research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of glycidamide: the mutagenic and genotoxic metabolite of acryl­amide

CROSSMARK_Color_square_no_text.svg

aFood Chemistry and Toxicology, University of Kaiserslautern, 67663 Kaiserslautern, Germany, bTheoretical Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany, and cInorganic Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
*Correspondence e-mail: schrenk@rhrk.uni-kl.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 June 2016; accepted 5 July 2016; online 22 July 2016)

The title compound, glycidamide (systematic name: oxirane-2-carboxamide), C3H5NO2, is the mutagenic and genotoxic metabolite of acryl­amide, a food contaminant and industrial chemical that has been classified as being probably carcinogenic to humans. Synthesized via the reaction of acrylo­nitrile and hydrogen peroxide, it crystallizes with both enanti­omers occurring as two crystallographically independent mol­ecules (A and B) in the asymmetric unit. They have similar conformations with an r.m.s. deviation of 0.0809 Å for mol­ecule B inverted on mol­ecule A. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, which lead to the formation of β-sheet structures enclosing R22(8) and R42(8) loops. The β-sheets are linked by weaker C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional structure.

1. Chemical context

The formation of glycidamide (GA) is considered to cause the carcinogenicity of acryl­amide (AA; Udovenko & Kolzunova, 2008[Udovenko, A. A. & Kolzunova, L. G. (2008). J. Struct. Chem. 49, 961-964.]), which is a widely used chemical in industry (EPA, 1994[EPA (US Environmental Protection Agency). (1994). EPA 749-F-94-005a.]). Typical applications include the production of copolymers, flocculation agents and carrier material for gel electrophoresis. Moreover, it is formed if certain foods are heated to temperatures above 393 K at low moisture. AA was found at the highest levels in solid coffee substitutes, fried potato products and gingerbread, thus contributing to human exposure (EFSA, 2015[EFSA (EFSA Panel on Contaminants in the Food Chain) (2015). EFSA J. 13, 4104-4321.]). AA forms predominantly from asparagine in the presence of reducing sugars during the Maillard reaction via a Strecker-type degradation (Mottram et al., 2002[Mottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature, 419, 448-449.]; Stadler et al., 2002[Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M. C. & Riediker, S. (2002). Nature, 419, 449-450.]; Tareke et al., 2002[Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. & Törnqvist, M. (2002). J. Agric. Food Chem. 50, 4998-5006.]; Yaylayan et al., 2003[Yaylayan, V. A., Wnorowski, A. & Perez Locas, C. (2003). J. Agric. Food Chem. 51, 1753-1757.]). Besides being a food contaminant, AA is also a component of tobacco smoke (Papoušek et al., 2014[Papoušek, R., Pataj, Z., Nováková, P., Lemr, K. & Barták, P. (2014). Chromatographia, 77, 1145-1151.]). It has also been classified as `probably carcinogenic to humans (Group 2A)' by the Inter­national Agency for Research on Cancer (IARC, 1994[IARC (International Agency for Research on Cancer). (1994). p. 389.]). It has not been found to be mutagenic or genotoxic without metabolic activation to GA at biologically relevant concentrations (Watzek et al., 2012[Watzek, N., Böhm, N., Feld, J., Scherbl, D., Berger, F., Merz, K. H., Lampen, L., Reemtsma, T., Tannenbaum, S. R., Skipper, P. L., Baum, M., Richling, E. & Eisenbrand, G. (2012). Chem. Res. Toxicol. 25, 381-390.]).

[Scheme 1]

GA is a genotoxic and mutagenic compound formed in vivo metabolically from AA, mainly in the liver by cytochrome P450 2E1 (Baum et al., 2005[Baum, M., Fauth, E., Fritzen, S., Herrmann, A., Mertes, P., Merz, K., Rudolphi, M., Zankl, H. & Eisenbrand, G. (2005). Mutat. Res. 580, 61-69.]). As a reactive epoxide, GA is able to react with nucleophilic centers of proteins and DNA, thus forming DNA adducts and hemoglobin conjugates (Ghanayem et al., 2005[Ghanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R. & Doerge, D. R. (2005). Toxicol. Sci. 88, 311-318.]). As a consequence, mutations may occur, which represent stages of chemical mutagenesis and carcinogenesis (Gamboa da Costa et al., 2003[Gamboa da Costa, G., Churchwell, M. I., Hamilton, L. P., Von Tungeln, A. S., Beland, F. A., Marques, M. M. & Doerge, D. R. (2003). Chem. Res. Toxicol. 16, 1328-1337.]). We synthesized GA via the reaction of acrylo­nitrile and hydrogen peroxide.

2. Structural commentary

Owing to its size, GA shows few structural features. Both enanti­omers occur as two crystallographically independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). They have similar conformations with an r.m.s. deviation of 0.0809 Å for mol­ecule B inverted on mol­ecule A. The amide group is inclined to the epoxide plane by 77.9 (2)° in mol­ecule A (N1/C1/O1 vs O2/C2/C3), and by 72.6 (2)° in mol­ecule B (N11/C11/O11 vs O12/C12/C13).

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, glycidamide (GA), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Of inter­est are the C—C as well as the C—O bond lengths in the epoxide fragment (Table 1[link]). The values of bond lengths in the epoxide fragments of both enanti­omers are compared to the mean values and their standard deviation of a selection of 149 similarly substituted compounds featuring an epoxide fragment (Table 1[link]), which were reported to the Cambridge Structural Database (CSD, Version 5.37, Update 2 Feb 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). While the epoxide C—O bonds in GA match the mean values quite well, the C—C bond is more at the upper end for bond lengths. Nevertheless, the C—C bond length is still in the range of one standard deviation to the mean value of the database entries. Omitting oxirane itself, GA is the smallest example of an epoxide crystal structure reported in the CSD. Summing up, the epoxide fragment in GA seems to be representative for this class of epoxides.

Table 1
Experimental bond lengths (Å) compared to a database survey of 149 compounds featuring epoxide fragments

  Bond Mol­ecule A Bond Mol­ecule B Database survey
C—C C2—C3 1.463 (2) C12—C13 1.458 (2) 1.442±0.028
CH2—O C3—O2 1.436 (2) C13—O12 1.433 (2) 1.431±0.026
XCH—O C2—O2 1.429 (2) C12—O12 1.424 (2) 1.432±0.026

3. Supra­molecular features

In the crystal, there are as expected, hydrogen bonds dominating the solid-state structure. The protons of the amino moiety undergo strong N—H⋯O hydrogen bonding to the carbonyl groups of adjacent GA mol­ecules (Table 2[link], Fig. 2[link]). This results in the formation of a β-sheet structure, which is parallel to the crystallographic b axis and encloses R22(8) and R42(8) loops. The β-sheets are also oriented parallel to each other (Fig. 3[link]). They are further inter­linked by additional but weaker C—H⋯O hydrogen bonds (Table 2[link]), between the protons ot the –CH2– units with the carbonyl group and the ep­oxy function from the neighbouring β-sheets, which leads to the formation of a supra­molecular three-dimensional structure (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.86 (2) 2.45 (2) 2.7770 (17) 103 (1)
N11—H11B⋯O12 0.87 (2) 2.39 (2) 2.7408 (17) 105 (1)
N1—H1A⋯O11i 0.86 (2) 2.12 (2) 2.9651 (16) 167 (2)
N1—H1B⋯O1ii 0.86 (2) 2.12 (2) 2.8482 (14) 142 (2)
N11—H11A⋯O1iii 0.87 (2) 2.08 (2) 2.9447 (16) 173 (2)
N11—H11B⋯O11ii 0.87 (2) 2.11 (2) 2.8495 (14) 144 (2)
C3—H3A⋯O11ii 0.99 2.59 3.5839 (19) 179
C3—H3B⋯O2iv 0.99 2.59 3.4470 (18) 144
C13—H13A⋯O12v 0.99 2.44 3.3991 (19) 163
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, showing the β-sheet arrangement, formed through strong N—H⋯O hydrogen bonds (dashed lines; see Table 2[link] for details), propagating along the b-axis direction.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound, showing the β-sheet arrangement formed through strong N—H⋯O hydrogen bonds (dashed lines; see Table 2[link] for details). The C-bound H atoms have been omitted for clarity (A mol­ecules = black; B mol­ecules = red).
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of the title compound. The N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 2[link] for details). H atoms not involved in these inter­actions have been omitted for clarity (A mol­ecules = black; B mol­ecules = red).

4. Database survey

As noted in Section 2, a search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the presence of 149 similarly substituted compounds featuring an epoxide fragment. However, up to now there has been no report of the structure of the title compound (GA).

5. Synthesis and crystallization

The synthesis of the title compound (GA) was performed according to a published method with modifications (Payne & Williams, 1961[Payne, G. B. & Williams, P. H. (1961). J. Org. Chem. 26, 651-659.]). The conventional literature procedure by controlled pH and temperature resulted in an unfavorable decomposition of hydrogen peroxide. GA was synthesized by dropwise addition of 1 M NaOH (60 ml) to acrylo­nitrile (80.1 g, 1.22 mol) in water (500 ml) and 30% H2O2 (102 ml, 1 mol). The pH was kept at 7.3–7.5 and the temperature was maintained at 308–310 K. After the reaction was completed (about 12 h), the mixture was treated with 5% palladium on charcoal, stored overnight in a refrigerator and then filtered. The solvent was evaporated and the crude product (yield: 55 g; 63%) was recrystallized from dry acetone at low temperature. Colourless crystals formed after 3–5 days at 243 K. GA is very hygroscopic, so purification of the raw product was carried out in an inert atmosphere. The compound was stored in dry argon at 243 K. Identity and purity were checked by NMR spectroscopic methods and elemental analysis. 1H-NMR (600.13 MHz, 295.15 K, p.p.m., D2O): δ 3,49 (dd, 2JHH = 4.08 Hz, 3JHH = 2.58 Hz,1H); 3,02 (t, 5.16 Hz, 1H); 2,87 (dd, 2JHH = 5.52 Hz, 3JHH = 2.58 Hz, 1H). 13C-{1H}-NMR (100.66 MHz, 294.05 K, p.p.m., DMSO-d6): δ 170.1 (C1), 48.5 (C2), 45.6 (C3). Elemental analysis for C3H5NO2. Required: C 41.36%; H 5.79%; N 16.09%; found: C 41.41%; H 5.47%; N 16.27%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bound to the nitro­gen atoms, N1 and N11, were located in a difference Fourier map, and refined with a distance restraint: N—H = 0.86 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H were placed in calculated positions and refined using a riding model: C—H = 0.99–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C3H5NO2
Mr 87.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 15.5186 (7), 5.1007 (2), 10.9250 (5)
β (°) 107.651 (5)
V3) 824.06 (7)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.02
Crystal size (mm) 0.22 × 0.16 × 0.16
 
Data collection
Diffractometer Rigaku Xcalibur (Sapphire3, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.837, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4485, 1310, 1207
Rint 0.022
(sin θ/λ)max−1) 0.577
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.10
No. of reflections 1310
No. of parameters 121
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.17
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Oxirane-2-carboxamide top
Crystal data top
C3H5NO2F(000) = 368
Mr = 87.08Dx = 1.404 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.5186 (7) ÅCell parameters from 2255 reflections
b = 5.1007 (2) Åθ = 6.0–62.6°
c = 10.9250 (5) ŵ = 1.02 mm1
β = 107.651 (5)°T = 150 K
V = 824.06 (7) Å3Transparent prism, colorless
Z = 80.22 × 0.16 × 0.16 mm
Data collection top
Rigaku Xcalibur (Sapphire3, Gemini ultra)
diffractometer
1310 independent reflections
Radiation source: fine-focus sealed X-ray tube1207 reflections with I > 2σ(I)
Detector resolution: 16.1399 pixels mm-1Rint = 0.022
ω scansθmax = 62.8°, θmin = 6.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1714
Tmin = 0.837, Tmax = 1.000k = 55
4485 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
1310 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34078 (9)0.3918 (3)0.43936 (13)0.0242 (3)
C20.41336 (9)0.3997 (3)0.56563 (14)0.0292 (4)
H20.45070.23710.59000.035*
C30.40088 (10)0.5531 (3)0.67215 (13)0.0342 (4)
H3A0.34270.64640.65800.041*
H3B0.42850.48610.76040.041*
N10.31052 (9)0.6180 (2)0.38512 (12)0.0303 (3)
H1A0.2683 (11)0.620 (4)0.3127 (15)0.036*
H1B0.3322 (11)0.766 (3)0.4175 (16)0.036*
O10.31121 (7)0.17614 (19)0.39333 (9)0.0300 (3)
O20.46035 (7)0.6420 (2)0.60247 (10)0.0361 (3)
C110.16824 (9)0.1061 (3)0.56672 (13)0.0262 (3)
C120.11401 (10)0.1195 (3)0.42784 (14)0.0320 (4)
H120.12660.01950.37090.038*
C130.02176 (11)0.2199 (3)0.39198 (15)0.0392 (4)
H13A0.02280.14370.31530.047*
H13B0.00300.27240.46180.047*
N110.18834 (8)0.3303 (2)0.62832 (12)0.0294 (3)
H11A0.2208 (11)0.332 (4)0.7085 (14)0.035*
H11B0.1752 (11)0.480 (3)0.5899 (16)0.035*
O110.18951 (7)0.11167 (18)0.61662 (9)0.0323 (3)
O120.09383 (8)0.3738 (2)0.37277 (11)0.0441 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (7)0.0184 (8)0.0250 (7)0.0003 (5)0.0071 (5)0.0010 (5)
C20.0280 (7)0.0245 (8)0.0313 (7)0.0010 (6)0.0032 (6)0.0015 (6)
C30.0337 (7)0.0403 (9)0.0263 (7)0.0070 (7)0.0060 (6)0.0045 (6)
N10.0408 (7)0.0163 (7)0.0266 (6)0.0025 (5)0.0004 (5)0.0008 (5)
O10.0388 (6)0.0157 (5)0.0298 (5)0.0012 (4)0.0017 (4)0.0015 (4)
O20.0330 (6)0.0383 (6)0.0358 (6)0.0118 (4)0.0084 (4)0.0103 (5)
C110.0281 (7)0.0191 (8)0.0286 (7)0.0011 (5)0.0044 (6)0.0009 (5)
C120.0384 (8)0.0253 (8)0.0279 (7)0.0024 (6)0.0035 (6)0.0002 (5)
C130.0364 (8)0.0361 (9)0.0363 (8)0.0010 (7)0.0022 (6)0.0007 (7)
N110.0377 (7)0.0162 (6)0.0265 (6)0.0004 (5)0.0022 (5)0.0021 (5)
O110.0411 (6)0.0171 (6)0.0317 (5)0.0005 (4)0.0008 (4)0.0006 (4)
O120.0484 (7)0.0370 (7)0.0364 (6)0.0047 (5)0.0027 (5)0.0135 (5)
Geometric parameters (Å, º) top
C1—O11.2383 (17)C11—O111.2373 (17)
C1—N11.3169 (18)C11—N111.3154 (19)
C1—C21.494 (2)C11—C121.497 (2)
C2—O21.4294 (17)C12—O121.4242 (19)
C2—C31.463 (2)C12—C131.458 (2)
C2—H21.0000C12—H121.0000
C3—O21.4362 (19)C13—O121.433 (2)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
N1—H1A0.860 (15)N11—H11A0.868 (15)
N1—H1B0.856 (15)N11—H11B0.864 (15)
O1—C1—N1123.91 (12)O11—C11—N11124.39 (12)
O1—C1—C2118.80 (12)O11—C11—C12118.71 (12)
N1—C1—C2117.26 (12)N11—C11—C12116.89 (12)
O2—C2—C359.53 (9)O12—C12—C1359.62 (10)
O2—C2—C1117.44 (12)O12—C12—C11116.98 (12)
C3—C2—C1120.29 (12)C13—C12—C11119.53 (14)
O2—C2—H2115.9O12—C12—H12116.2
C3—C2—H2115.9C13—C12—H12116.2
C1—C2—H2115.9C11—C12—H12116.2
O2—C3—C259.07 (9)O12—C13—C1259.02 (10)
O2—C3—H3A117.9O12—C13—H13A117.9
C2—C3—H3A117.9C12—C13—H13A117.9
O2—C3—H3B117.9O12—C13—H13B117.9
C2—C3—H3B117.9C12—C13—H13B117.9
H3A—C3—H3B115.0H13A—C13—H13B115.0
C1—N1—H1A119.5 (12)C11—N11—H11A119.9 (12)
C1—N1—H1B122.9 (12)C11—N11—H11B122.2 (12)
H1A—N1—H1B117.6 (17)H11A—N11—H11B117.5 (17)
C2—O2—C361.40 (10)C12—O12—C1361.35 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.86 (2)2.45 (2)2.7770 (17)103 (1)
N11—H11B···O120.87 (2)2.39 (2)2.7408 (17)105 (1)
N1—H1A···O11i0.86 (2)2.12 (2)2.9651 (16)167 (2)
N1—H1B···O1ii0.86 (2)2.12 (2)2.8482 (14)142 (2)
N11—H11A···O1iii0.87 (2)2.08 (2)2.9447 (16)173 (2)
N11—H11B···O11ii0.87 (2)2.11 (2)2.8495 (14)144 (2)
C3—H3A···O11ii0.992.593.5839 (19)179
C3—H3B···O2iv0.992.593.4470 (18)144
C13—H13A···O12v0.992.443.3991 (19)163
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x, y1/2, z+1/2.
Experimental bond lengths (Å) compared to a database survey of 149 compounds featuring epoxide fragments top
BondMolecule ABondMolecule BDatabase survey
C—CC2—C31.463 (2)C12—C131.458 (2)1.442±0.028
CH2-OC3—O21.436 (2)C13—O121.433 (2)1.431±0.026
XCH—OC2—O21.429 (2)C12—O121.424 (2)1.432±0.026
 

Acknowledgements

We thank the Fonds der Chemischen Industrie for financial support of this work.

References

First citationBaum, M., Fauth, E., Fritzen, S., Herrmann, A., Mertes, P., Merz, K., Rudolphi, M., Zankl, H. & Eisenbrand, G. (2005). Mutat. Res. 580, 61–69.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEFSA (EFSA Panel on Contaminants in the Food Chain) (2015). EFSA J. 13, 4104–4321.  Google Scholar
First citationEPA (US Environmental Protection Agency). (1994). EPA 749-F-94-005a.  Google Scholar
First citationGamboa da Costa, G., Churchwell, M. I., Hamilton, L. P., Von Tungeln, A. S., Beland, F. A., Marques, M. M. & Doerge, D. R. (2003). Chem. Res. Toxicol. 16, 1328–1337.  CrossRef PubMed CAS Google Scholar
First citationGhanayem, B. I., McDaniel, L. P., Churchwell, M. I., Twaddle, N. C., Snyder, R., Fennell, T. R. & Doerge, D. R. (2005). Toxicol. Sci. 88, 311–318.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIARC (International Agency for Research on Cancer). (1994). p. 389.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature, 419, 448–449.  CrossRef PubMed CAS Google Scholar
First citationPapoušek, R., Pataj, Z., Nováková, P., Lemr, K. & Barták, P. (2014). Chromatographia, 77, 1145–1151.  Google Scholar
First citationPayne, G. B. & Williams, P. H. (1961). J. Org. Chem. 26, 651–659.  CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M. C. & Riediker, S. (2002). Nature, 419, 449–450.  CrossRef PubMed CAS Google Scholar
First citationTareke, E., Rydberg, P., Karlsson, P., Eriksson, S. & Törnqvist, M. (2002). J. Agric. Food Chem. 50, 4998–5006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUdovenko, A. A. & Kolzunova, L. G. (2008). J. Struct. Chem. 49, 961–964.  Web of Science CrossRef CAS Google Scholar
First citationWatzek, N., Böhm, N., Feld, J., Scherbl, D., Berger, F., Merz, K. H., Lampen, L., Reemtsma, T., Tannenbaum, S. R., Skipper, P. L., Baum, M., Richling, E. & Eisenbrand, G. (2012). Chem. Res. Toxicol. 25, 381–390.  CrossRef CAS PubMed Google Scholar
First citationYaylayan, V. A., Wnorowski, A. & Perez Locas, C. (2003). J. Agric. Food Chem. 51, 1753–1757.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds