research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-[(4-carb­­oxy­benz­yl)­­oxy]isophthalic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box, 36 Al-Khod 123, Muscat, Sultanate of Oman, bDepartment of Applied Chemistry, Aligarh Muslim University, 202 002 UP, India, cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and dDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, Kyiv Polytechnic Institute, 37 Prospect Peremogy, 03056 Kiev, Ukraine
*Correspondence e-mail: potaskalov@xtf.kpi.ua

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 May 2016; accepted 19 July 2016; online 29 July 2016)

The mol­ecular shape of the title compound, C16H12O7, is bent around the central CH2—O bond. The two benzene rings are almost perpendicular to one another, making a dihedral angle of 87.78 (7)°. In the crystal, each mol­ecule is linked to three others by three pairs of O—H⋯O hydrogen bonds, forming undulating sheets parallel to the bc plane and enclosing R22(8) ring motifs. The sheets are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

The design and synthesis of coordination polymers continues to attract inter­est due to their architectures as well as their potential applications (Erxleben, 2003[Erxleben, A. (2003). Coord. Chem. Rev. 246, 203-228.]). Recently, the rational design and synthesis of novel coordination polymers have attracted intense attention in the field of supra­molecular chemistry and crystal engineering (Zhang et al., 2011[Zhang, X., Yang, J.-X., Zhang, J., Cheng, J.-K., Sun, M.-L. & Yao, Y.-G. (2011). Inorg. Chem. Commun. 14, 986-989.]). To date, large numbers of coordination architectures with inter­esting compositions and properties have been prepared using a wide variety of aromatic polycarboxyl­ate-based ligands (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The title compound (CIA), a tri­carboxyl­ate ligand, has been shown to be a good candidate for the construction of coordination polymers (Ahmad et al., 2012a[Ahmad, M., Das, R., Lama, P., Poddar, P. & Bharadwaj, P. K. (2012a). Cryst. Growth Des. 12, 4624-4632.],b[Ahmad, M., Sharma, M. K., Das, R., Poddar, P. & Bharadwaj, P. K. (2012b). Cryst. Growth Des. 12, 1571-1578.]). Tri­carboxyl­ate ligands have been used in the synthesis of metal-organic framework complexes (MOFs)because of their photoelectric properties and for their potential nitro­benzene sensing (Hou et al., 2016[Hou, Y.-N., Song, J., Bai, F.-Y. & Xing, Y.-H. (2016). Inorg. Chim. Acta, 440, 69-76.]). A CdII MOF based on CIA has been structurally and functionally characterized, and was shown to be an highly selective CH2Cl2 fluorescent sensor (Xia et al., 2015[Xia, Y., Cao, K.-L., Han, M.-M. & Feng, Y. (2015). Inorg. Chem. Commun. 56, 76-78.]). A series of one-, two- and three-dimensional coordination polymers based on CIA have been structurally characterized and shown to display photoluminescence (Liu et al., 2012[Liu, Y.-Y., Li, J., Ma, J.-F., Ma, J.-C. & Yang, J. (2012). CrystEngComm, 14, 169-177.]).

We have crystallized a reported polycarboxyl­ate containing the ligand, 5-[(4-carb­oxy­benz­yl)­oxy]isophthalic acid (CIA), which has the advantage of being flexible and has conformational freedom allowing it to conform to the coordination environment of transition metal ions. We report herein on the crystal structure of the title tri­carboxyl­ate ligand (CIA), synthesized by a reported procedure (Ahmad et al., 2012a[Ahmad, M., Das, R., Lama, P., Poddar, P. & Bharadwaj, P. K. (2012a). Cryst. Growth Des. 12, 4624-4632.],b[Ahmad, M., Sharma, M. K., Das, R., Poddar, P. & Bharadwaj, P. K. (2012b). Cryst. Growth Des. 12, 1571-1578.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (CIA) is illus­trated in Fig. 1[link]. The bond lengths and bond angles are normal and close to the values observed in related structures (Li & Ma 2011[Li, J. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 585-586.]; He et al., 2014[He, Y.-C., Zhang, X., Liu, Y.-Y., Liu, H.-Y. & Ma, J.-F. (2014). Eur. J. Inorg. Chem. pp. 6205-6211.]). The mol­ecular shape of the title compound is bent around the central C9—O5 bond; the spacer ether group exhibits a C10—C9—O5—C1 torsion angle of −84.35 (19)°. The benzene rings, C1–C6 and C10–C15, are roughly perpendicular to each another, with a dihedral angle of 87.78 (7)°. The three O=C—O bond angles of the carb­oxy­lic acid groups are 123.17 (17), 123.62 (17), 123.74 (17) Å, respectively, for O1=C7—O2, O3=C8—O4 and O6=C16—O7.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, each mol­ecule is linked to three others by three pairs of O—H⋯O hydrogen bonds, forming undulating sheets parallel to the bc plane and enclosing [R_{2}^{2}](8) ring motifs (Table 1[link] and Fig. 2[link]). The sheets are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.95 (3) 1.70 (3) 2.6426 (19) 176 (2)
O4—H4A⋯O7ii 0.99 (3) 1.62 (3) 2.6086 (19) 175 (3)
O6—H6A⋯O3iii 0.93 (3) 1.72 (3) 2.6486 (19) 179 (4)
C9—H9A⋯O1iv 0.97 2.51 3.272 (2) 135
C11—H11A⋯O3v 0.93 2.45 3.170 (2) 135
C14—H14A⋯O4vi 0.93 2.56 3.245 (2) 131
C9—H9BCg2vii 0.97 2.97 3.779 (2) 141
Symmetry codes: (i) -x+2, -y, -z; (ii) [x+{\script{1\over 2}}, y+1, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-1, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A partial view of the O—H⋯O hydrogen-bonding inter­actions between the donor and acceptor oxygen atoms of the carb­oxy­lic groups in the crystal of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details). Fig 3 hard to make out, too many molecules shown

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title compound gave 42 hits. The majority of these compounds are coordination polymers involving a secondary ligand. Ten structures concern coordination polymers of the title ligand itself. For example, catena-[μ6-5-(4-carb­oxy­benz­yloxy)isophthalato-(μ2-aqua)­barium(II)] where only two of the carb­oxy­lic acid groups of the CIA mol­ecule are deprotonated (BEDJOL; Li & Ma, 2012[Li, J. & Ma, J.-F. (2012). Z. Kristallogr. New Cryst. Struct. 227, 277-278.]), and catena-[(bis­{μ6-5-[(4-carb­oxy­benz­yl)­oxy]isophthalato}(μ2-aqua))tricadmium trihydrate] (IZEBEV; Zhang et al., 2011[Zhang, X., Yang, J.-X., Zhang, J., Cheng, J.-K., Sun, M.-L. & Yao, Y.-G. (2011). Inorg. Chem. Commun. 14, 986-989.]) where all three carb­oxy­lic acid groups of the CIA mol­ecule are deprotonated.

5. Synthesis and crystallization

The starting compound diethyl 5-(4-meth­oxy­carbonyl­benz­yloxy)isophthalate (DMBI) was prepared by the following procedure: 5-hy­droxy­isophthalic acid diethyl ester (2 g, 8.4 mmol) and dry K2CO3 (1.7g, 12.6 mmol) were mixed in dry aceto­nitrile (10 ml) and stirred for 30 min at 353 K. Then 4-bromo­methyl benzoic acid methyl ester (1.9 g, 8.40 mmol) was added and the resulting solution was refluxed for 24 h. The solution was pored into ice-cold water and the solid precipitate obtained was filtered and dried in air (yield: 2.8 g, 86%). The title compound (CIA) was prepared as follows: DMBI (2 g, 5.17 mmol) was hydrolyzed by refluxing it with 6N NaOH solution (20 ml) for 24 h. After cooling to 278 K, the resulting solution was acidified with 6N HCl solution to obtain a white precipitate. This was collected by filtration, washed thoroughly with water, and dried in air. The solid powder was dissolved in dimethyl formamide and needle-like crystals were obtained by slow diffusion of diethyl ether into the solution, after 2–3 days (yield: 1.3 g, 80%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H12O7
Mr 316.26
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 10.998 (2), 9.2760 (17), 25.661 (5)
V3) 2618.0 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.27 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.966, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 12591, 2292, 1912
Rint 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.07
No. of reflections 2292
No. of parameters 220
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.24
Computer programs: SMART and SAINT ( Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT ( Bruker, 2003); data reduction: SAINT ( Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

5-[(4-Carboxybenzyl)oxy]benzene-1,3-dicarboxylic acid top
Crystal data top
C16H12O7F(000) = 1312
Mr = 316.26Dx = 1.605 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 999 reflections
a = 10.998 (2) Åθ = 2.2–25.5°
b = 9.2760 (17) ŵ = 0.13 mm1
c = 25.661 (5) ÅT = 100 K
V = 2618.0 (8) Å3Needle, colourless
Z = 80.27 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEX
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
/w–scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1312
Tmin = 0.966, Tmax = 0.980k = 1110
12591 measured reflectionsl = 3019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.0476P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54437 (16)0.2010 (2)0.06349 (7)0.0163 (4)
C20.64357 (16)0.1415 (2)0.03776 (7)0.0169 (4)
H20.63180.07270.01190.020*
C30.76100 (16)0.1855 (2)0.05087 (7)0.0158 (4)
C40.77916 (16)0.2916 (2)0.08860 (7)0.0162 (4)
H40.85740.32070.09740.019*
C50.67901 (17)0.35318 (19)0.11272 (7)0.0168 (4)
C60.56157 (16)0.3076 (2)0.10094 (7)0.0169 (4)
H60.49520.34800.11790.020*
C70.86620 (16)0.1109 (2)0.02637 (7)0.0161 (4)
C80.70035 (16)0.4673 (2)0.15257 (7)0.0165 (4)
C90.32778 (16)0.1744 (2)0.08031 (7)0.0176 (4)
H9A0.25590.16980.05850.021*
H9B0.33300.27120.09440.021*
C100.31395 (16)0.0687 (2)0.12475 (7)0.0169 (4)
C110.41173 (17)0.0068 (2)0.14518 (7)0.0206 (4)
H11A0.48890.00720.13130.025*
C120.39619 (17)0.1030 (2)0.18599 (7)0.0205 (4)
H120.46290.15140.19980.025*
C130.28067 (17)0.1271 (2)0.20631 (7)0.0178 (4)
C140.18210 (17)0.0509 (2)0.18628 (7)0.0188 (4)
H14A0.10480.06540.20000.023*
C150.19867 (16)0.0462 (2)0.14616 (7)0.0169 (4)
H150.13240.09720.13320.020*
C160.25906 (17)0.2367 (2)0.24740 (7)0.0187 (4)
O10.85402 (11)0.02572 (14)0.00993 (5)0.0198 (3)
O20.97202 (12)0.14066 (14)0.04773 (5)0.0195 (3)
O30.80429 (11)0.49920 (14)0.16624 (5)0.0214 (3)
O40.60297 (11)0.52892 (14)0.17105 (5)0.0209 (3)
O50.43311 (11)0.14724 (14)0.04881 (5)0.0183 (3)
O60.35857 (12)0.28772 (15)0.26911 (5)0.0240 (3)
O70.15576 (12)0.27618 (14)0.25925 (5)0.0235 (3)
H4A0.627 (3)0.600 (4)0.1980 (12)0.084 (11)*
H6A0.339 (3)0.362 (3)0.2920 (11)0.065 (9)*
H2A1.032 (3)0.079 (3)0.0334 (11)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0158 (9)0.0172 (10)0.0160 (9)0.0019 (8)0.0005 (7)0.0044 (7)
C20.0213 (10)0.0149 (10)0.0145 (9)0.0002 (8)0.0001 (8)0.0011 (7)
C30.0175 (9)0.0159 (9)0.0141 (9)0.0003 (7)0.0005 (7)0.0030 (7)
C40.0147 (9)0.0166 (10)0.0172 (9)0.0010 (8)0.0009 (7)0.0021 (7)
C50.0212 (10)0.0148 (9)0.0144 (9)0.0006 (8)0.0009 (8)0.0037 (7)
C60.0165 (9)0.0174 (10)0.0168 (9)0.0012 (8)0.0024 (7)0.0022 (7)
C70.0182 (10)0.0163 (10)0.0138 (9)0.0012 (8)0.0004 (7)0.0030 (7)
C80.0163 (10)0.0161 (10)0.0172 (9)0.0005 (8)0.0003 (8)0.0017 (7)
C90.0134 (9)0.0205 (10)0.0191 (10)0.0011 (8)0.0010 (8)0.0008 (8)
C100.0181 (9)0.0160 (10)0.0165 (10)0.0008 (7)0.0009 (7)0.0041 (7)
C110.0151 (9)0.0234 (11)0.0232 (11)0.0020 (8)0.0015 (8)0.0025 (8)
C120.0176 (10)0.0216 (10)0.0222 (10)0.0009 (8)0.0014 (8)0.0009 (8)
C130.0193 (10)0.0171 (10)0.0169 (10)0.0007 (8)0.0008 (8)0.0022 (7)
C140.0154 (9)0.0215 (10)0.0194 (10)0.0016 (8)0.0014 (8)0.0029 (8)
C150.0154 (9)0.0188 (10)0.0166 (10)0.0014 (8)0.0007 (7)0.0037 (8)
C160.0204 (10)0.0183 (10)0.0173 (10)0.0000 (8)0.0003 (8)0.0020 (8)
O10.0183 (7)0.0211 (7)0.0199 (7)0.0009 (6)0.0004 (5)0.0040 (6)
O20.0157 (7)0.0219 (8)0.0208 (7)0.0008 (6)0.0011 (6)0.0037 (6)
O30.0161 (7)0.0241 (8)0.0240 (8)0.0006 (6)0.0014 (6)0.0058 (6)
O40.0151 (7)0.0231 (8)0.0245 (8)0.0009 (6)0.0010 (6)0.0073 (6)
O50.0145 (7)0.0217 (7)0.0186 (7)0.0023 (5)0.0009 (5)0.0023 (5)
O60.0233 (8)0.0250 (8)0.0238 (8)0.0012 (6)0.0035 (6)0.0072 (6)
O70.0204 (7)0.0230 (7)0.0270 (8)0.0007 (6)0.0057 (6)0.0041 (6)
Geometric parameters (Å, º) top
C1—O51.374 (2)C9—H9A0.9700
C1—C21.389 (3)C9—H9B0.9700
C1—C61.392 (3)C10—C111.386 (3)
C2—C31.396 (3)C10—C151.397 (3)
C2—H20.9300C11—C121.387 (3)
C3—C41.395 (3)C11—H11A0.9300
C3—C71.488 (3)C12—C131.391 (3)
C4—C51.387 (3)C12—H120.9300
C4—H40.9300C13—C141.393 (3)
C5—C61.392 (3)C13—C161.484 (3)
C5—C81.490 (3)C14—C151.380 (3)
C6—H60.9300C14—H14A0.9300
C7—O11.229 (2)C15—H150.9300
C7—O21.316 (2)C16—O71.232 (2)
C8—O31.232 (2)C16—O61.316 (2)
C8—O41.303 (2)O2—H2A0.95 (3)
C9—O51.435 (2)O4—H4A0.99 (3)
C9—C101.512 (3)O6—H6A0.93 (3)
O5—C1—C2115.15 (16)C10—C9—H9B109.0
O5—C1—C6124.63 (16)H9A—C9—H9B107.8
C2—C1—C6120.22 (17)C11—C10—C15118.67 (17)
C1—C2—C3119.74 (17)C11—C10—C9122.34 (16)
C1—C2—H2120.1C15—C10—C9118.99 (16)
C3—C2—H2120.1C10—C11—C12121.00 (17)
C4—C3—C2120.40 (17)C10—C11—H11A119.5
C4—C3—C7120.68 (16)C12—C11—H11A119.5
C2—C3—C7118.81 (16)C11—C12—C13119.93 (17)
C5—C4—C3119.12 (17)C11—C12—H12120.0
C5—C4—H4120.4C13—C12—H12120.0
C3—C4—H4120.4C12—C13—C14119.39 (17)
C4—C5—C6120.98 (17)C12—C13—C16121.51 (17)
C4—C5—C8118.28 (16)C14—C13—C16119.05 (17)
C6—C5—C8120.73 (16)C15—C14—C13120.27 (17)
C1—C6—C5119.47 (17)C15—C14—H14A119.9
C1—C6—H6120.3C13—C14—H14A119.9
C5—C6—H6120.3C14—C15—C10120.70 (17)
O1—C7—O2123.17 (17)C14—C15—H15119.6
O1—C7—C3122.32 (16)C10—C15—H15119.6
O2—C7—C3114.48 (15)O7—C16—O6123.74 (17)
O3—C8—O4123.62 (17)O7—C16—C13121.80 (17)
O3—C8—C5120.81 (16)O6—C16—C13114.45 (16)
O4—C8—C5115.58 (15)C7—O2—H2A109.3 (17)
O5—C9—C10113.10 (15)C8—O4—H4A109.0 (18)
O5—C9—H9A109.0C1—O5—C9120.05 (14)
C10—C9—H9A109.0C16—O6—H6A109.8 (17)
O5—C9—H9B109.0
O5—C1—C2—C3178.10 (15)O5—C9—C10—C1123.7 (2)
C6—C1—C2—C32.2 (3)O5—C9—C10—C15156.45 (15)
C1—C2—C3—C41.8 (3)C15—C10—C11—C120.1 (3)
C1—C2—C3—C7174.41 (16)C9—C10—C11—C12179.95 (17)
C2—C3—C4—C50.3 (3)C10—C11—C12—C131.4 (3)
C7—C3—C4—C5176.39 (16)C11—C12—C13—C141.8 (3)
C3—C4—C5—C61.9 (3)C11—C12—C13—C16175.62 (17)
C3—C4—C5—C8179.46 (16)C12—C13—C14—C150.9 (3)
O5—C1—C6—C5179.77 (16)C16—C13—C14—C15176.60 (16)
C2—C1—C6—C50.6 (3)C13—C14—C15—C100.5 (3)
C4—C5—C6—C11.5 (3)C11—C10—C15—C141.0 (3)
C8—C5—C6—C1179.90 (16)C9—C10—C15—C14179.12 (17)
C4—C3—C7—O1173.84 (17)C12—C13—C16—O7167.37 (18)
C2—C3—C7—O110.0 (3)C14—C13—C16—O710.1 (3)
C4—C3—C7—O28.0 (2)C12—C13—C16—O611.9 (3)
C2—C3—C7—O2168.23 (16)C14—C13—C16—O6170.61 (16)
C4—C5—C8—O34.8 (3)C2—C1—O5—C9165.51 (15)
C6—C5—C8—O3173.81 (17)C6—C1—O5—C914.8 (3)
C4—C5—C8—O4174.98 (16)C10—C9—O5—C184.35 (19)
C6—C5—C8—O46.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.95 (3)1.70 (3)2.6426 (19)176 (2)
O4—H4A···O7ii0.99 (3)1.62 (3)2.6086 (19)175 (3)
O6—H6A···O3iii0.93 (3)1.72 (3)2.6486 (19)179 (4)
C9—H9A···O1iv0.972.513.272 (2)135
C11—H11A···O3v0.932.453.170 (2)135
C14—H14A···O4vi0.932.563.245 (2)131
C9—H9B···Cg2vii0.972.973.779 (2)141
Symmetry codes: (i) x+2, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x1/2, y1, z+1/2; (iv) x+1, y, z; (v) x+3/2, y1/2, z; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support.

References

First citationAhmad, M., Das, R., Lama, P., Poddar, P. & Bharadwaj, P. K. (2012a). Cryst. Growth Des. 12, 4624–4632.  CrossRef CAS Google Scholar
First citationAhmad, M., Sharma, M. K., Das, R., Poddar, P. & Bharadwaj, P. K. (2012b). Cryst. Growth Des. 12, 1571–1578.  CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. (2003). Coord. Chem. Rev. 246, 203–228.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y.-C., Zhang, X., Liu, Y.-Y., Liu, H.-Y. & Ma, J.-F. (2014). Eur. J. Inorg. Chem. pp. 6205–6211.  CrossRef Google Scholar
First citationHou, Y.-N., Song, J., Bai, F.-Y. & Xing, Y.-H. (2016). Inorg. Chim. Acta, 440, 69–76.  CrossRef CAS Google Scholar
First citationLi, J. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 585–586.  CAS Google Scholar
First citationLi, J. & Ma, J.-F. (2012). Z. Kristallogr. New Cryst. Struct. 227, 277–278.  CAS Google Scholar
First citationLiu, Y.-Y., Li, J., Ma, J.-F., Ma, J.-C. & Yang, J. (2012). CrystEngComm, 14, 169–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, Y., Cao, K.-L., Han, M.-M. & Feng, Y. (2015). Inorg. Chem. Commun. 56, 76–78.  CrossRef CAS Google Scholar
First citationZhang, X., Yang, J.-X., Zhang, J., Cheng, J.-K., Sun, M.-L. & Yao, Y.-G. (2011). Inorg. Chem. Commun. 14, 986–989.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds