—C6—H6A110.4H10A—C10—H10B107.8
O2—C6—H6B110.4C12—C11—C10177.77 (19)
C7—C6—H6B110.4C11—C12—H12180.0
C4—N1—C1—C20.32 (16)C2—C3—C4—N10.11 (16)
C8—N1—C1—C2178.42 (13)N2—C3—C4—N1179.47 (13)
C4—N1—C1—C5178.80 (13)C6—O2—C5—O11.6 (2)
C8—N1—C1—C50.1 (2)C6—O2—C5—C1177.89 (11)
N1—C1—C2—C30.25 (15)C2—C1—C5—O1173.80 (15)
C5—C1—C2—C3178.61 (14)N1—C1—C5—O18.1 (2)
C1—C2—C3—C40.09 (16)C2—C1—C5—O26.8 (2)
C1—C2—C3—N2179.65 (14)N1—C1—C5—O2171.39 (12)
O3—N2—C3—C4178.63 (15)C5—O2—C6—C7179.97 (13)
O4—N2—C3—C41.1 (2)C4—N1—C8—C995.21 (16)
O3—N2—C3—C21.9 (2)C1—N1—C8—C986.21 (17)
O4—N2—C3—C2178.43 (14)N1—C8—C9—C10178.43 (12)
C1—N1—C4—C30.26 (16)C8—C9—C10—C1156.43 (18)
C8—N1—C4—C3178.56 (12)C9—C10—C11—C1216 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.952.533.323 (2)141
C10—H10B···O3ii0.992.513.337 (2)141
C12—H12···O4iii0.952.403.262 (2)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1; (iii) x+2, y1/2, z+1/2.
(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide top
Crystal data top
C15H26N4O3F(000) = 672
Mr = 310.40Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2708 reflections
a = 17.5744 (7) Åθ = 3.2–28.8°
b = 11.3718 (6) ŵ = 0.08 mm1
c = 8.7299 (4) ÅT = 123 K
β = 92.076 (4)°Plate, colourless
V = 1743.55 (14) Å30.40 × 0.30 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3971 independent reflections
Radiation source: fine-focus sealed tube2873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2222
Tmin = 0.995, Tmax = 1.000k = 1314
8252 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6893P]
where P = (Fo2 + 2Fc2)/3
3971 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43676 (7)1.01567 (12)0.38580 (15)0.0292 (3)
O20.43689 (8)0.82473 (12)0.37406 (17)0.0343 (4)
O30.67675 (7)0.84955 (11)0.16325 (14)0.0257 (3)
N10.60351 (8)0.99423 (12)0.07012 (16)0.0183 (3)
N20.46097 (8)0.92217 (13)0.33535 (17)0.0226 (3)
N30.67714 (8)0.70166 (13)0.01195 (17)0.0200 (3)
H1N0.6676 (11)0.6851 (17)0.1111 (12)0.024*
N40.91585 (10)0.56415 (18)0.0944 (2)0.0422 (5)
C10.55171 (9)1.02695 (15)0.1723 (2)0.0195 (4)
H10.53961.10520.20080.023*
C20.51972 (9)0.92543 (15)0.22736 (19)0.0187 (4)
C30.55292 (9)0.82769 (15)0.15765 (19)0.0191 (4)
H30.54120.74720.17380.023*
C40.60561 (9)0.87244 (15)0.06166 (19)0.0174 (4)
C50.65546 (10)1.07684 (15)0.0027 (2)0.0213 (4)
H5A0.63401.15730.00080.026*
H5B0.66061.05490.11160.026*
C60.73347 (10)1.07512 (17)0.0790 (2)0.0244 (4)
H6A0.75360.99390.07750.029*
H6B0.72761.09760.18750.029*
C70.79112 (11)1.15716 (18)0.0085 (2)0.0308 (5)
H70.79601.13450.10140.037*
C80.76633 (14)1.2851 (2)0.0139 (3)0.0456 (6)
H8A0.72001.29570.05040.068*
H8B0.80691.33520.02420.068*
H8C0.75621.30680.11980.068*
C90.86909 (13)1.1411 (3)0.0907 (3)0.0517 (7)
H9A0.90711.18900.03980.078*
H9B0.88391.05810.08690.078*
H9C0.86611.16590.19780.078*
C100.65675 (9)0.80817 (15)0.04016 (19)0.0185 (4)
C110.71803 (10)0.61821 (16)0.0811 (2)0.0233 (4)
H11A0.70280.63090.19010.028*
H11B0.70230.53760.05340.028*
C120.80398 (11)0.62648 (19)0.0639 (2)0.0303 (5)
H12A0.82680.57280.13890.036*
H12B0.81980.70760.08910.036*
C130.83521 (11)0.59597 (19)0.0947 (2)0.0318 (5)
H13A0.82860.66420.16340.038*
H13B0.80590.52940.13550.038*
C140.94033 (15)0.5120 (3)0.2399 (3)0.0619 (8)
H14A0.93260.56840.32280.093*
H14B0.99440.49160.23730.093*
H14C0.91050.44080.25780.093*
C150.96397 (14)0.6629 (3)0.0604 (4)0.0631 (8)
H15A0.95050.69270.04240.095*
H15B1.01740.63780.06450.095*
H15C0.95670.72530.13590.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (7)0.0263 (7)0.0346 (8)0.0097 (6)0.0057 (6)0.0033 (6)
O20.0338 (7)0.0252 (8)0.0452 (9)0.0027 (6)0.0168 (6)0.0024 (6)
O30.0375 (7)0.0232 (7)0.0167 (6)0.0023 (6)0.0043 (5)0.0010 (5)
N10.0191 (7)0.0147 (7)0.0207 (7)0.0002 (6)0.0014 (5)0.0014 (6)
N20.0192 (7)0.0228 (8)0.0260 (8)0.0025 (6)0.0024 (6)0.0007 (6)
N30.0244 (7)0.0187 (7)0.0173 (7)0.0031 (6)0.0043 (6)0.0003 (6)
N40.0286 (9)0.0492 (12)0.0484 (12)0.0016 (8)0.0035 (8)0.0092 (9)
C10.0184 (8)0.0180 (9)0.0219 (9)0.0033 (7)0.0015 (6)0.0014 (7)
C20.0158 (7)0.0198 (9)0.0205 (8)0.0023 (7)0.0003 (6)0.0008 (7)
C30.0183 (8)0.0174 (9)0.0213 (9)0.0002 (7)0.0013 (6)0.0004 (7)
C40.0191 (8)0.0158 (8)0.0171 (8)0.0001 (7)0.0022 (6)0.0004 (6)
C50.0265 (9)0.0162 (8)0.0211 (9)0.0021 (7)0.0011 (7)0.0033 (7)
C60.0256 (9)0.0240 (10)0.0235 (9)0.0056 (8)0.0015 (7)0.0044 (8)
C70.0317 (10)0.0356 (11)0.0253 (10)0.0127 (9)0.0031 (8)0.0041 (9)
C80.0592 (15)0.0333 (12)0.0448 (14)0.0203 (11)0.0108 (11)0.0026 (10)
C90.0332 (12)0.0749 (19)0.0469 (14)0.0221 (12)0.0010 (10)0.0124 (13)
C100.0171 (8)0.0205 (9)0.0177 (8)0.0029 (7)0.0020 (6)0.0020 (7)
C110.0260 (9)0.0221 (9)0.0219 (9)0.0049 (7)0.0019 (7)0.0042 (7)
C120.0287 (10)0.0318 (11)0.0307 (11)0.0028 (8)0.0056 (8)0.0027 (8)
C130.0281 (10)0.0359 (11)0.0314 (11)0.0020 (9)0.0011 (8)0.0004 (9)
C140.0435 (14)0.076 (2)0.0645 (18)0.0022 (14)0.0170 (13)0.0193 (15)
C150.0366 (13)0.074 (2)0.079 (2)0.0156 (13)0.0038 (13)0.0177 (16)
Geometric parameters (Å, º) top
O1—N21.2325 (19)C6—H6B0.9900
O2—N21.2375 (19)C7—C81.520 (3)
O3—C101.236 (2)C7—C91.535 (3)
N1—C11.350 (2)C7—H71.0000
N1—C41.388 (2)C8—H8A0.9800
N1—C51.471 (2)C8—H8B0.9800
N2—C21.424 (2)C8—H8C0.9800
N3—C101.338 (2)C9—H9A0.9800
N3—C111.456 (2)C9—H9B0.9800
N3—H1N0.908 (9)C9—H9C0.9800
N4—C151.443 (3)C11—C121.515 (3)
N4—C141.453 (3)C11—H11A0.9900
N4—C131.463 (3)C11—H11B0.9900
C1—C21.378 (2)C12—C131.511 (3)
C1—H10.9500C12—H12A0.9900
C2—C31.404 (2)C12—H12B0.9900
C3—C41.369 (2)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C101.480 (2)C14—H14A0.9800
C5—C61.523 (2)C14—H14B0.9800
C5—H5A0.9900C14—H14C0.9800
C5—H5B0.9900C15—H15A0.9800
C6—C71.524 (2)C15—H15B0.9800
C6—H6A0.9900C15—H15C0.9800
C1—N1—C4109.28 (14)H8A—C8—H8B109.5
C1—N1—C5123.63 (14)C7—C8—H8C109.5
C4—N1—C5126.63 (14)H8A—C8—H8C109.5
O1—N2—O2123.30 (15)H8B—C8—H8C109.5
O1—N2—C2118.82 (15)C7—C9—H9A109.5
O2—N2—C2117.88 (15)C7—C9—H9B109.5
C10—N3—C11122.14 (15)H9A—C9—H9B109.5
C10—N3—H1N117.1 (13)C7—C9—H9C109.5
C11—N3—H1N120.6 (13)H9A—C9—H9C109.5
C15—N4—C14109.9 (2)H9B—C9—H9C109.5
C15—N4—C13112.51 (19)O3—C10—N3124.00 (16)
C14—N4—C13110.86 (19)O3—C10—C4122.17 (16)
N1—C1—C2107.04 (15)N3—C10—C4113.82 (15)
N1—C1—H1126.5N3—C11—C12114.51 (15)
C2—C1—H1126.5N3—C11—H11A108.6
C1—C2—C3109.31 (15)C12—C11—H11A108.6
C1—C2—N2124.59 (15)N3—C11—H11B108.6
C3—C2—N2126.09 (15)C12—C11—H11B108.6
C4—C3—C2105.77 (15)H11A—C11—H11B107.6
C4—C3—H3127.1C13—C12—C11113.83 (16)
C2—C3—H3127.1C13—C12—H12A108.8
C3—C4—N1108.58 (15)C11—C12—H12A108.8
C3—C4—C10128.54 (16)C13—C12—H12B108.8
N1—C4—C10122.87 (15)C11—C12—H12B108.8
N1—C5—C6110.60 (14)H12A—C12—H12B107.7
N1—C5—H5A109.5N4—C13—C12112.04 (17)
C6—C5—H5A109.5N4—C13—H13A109.2
N1—C5—H5B109.5C12—C13—H13A109.2
C6—C5—H5B109.5N4—C13—H13B109.2
H5A—C5—H5B108.1C12—C13—H13B109.2
C5—C6—C7113.79 (15)H13A—C13—H13B107.9
C5—C6—H6A108.8N4—C14—H14A109.5
C7—C6—H6A108.8N4—C14—H14B109.5
C5—C6—H6B108.8H14A—C14—H14B109.5
C7—C6—H6B108.8N4—C14—H14C109.5
H6A—C6—H6B107.7H14A—C14—H14C109.5
C8—C7—C6112.21 (17)H14B—C14—H14C109.5
C8—C7—C9110.58 (19)N4—C15—H15A109.5
C6—C7—C9109.48 (17)N4—C15—H15B109.5
C8—C7—H7108.1H15A—C15—H15B109.5
C6—C7—H7108.1N4—C15—H15C109.5
C9—C7—H7108.1H15A—C15—H15C109.5
C7—C8—H8A109.5H15B—C15—H15C109.5
C7—C8—H8B109.5
C4—N1—C1—C20.96 (18)C1—N1—C5—C698.60 (19)
C5—N1—C1—C2173.61 (14)C4—N1—C5—C672.7 (2)
N1—C1—C2—C30.21 (18)N1—C5—C6—C7179.02 (15)
N1—C1—C2—N2178.42 (15)C5—C6—C7—C861.5 (2)
O1—N2—C2—C10.8 (2)C5—C6—C7—C9175.33 (18)
O2—N2—C2—C1179.34 (15)C11—N3—C10—O37.4 (3)
O1—N2—C2—C3179.22 (15)C11—N3—C10—C4171.01 (14)
O2—N2—C2—C30.9 (3)C3—C4—C10—O3148.08 (18)
C1—C2—C3—C40.63 (18)N1—C4—C10—O330.3 (2)
N2—C2—C3—C4179.23 (15)C3—C4—C10—N330.4 (2)
C2—C3—C4—N11.20 (18)N1—C4—C10—N3151.23 (15)
C2—C3—C4—C10179.77 (15)C10—N3—C11—C1290.8 (2)
C1—N1—C4—C31.39 (18)N3—C11—C12—C1364.5 (2)
C5—N1—C4—C3173.75 (15)C15—N4—C13—C1268.4 (3)
C1—N1—C4—C10179.95 (14)C14—N4—C13—C12168.0 (2)
C5—N1—C4—C107.6 (2)C11—C12—C13—N4159.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O3i0.91 (1)2.01 (1)2.895 (2)165 (2)
C5—H5A···O2ii0.992.543.460 (2)154
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide top
Crystal data top
C20H27N9O5F(000) = 1000
Mr = 473.51Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4332 reflections
a = 11.2809 (4) Åθ = 3.3–29.5°
b = 16.4528 (6) ŵ = 0.11 mm1
c = 12.5130 (5) ÅT = 123 K
β = 106.542 (4)°Plate, colourless
V = 2226.32 (14) Å30.30 × 0.28 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4852 independent reflections
Radiation source: fine-focus sealed tube3295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1414
Tmin = 0.828, Tmax = 1.000k = 2120
14949 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.8101P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.41300 (15)0.56045 (11)1.22578 (13)0.0398 (4)
O20.98973 (13)0.34257 (9)0.69343 (11)0.0258 (3)
O30.74904 (13)0.00393 (9)0.86469 (11)0.0283 (4)
O40.97289 (14)0.07180 (11)1.39704 (12)0.0368 (4)
O50.86665 (15)0.18352 (10)1.36804 (12)0.0340 (4)
N11.30194 (15)0.45013 (11)1.04738 (14)0.0241 (4)
N21.09195 (16)0.35509 (11)0.87526 (14)0.0246 (4)
N30.84913 (15)0.20896 (10)0.74083 (13)0.0200 (4)
N40.88041 (15)0.08236 (11)0.98173 (14)0.0198 (4)
N50.76427 (15)0.11643 (11)1.04131 (13)0.0212 (4)
N60.90337 (16)0.12010 (12)1.33493 (14)0.0261 (4)
N70.53925 (18)0.24820 (15)0.46339 (15)0.0422 (6)
N80.49433 (18)0.24723 (13)0.36178 (16)0.0379 (5)
N90.4479 (2)0.24057 (16)0.26908 (19)0.0575 (7)
C11.2953 (2)0.57601 (15)1.14934 (18)0.0345 (6)
H1A1.28260.63541.14040.041*
H1B1.22990.55371.17950.041*
C21.2846 (2)0.53840 (13)1.03754 (17)0.0272 (5)
H2A1.20200.55060.98610.033*
H2B1.34760.56231.00580.033*
C31.42227 (19)0.43408 (15)1.12873 (18)0.0312 (5)
H3A1.48920.45401.09870.037*
H3B1.43310.37471.14060.037*
C41.4324 (2)0.47497 (16)1.23829 (19)0.0373 (6)
H4A1.37040.45131.27160.045*
H4B1.51540.46451.28990.045*
C51.30008 (19)0.41485 (14)0.93966 (17)0.0271 (5)
H5A1.32840.35770.95150.032*
H5B1.35980.44470.90970.032*
C61.1751 (2)0.41652 (14)0.85378 (17)0.0280 (5)
H6A1.13760.47090.85390.034*
H6B1.18600.40730.77890.034*
C71.00628 (18)0.32014 (12)0.79114 (15)0.0194 (4)
C80.93886 (17)0.25098 (12)0.81991 (15)0.0180 (4)
C90.96041 (17)0.20919 (12)0.91950 (15)0.0187 (4)
H91.01750.22400.98850.022*
C100.88249 (17)0.14092 (12)0.90005 (15)0.0178 (4)
C110.81442 (18)0.14275 (13)0.78955 (15)0.0212 (4)
H110.75340.10420.75350.025*
C120.81419 (17)0.01299 (13)0.95888 (15)0.0191 (4)
C130.82387 (17)0.04175 (12)1.05467 (16)0.0196 (4)
C140.88497 (18)0.03205 (13)1.16576 (16)0.0211 (4)
H140.93390.01311.19950.025*
C150.86064 (18)0.10201 (13)1.21902 (15)0.0209 (4)
C160.78689 (18)0.15307 (13)1.14111 (16)0.0226 (4)
H160.75730.20491.15520.027*
C170.6959 (2)0.15598 (14)0.93648 (17)0.0296 (5)
H17A0.66540.20900.95290.044*
H17B0.75090.16360.88920.044*
H17C0.62580.12180.89750.044*
C180.78428 (19)0.23250 (13)0.62593 (15)0.0233 (5)
H18A0.73830.18500.58610.028*
H18B0.84580.24880.58720.028*
C190.69467 (19)0.30212 (14)0.62105 (16)0.0266 (5)
H19A0.64000.28860.66790.032*
H19B0.74190.35150.65240.032*
C200.6165 (2)0.31976 (15)0.50420 (18)0.0321 (5)
H20A0.56370.36790.50390.039*
H20B0.66990.33120.45550.039*
H1N1.094 (2)0.3458 (14)0.9407 (19)0.025 (6)*
H2N0.922 (2)0.0947 (15)1.051 (2)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0397 (9)0.0420 (11)0.0339 (9)0.0102 (9)0.0042 (7)0.0090 (8)
O20.0354 (8)0.0221 (8)0.0175 (7)0.0041 (7)0.0036 (6)0.0044 (6)
O30.0364 (8)0.0263 (8)0.0184 (8)0.0069 (7)0.0017 (6)0.0004 (6)
O40.0357 (9)0.0497 (11)0.0211 (8)0.0107 (9)0.0021 (7)0.0016 (8)
O50.0510 (10)0.0254 (9)0.0273 (8)0.0052 (8)0.0139 (7)0.0106 (7)
N10.0229 (8)0.0221 (10)0.0252 (9)0.0034 (8)0.0037 (7)0.0000 (8)
N20.0331 (10)0.0261 (10)0.0145 (9)0.0090 (9)0.0067 (7)0.0014 (8)
N30.0263 (9)0.0180 (9)0.0140 (8)0.0012 (8)0.0030 (7)0.0003 (7)
N40.0260 (9)0.0178 (9)0.0146 (9)0.0011 (8)0.0045 (7)0.0013 (7)
N50.0253 (8)0.0180 (9)0.0203 (9)0.0001 (8)0.0067 (7)0.0005 (7)
N60.0280 (9)0.0294 (11)0.0215 (9)0.0081 (9)0.0081 (8)0.0067 (8)
N70.0405 (11)0.0530 (15)0.0259 (11)0.0132 (11)0.0019 (9)0.0015 (10)
N80.0345 (10)0.0428 (13)0.0322 (12)0.0017 (10)0.0028 (9)0.0026 (10)
N90.0693 (16)0.0580 (17)0.0339 (13)0.0029 (14)0.0036 (12)0.0083 (11)
C10.0374 (12)0.0333 (14)0.0329 (13)0.0019 (12)0.0098 (10)0.0066 (10)
C20.0289 (11)0.0217 (12)0.0307 (12)0.0011 (10)0.0078 (9)0.0010 (9)
C30.0237 (10)0.0291 (13)0.0367 (13)0.0033 (10)0.0018 (9)0.0059 (10)
C40.0312 (12)0.0444 (16)0.0306 (13)0.0089 (12)0.0003 (10)0.0073 (11)
C50.0280 (11)0.0218 (11)0.0320 (12)0.0047 (10)0.0095 (9)0.0034 (9)
C60.0358 (12)0.0243 (12)0.0238 (11)0.0107 (10)0.0082 (9)0.0011 (9)
C70.0233 (9)0.0172 (10)0.0182 (10)0.0024 (9)0.0069 (8)0.0012 (8)
C80.0220 (9)0.0154 (10)0.0162 (9)0.0020 (9)0.0047 (7)0.0035 (8)
C90.0209 (9)0.0190 (10)0.0161 (9)0.0016 (9)0.0053 (8)0.0022 (8)
C100.0220 (9)0.0160 (10)0.0157 (9)0.0022 (8)0.0057 (8)0.0013 (8)
C110.0256 (10)0.0178 (11)0.0192 (10)0.0026 (9)0.0048 (8)0.0000 (8)
C120.0213 (9)0.0188 (10)0.0181 (10)0.0023 (9)0.0071 (8)0.0005 (8)
C130.0209 (9)0.0190 (11)0.0199 (10)0.0026 (9)0.0074 (8)0.0006 (8)
C140.0235 (10)0.0213 (11)0.0188 (10)0.0016 (9)0.0064 (8)0.0000 (8)
C150.0228 (10)0.0224 (11)0.0185 (10)0.0041 (9)0.0072 (8)0.0027 (8)
C160.0280 (10)0.0179 (11)0.0245 (11)0.0032 (9)0.0118 (9)0.0054 (8)
C170.0386 (12)0.0230 (12)0.0248 (11)0.0068 (11)0.0052 (9)0.0013 (9)
C180.0300 (11)0.0234 (11)0.0133 (10)0.0020 (10)0.0009 (8)0.0001 (8)
C190.0264 (10)0.0290 (13)0.0230 (11)0.0014 (10)0.0045 (9)0.0013 (9)
C200.0266 (11)0.0348 (14)0.0312 (12)0.0027 (11)0.0023 (9)0.0072 (10)
Geometric parameters (Å, º) top
O1—C11.421 (3)C3—H3B0.9900
O1—C41.425 (3)C4—H4A0.9900
O2—C71.239 (2)C4—H4B0.9900
O3—C121.230 (2)C5—C61.510 (3)
O4—N61.226 (2)C5—H5A0.9900
O5—N61.237 (2)C5—H5B0.9900
N1—C51.462 (3)C6—H6A0.9900
N1—C21.466 (3)C6—H6B0.9900
N1—C31.470 (3)C7—C81.469 (3)
N2—C71.339 (3)C8—C91.383 (3)
N2—C61.455 (3)C9—C101.404 (3)
N2—H1N0.83 (2)C9—H90.9500
N3—C111.359 (3)C10—C111.378 (3)
N3—C81.383 (2)C11—H110.9500
N3—C181.467 (2)C12—C131.478 (3)
N4—C121.349 (3)C13—C141.374 (3)
N4—C101.410 (2)C14—C151.396 (3)
N4—H2N0.88 (2)C14—H140.9500
N5—C161.344 (2)C15—C161.374 (3)
N5—C131.388 (3)C16—H160.9500
N5—C171.471 (3)C17—H17A0.9800
N6—C151.424 (2)C17—H17B0.9800
N7—N81.227 (3)C17—H17C0.9800
N7—C201.467 (3)C18—C191.517 (3)
N8—N91.134 (3)C18—H18A0.9900
C1—C21.503 (3)C18—H18B0.9900
C1—H1A0.9900C19—C201.505 (3)
C1—H1B0.9900C19—H19A0.9900
C2—H2A0.9900C19—H19B0.9900
C2—H2B0.9900C20—H20A0.9900
C3—C41.502 (3)C20—H20B0.9900
C3—H3A0.9900
C1—O1—C4109.65 (18)H6A—C6—H6B107.9
C5—N1—C2110.46 (17)O2—C7—N2121.32 (19)
C5—N1—C3109.57 (17)O2—C7—C8121.96 (17)
C2—N1—C3108.13 (17)N2—C7—C8116.62 (16)
C7—N2—C6120.80 (17)N3—C8—C9107.54 (17)
C7—N2—H1N120.7 (16)N3—C8—C7122.45 (16)
C6—N2—H1N118.2 (16)C9—C8—C7129.45 (17)
C11—N3—C8109.00 (16)C8—C9—C10107.51 (17)
C11—N3—C18121.61 (16)C8—C9—H9126.2
C8—N3—C18128.93 (17)C10—C9—H9126.2
C12—N4—C10123.17 (17)C11—C10—C9107.40 (17)
C12—N4—H2N120.6 (16)C11—C10—N4128.53 (18)
C10—N4—H2N116.1 (16)C9—C10—N4124.06 (17)
C16—N5—C13109.14 (17)N3—C11—C10108.55 (17)
C16—N5—C17122.87 (18)N3—C11—H11125.7
C13—N5—C17127.76 (17)C10—C11—H11125.7
O4—N6—O5123.31 (17)O3—C12—N4122.55 (18)
O4—N6—C15118.70 (18)O3—C12—C13121.67 (19)
O5—N6—C15117.98 (18)N4—C12—C13115.78 (17)
N8—N7—C20113.6 (2)C14—C13—N5108.13 (17)
N9—N8—N7174.3 (3)C14—C13—C12130.51 (19)
O1—C1—C2111.39 (19)N5—C13—C12121.36 (17)
O1—C1—H1A109.3C13—C14—C15106.08 (18)
C2—C1—H1A109.3C13—C14—H14127.0
O1—C1—H1B109.3C15—C14—H14127.0
C2—C1—H1B109.3C16—C15—C14109.09 (17)
H1A—C1—H1B108.0C16—C15—N6123.80 (19)
N1—C2—C1110.88 (18)C14—C15—N6127.11 (19)
N1—C2—H2A109.5N5—C16—C15107.55 (19)
C1—C2—H2A109.5N5—C16—H16126.2
N1—C2—H2B109.5C15—C16—H16126.2
C1—C2—H2B109.5N5—C17—H17A109.5
H2A—C2—H2B108.1N5—C17—H17B109.5
N1—C3—C4111.51 (19)H17A—C17—H17B109.5
N1—C3—H3A109.3N5—C17—H17C109.5
C4—C3—H3A109.3H17A—C17—H17C109.5
N1—C3—H3B109.3H17B—C17—H17C109.5
C4—C3—H3B109.3N3—C18—C19112.29 (16)
H3A—C3—H3B108.0N3—C18—H18A109.1
O1—C4—C3111.86 (19)C19—C18—H18A109.1
O1—C4—H4A109.2N3—C18—H18B109.1
C3—C4—H4A109.2C19—C18—H18B109.1
O1—C4—H4B109.2H18A—C18—H18B107.9
C3—C4—H4B109.2C20—C19—C18112.59 (18)
H4A—C4—H4B107.9C20—C19—H19A109.1
N1—C5—C6114.48 (18)C18—C19—H19A109.1
N1—C5—H5A108.6C20—C19—H19B109.1
C6—C5—H5A108.6C18—C19—H19B109.1
N1—C5—H5B108.6H19A—C19—H19B107.8
C6—C5—H5B108.6N7—C20—C19108.00 (19)
H5A—C5—H5B107.6N7—C20—H20A110.1
N2—C6—C5112.10 (18)C19—C20—H20A110.1
N2—C6—H6A109.2N7—C20—H20B110.1
C5—C6—H6A109.2C19—C20—H20B110.1
N2—C6—H6B109.2H20A—C20—H20B108.4
C5—C6—H6B109.2
C20—N7—N8—N9177 (3)C18—N3—C11—C10173.55 (17)
C4—O1—C1—C258.5 (2)C9—C10—C11—N30.7 (2)
C5—N1—C2—C1175.98 (17)N4—C10—C11—N3178.01 (18)
C3—N1—C2—C156.1 (2)C10—N4—C12—O30.9 (3)
O1—C1—C2—N159.5 (2)C10—N4—C12—C13179.47 (17)
C5—N1—C3—C4175.41 (19)C16—N5—C13—C140.0 (2)
C2—N1—C3—C455.0 (2)C17—N5—C13—C14174.61 (18)
C1—O1—C4—C357.3 (2)C16—N5—C13—C12179.14 (17)
N1—C3—C4—O156.8 (3)C17—N5—C13—C126.2 (3)
C2—N1—C5—C669.5 (2)O3—C12—C13—C14175.9 (2)
C3—N1—C5—C6171.44 (18)N4—C12—C13—C143.7 (3)
C7—N2—C6—C5148.35 (19)O3—C12—C13—N53.1 (3)
N1—C5—C6—N275.6 (2)N4—C12—C13—N5177.36 (17)
C6—N2—C7—O24.8 (3)N5—C13—C14—C150.3 (2)
C6—N2—C7—C8171.58 (18)C12—C13—C14—C15178.8 (2)
C11—N3—C8—C90.4 (2)C13—C14—C15—C160.4 (2)
C18—N3—C8—C9172.56 (18)C13—C14—C15—N6179.62 (18)
C11—N3—C8—C7172.58 (17)O4—N6—C15—C16177.15 (19)
C18—N3—C8—C715.3 (3)O5—N6—C15—C163.9 (3)
O2—C7—C8—N32.9 (3)O4—N6—C15—C142.8 (3)
N2—C7—C8—N3179.27 (18)O5—N6—C15—C14176.11 (19)
O2—C7—C8—C9167.3 (2)C13—N5—C16—C150.2 (2)
N2—C7—C8—C99.0 (3)C17—N5—C16—C15175.17 (17)
N3—C8—C9—C100.0 (2)C14—C15—C16—N50.4 (2)
C7—C8—C9—C10171.38 (19)N6—C15—C16—N5179.63 (17)
C8—C9—C10—C110.5 (2)C11—N3—C18—C19101.0 (2)
C8—C9—C10—N4178.35 (17)C8—N3—C18—C1970.2 (3)
C12—N4—C10—C115.5 (3)N3—C18—C19—C20172.88 (17)
C12—N4—C10—C9173.06 (18)N8—N7—C20—C19163.3 (2)
C8—N3—C11—C100.7 (2)C18—C19—C20—N763.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O5i0.83 (2)2.36 (2)3.176 (2)171 (2)
N4—H2N···O2ii0.88 (2)2.02 (2)2.864 (2)162 (2)
C2—H2A···O4iii0.992.533.498 (3)165
C6—H6B···O3iv0.992.583.354 (3)135
C9—H9···O5i0.952.433.322 (2)156
C14—H14···O2ii0.952.463.317 (3)149
Symmetry codes: (i) x+2, y+1/2, z+5/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors wish to thank Patricia Keating, Gavin Bain and Craig Irving for their assistance in carrying out this work.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlniss, H. Y., Salvia, M., Sadikov, M., Golovchenko, I., Anthony, N. G., Khalaf, A. I., MacKay, S. P., Suckling, C. J. & Parkinson, J. A. (2014). ChemBioChem, 15, 1978–1990.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChenoweth, D. M. & Dervan, P. B. (2009). PNAS, 106, 13175–1319.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133–2156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLang, S., Khalaf, A. I., Breen, D., Huggan, J. K., Clements, C. J., MacKay, S. P. & Suckling, C. J. (2014). Med. Chem. Res. 23, 1170–1179.  CrossRef CAS Google Scholar
First citationLee, M., Coulter, D. M. & Lown, J. W. (1988). J. Org. Chem. 53, 1855–1859.  CrossRef CAS Google Scholar
First citationLu, L., Zhu, M., Li, J. & Yang, P. (2003). Acta Cryst. E59, o417–o419.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSatam, V., Patil, P., Babu, B., Rice, T., Porte, A., Alger, S., Zeller, M. & Lee, M. (2014). Synth. Commun. 44, 968–975.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds