research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 741-743

Crystal structure of methyl (S)-2-{(R)-4-[(tert-but­­oxy­carbon­yl)amino]-3-oxo-1,2-thia­zolidin-2-yl}-3-methyl­butano­ate: a chemical model for oxidized protein tyrosine phosphatase 1B (PTP1B)

CROSSMARK_Color_square_no_text.svg

a125 Chemistry Bldg, University of Missouri Columbia, MO 65211, USA
*Correspondence e-mail: gatesk@missouri.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 May 2015; accepted 23 May 2015; online 3 June 2015)

The asymmetric unit of the title compound, C14H24N2O5S, contains two independent mol­ecules (A and B). In each mol­ecule, the iso­thia­zolidin-3-one ring adopts an envelope conformation with the methyl­ene C atom as the flap. In the crystal, the A mol­ecules are linked to one another by N—H⋯O hydrogen bonds, forming columns along [010]. The B mol­ecules are also linked to one another by N—H⋯O hydrogen bonds, forming columns along the same direction, i.e. [010]. Within the individual columns, there are also C—H⋯S and C—H⋯O hydrogen bonds present. The columns of A and B mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (10-1). The absolute structure was determined by resonant scattering [Flack parameter = 0.00 (3)].

1. Chemical context

X-ray crystallographic analyses of the enzyme PTP1B have revealed an unprecedented post-translational modification that may be important in redox regulation of protein function (Zhou et al., 2011[Zhou, H., Singh, H., Parsons, Z. D., Lewis, S. M., Bhattacharya, S., Seiner, D. R., LaButti, J. N., Reilly, T. J., Tanner, J. J. & Gates, K. S. (2011). J. Am. Chem. Soc. 132, 15803-15805.]; Salmeen et al., 2003[Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T.-C., Hinks, J. A., Tonks, N. K. & Barford, D. (2003). Nature, 423, 769-773.]; van Montfort et al., 2003[Montfort, R. L. M. van, Congreve, M., Tisi, D., Carr, R. & Jhoti, H. (2003). Nature, 423, 773-777.]; Tanner et al., 2011[Tanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H. & Gates, K. S. (2011). Antioxid. Redox Signal. 15, 77-97.]; Sivaramakrishnan et al., 2010[Sivaramakrishnan, S., Cummings, A. H. & Gates, K. S. (2010). Bioorg. Med. Chem. Lett. 20, 444-447.]). Specifically, oxidation converts the catalytic cysteine in this enzyme to an iso­thia­zolidin-3-one heterocycle that is commonly referred to as a sulfenyl amide residue. As part of early efforts in the area of cephalosporin synthesis, a dipeptide containing a protein sulfenyl amide residue was synthesized (Morin et al., 1973[Morin, R. B., Gordon, E. M., McGrath, T. & Shuman, R. (1973). Tetrahedron Lett. 14, 2159-2162.]). However, to the best of our knowledge, there are no examples of low mol­ecular weight sulfenyl amides that have been characterized crystallographically, although structures of related 1,2-benziso­thia­zol-3(2H)-ones have been reported (Kim et al., 1996[Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337-5340.]; Ranganathan et al., 2002[Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861-2874.]; Wang et al., 2011[Wang, X., Yang, J.-X., You, C., Tan, X. & Lin, Q. (2011). Acta Cryst. E67, o3295.]). Herein we describe the synthesis and crystal structure of the title compound, a low mol­ecular weight mimic of oxidized PTP1B.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the two independent mol­ecules (A and B) of the title compound are shown in Fig. 1[link]. The two mol­ecules differ only in the orientation of the isopropyl group (Fig. 1[link]). The bond lengths and angles are very similar to those seen in the crystal structures of the oxidized enzyme PTP1B (see: pdb codes 1oem, 1oes, 3sme). In both mol­ecules, the iso­thio­zolidin-3-one ring adopts an envelope conformation with the methyl­ene C atom (C1A in mol­ecule A and C1B in mol­ecule B) as the flap, similar to the conformation of oxidized PTP1B (pdb code: 1oem). In previously reported chemical models (1,2-benziso­thia­zole compounds) of PTP1B, the five-membered ring is planar (Kim et al., 1996[Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337-5340.]; Ranganathan et al., 2002[Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861-2874.]; Wang et al., 2011[Wang, X., Yang, J.-X., You, C., Tan, X. & Lin, Q. (2011). Acta Cryst. E67, o3295.]; Sivaramakrishnan et al., 2005[Sivaramakrishnan, S., Keerthi, K. & Gates, K. S. (2005). J. Am. Chem. Soc. 127, 10830-10831.]). The S—N bond lengths in the title compound [S1A—N1A = 1.740 (2) Å and S1B—N1B = 1.733 (2) Å], are similar to the same bond distance of ca 1.71 Å in oxidized PTP1B (pdb code: 1oem).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, N—H⋯O hydrogen-bonding inter­actions give infinite, separate columns of A and B mol­ecules along the b-axis (Table 1[link] and Fig. 2[link]). Within the columns there are C—H⋯S and C—H⋯O hydrogen bonds present (Table 1[link]). The columns of A and B mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (10[\overline{1}]); see Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AN⋯O1Ai 0.88 2.07 2.925 (3) 164
N2B—H2BN⋯O1Bii 0.88 2.05 2.921 (3) 169
C2A—H2A⋯O5Ai 1.00 2.57 3.549 (3) 167
C1B—H1B2⋯O1Biii 0.99 2.56 3.371 (4) 139
C4A—H4A⋯S1Aiv 1.00 2.70 3.526 (3) 140
C4B—H4B⋯S1Biv 1.00 2.70 3.488 (3) 136
C9B—H9B3⋯O2Av 0.98 2.52 3.400 (4) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z; (iv) x, y+1, z; (v) x+1, y, z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; A mol­ecules are blue and B mol­ecules are red).

4. Database survey

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the substructure 1,2-benziso­thia­zole-3-one resulted in over twenty hits, which include three structures similar to the title compound: methyl 2-hy­droxy-2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)propano­ate (Ranganathan et al., 2002[Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861-2874.]), 2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)acetic acid (Wang et al., 2011[Wang, X., Yang, J.-X., You, C., Tan, X. & Lin, Q. (2011). Acta Cryst. E67, o3295.]) and 2-phenethyl­benzo[d]iso­thia­zol-3(2H)-one (Kim et al., 1996[Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337-5340.]). In all three compounds, the five-membered isothizolinone ring is planar. However, the S—N bond lengths are similar to that in the title compound; see Structural commentary.

5. Synthesis and crystallization

The title compound was prepared by a modification of a previously published procedure (Shiau et al., 2006[Shiau, P. T., Erlanson, D. A. & Gordon, E. M. (2006). Org. Lett. 8, 5697-5699.]). Pyridine (20 eq) was added to a solution of L-valine ester of N,N-di-tert-butyl­oxycarbonyl-L-cystine (1.0 g, 1.5 mmol) in 50 mL of anhydrous CH2Cl2. The solution was cooled in a liquid nitro­gen bath, under an N2 atmosphere, and stirred for 15 min. Bromine (135 µL, 2.6 mmol) in dry CH2Cl2 was added dropwise over a period of 30 min. The solution was allowed to warm to 273 K over 1 h, and then CH2Cl2 was evaporated in vacuo using a rotatory evaporator to afford the crude material. Flash chromatography (50% EtOAc/hexa­nes) of the crude material gave the title compound as a white solid (360 mg, 72% yield). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of title compound in DMF.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H24N2O5S
Mr 332.41
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 11.509 (3), 5.9290 (18), 25.751 (8)
β (°) 98.307 (3)
V3) 1738.7 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.50 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 19532, 7699, 6307
Rint 0.026
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 1.05
No. of reflections 7699
No. of parameters 409
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Absolute structure Flack x determined using 2415 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (3)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

X-ray crystallographic analyses of the enzyme PTP1B have revealed an unprecedented post-translational modification that may be important in redox regulation of protein function (Zhou et al., 2011; Salmeen et al., 2003; van Montfort et al., 2003; Tanner et al., 2011; Sivaramakrishnan et al., 2010). Specifically, oxidation converts the catalytic cysteine in this enzyme to an iso­thia­zolidin-3-one heterocycle that is commonly referred to as a sulfenyl amide residue. As part of early efforts in the area of cephalosporin synthesis, a dipeptide containing a protein sulfenyl amide residue was synthesized (Morin et al., 1973). However, to the best of our knowledge, there are no examples of low molecular weight sulfenyl amides that have been characterized crystallographically, although structures of related 1,2-benziso­thia­zol-3(2H)-ones have been reported (Kim et al., 1996; Ranganathan et al., 2002; Wang et al., 2011). Herein we describe the synthesis and crystal structure of the title compound, a low molecular weight mimic of oxidized PTP1B.

Structural commentary top

The molecular structures of the two independent molecules (A and B) of the title compound are shown in Fig. 1. The two molecules are differ only in the orientation of the iso­propyl group (Fig. 1). The bond lengths and angles are very similar to those seen in the crystal structures of the oxidized enzyme PTP1B (see: pdb codes 1oem, 1oes, 3sme). In both molecules, the iso­thio­zolidin-3-one ring adopts an envelope conformation with the methyl­ene C atom (C1A in molecule A and C1B in molecule B) as the flap, similar to the conformation of oxidized PTP1B (pdb code: 1oem). In previously reported chemical models (1,2-benziso­thia­zole compounds) of PTP1B, the five-membered ring is planar (Kim et al., 1996; Ranganathan et al., 2002; Wang et al., 2011; Sivaramakrishnan et al., 2005). The S—N bond lengths in the title compound [S1A—N1A = 1.740 (2) Å and S1B—N1B = 1.733 (2) Å], are similar to the same bond distance of ca 1.71 Å in oxidized PTP1B (pdb code: 1oem).

Supra­molecular features top

In the crystal, N—H···O hydrogen-bonding inter­actions give infinite, separate columns of A and B molecules along the b-axis direction (Table 1 and Fig. 2). Within the columns there are C—H···S and C—H···O hydrogen bonds present (Table 1). The columns of A and B molecules are linked by C—H···O hydrogen bonds, forming sheets parallel to (101); see Fig. 2.

Database survey top

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for the substructure 1,2-benziso­thia­zole-3-one resulted in over twenty hits, which include three structures similar to the title compound: methyl 2-hy­droxy-2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)propano­ate (Ranganathan et al., 2002), 2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)acetic acid (Wang et al., 2011) and 2-phenethyl­benzo[d]iso­thia­zol-3(2H)-one (Kim et al., 1996). In all three compounds, the five-membered isothizolinone ring is planar. However, the S—N bond lengths are similar to that in the title compound; see Structural commentary.

Synthesis and crystallization top

The title compound was prepared by a modification of a previously published procedure (Shiau et al., 2006). Pyridine (20 eq) was added to a solution of L-valine ester of N,N-di-tert-butyl­oxycarbonyl-L-cystine (1.0 g, 1.5 mmol) in 50 mL of anhydrous CH2Cl2. The solution was cooled in a liquid nitro­gen bath, under an N2 atmosphere, and stirred for 15 min. Bromine (135 µL, 2.6 mmol) in dry CH2Cl2 was added dropwise over a period of 30 min. The solution was allowed to warm to 273 K over 1 h, and then CH2Cl2 was evaporated in vacuo using a rotatory evaporator to afford the crude material. Flash chromatography (50% EtOAc/hexanes) of the crude material gave the title compound as a white solid (360 mg, 72% yield). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of title compound in DMF.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, C—H = 0.98–1.00 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Related literature top

For related literature, see: Groom & Allen (2014); Kim et al. (1996); Montfort et al. (2003); Morin et al. (1973); Ranganathan et al. (2002); Salmeen et al. (2003); Shiau et al. (2006); Sivaramakrishnan et al. (2005, 2010); Tanner et al. (2011); Wang et al. (2011); Zhou et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; A molecules are blue and B molecules are red).
(S)-2-{(R)-4-[(tert-Butoxycarbonyl)amino]-3-oxo-1,2-thiazolidin-2-yl}-3-methylbutanoate top
Crystal data top
C14H24N2O5SF(000) = 712
Mr = 332.41Dx = 1.270 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7090 reflections
a = 11.509 (3) Åθ = 2.6–22.2°
b = 5.9290 (18) ŵ = 0.21 mm1
c = 25.751 (8) ÅT = 173 K
β = 98.307 (3)°Needle, colourless
V = 1738.7 (9) Å30.50 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7699 independent reflections
Radiation source: fine-focus sealed tube6307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.88, Tmax = 0.99k = 77
19532 measured reflectionsl = 3233
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.3913P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7699 reflectionsΔρmax = 0.22 e Å3
409 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack x determined using 2415 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
C14H24N2O5SV = 1738.7 (9) Å3
Mr = 332.41Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.509 (3) ŵ = 0.21 mm1
b = 5.9290 (18) ÅT = 173 K
c = 25.751 (8) Å0.50 × 0.15 × 0.05 mm
β = 98.307 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6307 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.99Rint = 0.026
19532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.25 e Å3
7699 reflectionsAbsolute structure: Flack x determined using 2415 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
409 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.17551 (7)0.37685 (12)0.89628 (3)0.0306 (2)
O1A0.37713 (16)0.8791 (4)0.92762 (7)0.0258 (5)
O2A0.04290 (17)0.8246 (4)0.84881 (8)0.0391 (6)
O3A0.07144 (17)0.8801 (4)0.92603 (8)0.0334 (5)
O4A0.25361 (16)0.8018 (3)1.02566 (7)0.0287 (5)
O5A0.40692 (16)0.7475 (3)1.09140 (7)0.0277 (5)
N1A0.23825 (18)0.6385 (4)0.88732 (9)0.0217 (5)
N2A0.40950 (19)0.5788 (4)1.01516 (8)0.0249 (5)
H2AN0.48070.53621.02860.030*
C1A0.2486 (2)0.3592 (5)0.96298 (11)0.0276 (6)
H1A10.19830.42060.98770.033*
H1A20.26870.20090.97270.033*
C2A0.3596 (2)0.5013 (5)0.96366 (10)0.0222 (6)
H2A0.41990.40620.94970.027*
C3A0.3281 (2)0.6971 (5)0.92527 (10)0.0202 (6)
C4A0.1701 (2)0.8095 (5)0.85499 (10)0.0224 (6)
H4A0.21290.95520.86270.027*
C5A0.0523 (2)0.8373 (5)0.87466 (11)0.0255 (6)
C6A0.0312 (3)0.8925 (7)0.95220 (12)0.0433 (9)
H6A10.07950.75770.94390.065*
H6A20.07691.02700.94030.065*
H6A30.00680.90120.99020.065*
C7A0.1596 (3)0.7759 (5)0.79545 (11)0.0300 (7)
H7A0.10220.89040.77880.036*
C8A0.1133 (3)0.5449 (6)0.77637 (12)0.0399 (8)
H8A10.04160.51080.79130.060*
H8A20.17280.42990.78760.060*
H8A30.09580.54550.73800.060*
C9A0.2768 (3)0.8254 (7)0.77685 (13)0.0466 (9)
H9A10.33490.71310.79160.070*
H9A20.30370.97630.78860.070*
H9A30.26720.81860.73840.070*
C10A0.3474 (2)0.7172 (5)1.04305 (10)0.0226 (6)
C11A0.3593 (3)0.8922 (5)1.13002 (11)0.0299 (7)
C12A0.3575 (3)1.1359 (6)1.11241 (13)0.0390 (8)
H12A0.30391.15221.07940.058*
H12B0.43681.18161.10710.058*
H12C0.33081.23171.13930.058*
C13A0.4492 (3)0.8548 (8)1.17880 (12)0.0547 (11)
H13A0.52720.89941.17150.082*
H13B0.45010.69491.18850.082*
H13C0.42800.94591.20780.082*
C14A0.2390 (3)0.8122 (6)1.13960 (13)0.0423 (9)
H14A0.24110.64901.14580.063*
H14B0.18110.84641.10880.063*
H14C0.21710.88941.17040.063*
S1B0.82980 (7)0.48748 (12)0.60817 (3)0.0323 (2)
O1B0.61995 (16)0.9736 (4)0.57159 (7)0.0273 (5)
O2B1.03914 (18)0.9218 (4)0.65232 (9)0.0431 (7)
O3B0.92605 (17)1.0176 (4)0.57700 (8)0.0322 (5)
O4B0.74978 (16)0.8851 (4)0.47590 (7)0.0291 (5)
O5B0.59660 (16)0.8252 (4)0.41038 (7)0.0289 (5)
N1B0.76343 (19)0.7473 (4)0.61334 (9)0.0228 (5)
N2B0.5954 (2)0.6591 (4)0.48677 (8)0.0249 (5)
H2BN0.52570.60950.47290.030*
C1B0.7557 (3)0.4505 (5)0.54193 (11)0.0281 (7)
H1B10.80530.50480.51610.034*
H1B20.73650.28970.53480.034*
C2B0.6441 (2)0.5915 (5)0.53926 (10)0.0215 (6)
H2B0.58380.49860.55380.026*
C3B0.6726 (2)0.7945 (5)0.57522 (10)0.0202 (6)
C4B0.8258 (2)0.9234 (5)0.64632 (10)0.0225 (6)
H4B0.78081.06680.63880.027*
C5B0.9443 (3)0.9547 (5)0.62751 (11)0.0263 (7)
C6B1.0263 (3)1.0160 (8)0.54915 (13)0.0472 (9)
H6B11.07370.88100.55890.071*
H6B21.07401.15100.55840.071*
H6B30.99931.01480.51130.071*
C7B0.8375 (3)0.8825 (5)0.70572 (11)0.0292 (6)
H7B0.89950.76580.71560.035*
C8B0.7239 (3)0.7992 (8)0.72175 (14)0.0514 (10)
H8B10.70500.65020.70630.077*
H8B20.66060.90500.70930.077*
H8B30.73230.78820.76010.077*
C9B0.8768 (3)1.1022 (6)0.73369 (12)0.0405 (8)
H9B10.81661.21800.72450.061*
H9B20.95081.15210.72280.061*
H9B30.88831.07770.77170.061*
C10B0.6558 (2)0.7978 (5)0.45889 (10)0.0242 (6)
C11B0.6433 (3)0.9681 (6)0.37099 (11)0.0320 (7)
C12B0.6446 (3)1.2118 (6)0.38854 (14)0.0455 (9)
H12D0.67191.30760.36170.068*
H12E0.69771.22820.42170.068*
H12F0.56521.25730.39360.068*
C13B0.7631 (3)0.8901 (7)0.36143 (14)0.0492 (9)
H13D0.76240.72600.35670.074*
H13E0.82140.93040.39160.074*
H13F0.78330.96300.32980.074*
C14B0.5525 (4)0.9286 (8)0.32308 (13)0.0617 (13)
H14D0.55470.77020.31240.093*
H14E0.56971.02550.29430.093*
H14F0.47420.96460.33150.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0326 (5)0.0190 (4)0.0366 (4)0.0017 (3)0.0067 (4)0.0018 (3)
O1A0.0176 (10)0.0280 (12)0.0308 (11)0.0052 (9)0.0005 (8)0.0013 (9)
O2A0.0231 (11)0.0551 (16)0.0367 (12)0.0073 (10)0.0034 (9)0.0028 (11)
O3A0.0255 (11)0.0482 (14)0.0262 (11)0.0065 (10)0.0035 (8)0.0077 (10)
O4A0.0221 (10)0.0357 (13)0.0275 (11)0.0075 (9)0.0005 (8)0.0033 (9)
O5A0.0258 (11)0.0327 (12)0.0236 (10)0.0037 (9)0.0001 (8)0.0046 (9)
N1A0.0168 (11)0.0180 (12)0.0288 (13)0.0022 (9)0.0014 (9)0.0016 (10)
N2A0.0201 (12)0.0323 (14)0.0214 (12)0.0059 (10)0.0002 (9)0.0031 (10)
C1A0.0310 (15)0.0246 (15)0.0273 (15)0.0011 (13)0.0044 (12)0.0013 (13)
C2A0.0183 (13)0.0266 (15)0.0215 (14)0.0064 (12)0.0025 (10)0.0002 (12)
C3A0.0153 (13)0.0251 (15)0.0206 (14)0.0021 (11)0.0040 (11)0.0017 (11)
C4A0.0205 (13)0.0208 (15)0.0247 (14)0.0047 (11)0.0013 (11)0.0015 (11)
C5A0.0235 (14)0.0217 (15)0.0302 (15)0.0049 (11)0.0002 (12)0.0018 (12)
C6A0.0353 (18)0.060 (2)0.0372 (18)0.0117 (18)0.0127 (14)0.0000 (17)
C7A0.0307 (15)0.0352 (18)0.0231 (15)0.0053 (14)0.0009 (12)0.0019 (13)
C8A0.049 (2)0.039 (2)0.0301 (17)0.0009 (16)0.0002 (15)0.0087 (14)
C9A0.044 (2)0.059 (3)0.0393 (19)0.0004 (18)0.0137 (15)0.0010 (17)
C10A0.0209 (14)0.0242 (15)0.0226 (14)0.0020 (11)0.0027 (11)0.0008 (11)
C11A0.0335 (16)0.0327 (18)0.0242 (15)0.0018 (14)0.0063 (13)0.0067 (13)
C12A0.0441 (19)0.0284 (18)0.047 (2)0.0075 (15)0.0164 (16)0.0039 (15)
C13A0.066 (3)0.066 (3)0.0271 (18)0.007 (2)0.0105 (17)0.0095 (18)
C14A0.053 (2)0.042 (2)0.0364 (18)0.0120 (17)0.0213 (16)0.0065 (15)
S1B0.0358 (5)0.0192 (4)0.0375 (5)0.0025 (3)0.0100 (4)0.0014 (3)
O1B0.0231 (11)0.0299 (12)0.0273 (11)0.0050 (9)0.0020 (8)0.0014 (9)
O2B0.0224 (11)0.0622 (18)0.0414 (13)0.0038 (11)0.0060 (10)0.0064 (12)
O3B0.0287 (11)0.0411 (14)0.0273 (11)0.0026 (10)0.0054 (9)0.0025 (10)
O4B0.0228 (10)0.0369 (12)0.0271 (10)0.0081 (10)0.0017 (8)0.0049 (9)
O5B0.0277 (11)0.0373 (13)0.0204 (10)0.0046 (9)0.0003 (8)0.0041 (9)
N1B0.0228 (12)0.0168 (12)0.0269 (12)0.0019 (9)0.0028 (10)0.0016 (9)
N2B0.0213 (12)0.0314 (14)0.0208 (12)0.0082 (10)0.0007 (9)0.0019 (10)
C1B0.0312 (16)0.0242 (16)0.0285 (16)0.0035 (12)0.0034 (13)0.0009 (12)
C2B0.0210 (13)0.0234 (14)0.0198 (13)0.0046 (11)0.0015 (11)0.0019 (11)
C3B0.0132 (12)0.0253 (15)0.0225 (14)0.0028 (11)0.0041 (10)0.0018 (11)
C4B0.0239 (14)0.0183 (14)0.0236 (14)0.0009 (11)0.0026 (11)0.0009 (11)
C5B0.0268 (16)0.0222 (15)0.0290 (16)0.0040 (12)0.0011 (12)0.0005 (12)
C6B0.042 (2)0.061 (3)0.042 (2)0.0102 (19)0.0164 (16)0.0010 (18)
C7B0.0307 (15)0.0292 (16)0.0264 (15)0.0029 (14)0.0009 (12)0.0044 (13)
C8B0.050 (2)0.066 (3)0.040 (2)0.011 (2)0.0131 (16)0.0059 (18)
C9B0.052 (2)0.040 (2)0.0262 (16)0.0019 (16)0.0044 (15)0.0033 (15)
C10B0.0219 (14)0.0279 (16)0.0228 (14)0.0028 (12)0.0032 (11)0.0009 (12)
C11B0.0347 (17)0.0374 (19)0.0245 (16)0.0024 (14)0.0066 (13)0.0086 (13)
C12B0.053 (2)0.037 (2)0.050 (2)0.0086 (17)0.0193 (17)0.0127 (16)
C13B0.058 (2)0.052 (2)0.043 (2)0.014 (2)0.0264 (17)0.0134 (18)
C14B0.068 (3)0.085 (4)0.0281 (19)0.010 (2)0.0056 (18)0.018 (2)
Geometric parameters (Å, º) top
S1A—N1A1.740 (2)S1B—N1B1.733 (2)
S1A—C1A1.803 (3)S1B—C1B1.807 (3)
O1A—C3A1.215 (3)O1B—C3B1.219 (3)
O2A—C5A1.200 (3)O2B—C5B1.199 (3)
O3A—C5A1.334 (3)O3B—C5B1.340 (3)
O3A—C6A1.444 (4)O3B—C6B1.444 (4)
O4A—C10A1.215 (3)O4B—C10B1.222 (3)
O5A—C10A1.344 (3)O5B—C10B1.344 (3)
O5A—C11A1.477 (3)O5B—C11B1.481 (4)
N1A—C3A1.361 (3)N1B—C3B1.356 (3)
N1A—C4A1.465 (3)N1B—C4B1.466 (3)
N2A—C10A1.360 (4)N2B—C10B1.349 (4)
N2A—C2A1.442 (3)N2B—C2B1.443 (3)
N2A—H2AN0.8800N2B—H2BN0.8800
C1A—C2A1.529 (4)C1B—C2B1.526 (4)
C1A—H1A10.9900C1B—H1B10.9900
C1A—H1A20.9900C1B—H1B20.9900
C2A—C3A1.534 (4)C2B—C3B1.525 (4)
C2A—H2A1.0000C2B—H2B1.0000
C4A—C5A1.523 (4)C4B—C5B1.523 (4)
C4A—C7A1.533 (4)C4B—C7B1.535 (4)
C4A—H4A1.0000C4B—H4B1.0000
C6A—H6A10.9800C6B—H6B10.9800
C6A—H6A20.9800C6B—H6B20.9800
C6A—H6A30.9800C6B—H6B30.9800
C7A—C9A1.524 (4)C7B—C8B1.510 (4)
C7A—C8A1.525 (5)C7B—C9B1.526 (5)
C7A—H7A1.0000C7B—H7B1.0000
C8A—H8A10.9800C8B—H8B10.9800
C8A—H8A20.9800C8B—H8B20.9800
C8A—H8A30.9800C8B—H8B30.9800
C9A—H9A10.9800C9B—H9B10.9800
C9A—H9A20.9800C9B—H9B20.9800
C9A—H9A30.9800C9B—H9B30.9800
C11A—C12A1.514 (5)C11B—C13B1.507 (4)
C11A—C14A1.518 (4)C11B—C12B1.513 (5)
C11A—C13A1.523 (4)C11B—C14B1.516 (4)
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—H13A0.9800C13B—H13D0.9800
C13A—H13B0.9800C13B—H13E0.9800
C13A—H13C0.9800C13B—H13F0.9800
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
N1A—S1A—C1A91.87 (13)N1B—S1B—C1B91.57 (12)
C5A—O3A—C6A116.4 (2)C5B—O3B—C6B117.1 (2)
C10A—O5A—C11A120.8 (2)C10B—O5B—C11B121.4 (2)
C3A—N1A—C4A121.3 (2)C3B—N1B—C4B122.3 (2)
C3A—N1A—S1A114.78 (19)C3B—N1B—S1B115.47 (19)
C4A—N1A—S1A119.59 (17)C4B—N1B—S1B119.55 (17)
C10A—N2A—C2A120.6 (2)C10B—N2B—C2B120.5 (2)
C10A—N2A—H2AN119.7C10B—N2B—H2BN119.8
C2A—N2A—H2AN119.7C2B—N2B—H2BN119.8
C2A—C1A—S1A104.66 (19)C2B—C1B—S1B104.80 (19)
C2A—C1A—H1A1110.8C2B—C1B—H1B1110.8
S1A—C1A—H1A1110.8S1B—C1B—H1B1110.8
C2A—C1A—H1A2110.8C2B—C1B—H1B2110.8
S1A—C1A—H1A2110.8S1B—C1B—H1B2110.8
H1A1—C1A—H1A2108.9H1B1—C1B—H1B2108.9
N2A—C2A—C1A114.0 (2)N2B—C2B—C3B111.7 (2)
N2A—C2A—C3A112.2 (2)N2B—C2B—C1B113.9 (2)
C1A—C2A—C3A106.9 (2)C3B—C2B—C1B107.4 (2)
N2A—C2A—H2A107.9N2B—C2B—H2B107.9
C1A—C2A—H2A107.9C3B—C2B—H2B107.9
C3A—C2A—H2A107.9C1B—C2B—H2B107.9
O1A—C3A—N1A124.2 (2)O1B—C3B—N1B123.9 (3)
O1A—C3A—C2A125.1 (2)O1B—C3B—C2B125.4 (2)
N1A—C3A—C2A110.7 (2)N1B—C3B—C2B110.6 (2)
N1A—C4A—C5A108.3 (2)N1B—C4B—C5B106.8 (2)
N1A—C4A—C7A115.9 (2)N1B—C4B—C7B115.4 (2)
C5A—C4A—C7A113.6 (2)C5B—C4B—C7B112.5 (2)
N1A—C4A—H4A106.1N1B—C4B—H4B107.3
C5A—C4A—H4A106.1C5B—C4B—H4B107.3
C7A—C4A—H4A106.1C7B—C4B—H4B107.3
O2A—C5A—O3A124.7 (3)O2B—C5B—O3B124.4 (3)
O2A—C5A—C4A126.5 (3)O2B—C5B—C4B126.8 (3)
O3A—C5A—C4A108.9 (2)O3B—C5B—C4B108.7 (2)
O3A—C6A—H6A1109.5O3B—C6B—H6B1109.5
O3A—C6A—H6A2109.5O3B—C6B—H6B2109.5
H6A1—C6A—H6A2109.5H6B1—C6B—H6B2109.5
O3A—C6A—H6A3109.5O3B—C6B—H6B3109.5
H6A1—C6A—H6A3109.5H6B1—C6B—H6B3109.5
H6A2—C6A—H6A3109.5H6B2—C6B—H6B3109.5
C9A—C7A—C8A110.8 (3)C8B—C7B—C9B111.1 (3)
C9A—C7A—C4A110.1 (2)C8B—C7B—C4B111.7 (2)
C8A—C7A—C4A114.4 (3)C9B—C7B—C4B108.2 (2)
C9A—C7A—H7A107.1C8B—C7B—H7B108.6
C8A—C7A—H7A107.1C9B—C7B—H7B108.6
C4A—C7A—H7A107.1C4B—C7B—H7B108.6
C7A—C8A—H8A1109.5C7B—C8B—H8B1109.5
C7A—C8A—H8A2109.5C7B—C8B—H8B2109.5
H8A1—C8A—H8A2109.5H8B1—C8B—H8B2109.5
C7A—C8A—H8A3109.5C7B—C8B—H8B3109.5
H8A1—C8A—H8A3109.5H8B1—C8B—H8B3109.5
H8A2—C8A—H8A3109.5H8B2—C8B—H8B3109.5
C7A—C9A—H9A1109.5C7B—C9B—H9B1109.5
C7A—C9A—H9A2109.5C7B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
C7A—C9A—H9A3109.5C7B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
O4A—C10A—O5A126.4 (3)O4B—C10B—O5B125.9 (3)
O4A—C10A—N2A124.1 (2)O4B—C10B—N2B124.4 (2)
O5A—C10A—N2A109.5 (2)O5B—C10B—N2B109.7 (2)
O5A—C11A—C12A110.1 (2)O5B—C11B—C13B111.5 (3)
O5A—C11A—C14A111.3 (2)O5B—C11B—C12B109.3 (3)
C12A—C11A—C14A112.0 (3)C13B—C11B—C12B111.8 (3)
O5A—C11A—C13A101.4 (3)O5B—C11B—C14B101.1 (3)
C12A—C11A—C13A111.4 (3)C13B—C11B—C14B111.1 (3)
C14A—C11A—C13A110.3 (3)C12B—C11B—C14B111.5 (3)
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C11A—C13A—H13A109.5C11B—C13B—H13D109.5
C11A—C13A—H13B109.5C11B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C11A—C13A—H13C109.5C11B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C11A—C14A—H14A109.5C11B—C14B—H14D109.5
C11A—C14A—H14B109.5C11B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C11A—C14A—H14C109.5C11B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C1A—S1A—N1A—C3A13.0 (2)C1B—S1B—N1B—C3B12.9 (2)
C1A—S1A—N1A—C4A144.0 (2)C1B—S1B—N1B—C4B148.9 (2)
N1A—S1A—C1A—C2A27.2 (2)N1B—S1B—C1B—C2B26.1 (2)
C10A—N2A—C2A—C1A61.9 (3)C10B—N2B—C2B—C3B57.7 (3)
C10A—N2A—C2A—C3A59.8 (3)C10B—N2B—C2B—C1B64.2 (3)
S1A—C1A—C2A—N2A158.7 (2)S1B—C1B—C2B—N2B157.0 (2)
S1A—C1A—C2A—C3A34.2 (3)S1B—C1B—C2B—C3B32.7 (3)
C4A—N1A—C3A—O1A18.2 (4)C4B—N1B—C3B—O1B15.1 (4)
S1A—N1A—C3A—O1A174.7 (2)S1B—N1B—C3B—O1B176.4 (2)
C4A—N1A—C3A—C2A162.8 (2)C4B—N1B—C3B—C2B166.6 (2)
S1A—N1A—C3A—C2A6.2 (3)S1B—N1B—C3B—C2B5.3 (3)
N2A—C2A—C3A—O1A28.5 (4)N2B—C2B—C3B—O1B30.9 (4)
C1A—C2A—C3A—O1A154.1 (3)C1B—C2B—C3B—O1B156.4 (3)
N2A—C2A—C3A—N1A152.5 (2)N2B—C2B—C3B—N1B150.9 (2)
C1A—C2A—C3A—N1A26.8 (3)C1B—C2B—C3B—N1B25.3 (3)
C3A—N1A—C4A—C5A103.6 (3)C3B—N1B—C4B—C5B106.0 (3)
S1A—N1A—C4A—C5A51.9 (3)S1B—N1B—C4B—C5B54.6 (3)
C3A—N1A—C4A—C7A127.3 (3)C3B—N1B—C4B—C7B128.2 (3)
S1A—N1A—C4A—C7A77.2 (3)S1B—N1B—C4B—C7B71.3 (3)
C6A—O3A—C5A—O2A5.4 (5)C6B—O3B—C5B—O2B8.6 (5)
C6A—O3A—C5A—C4A174.9 (3)C6B—O3B—C5B—C4B169.0 (3)
N1A—C4A—C5A—O2A126.7 (3)N1B—C4B—C5B—O2B117.3 (3)
C7A—C4A—C5A—O2A3.7 (4)C7B—C4B—C5B—O2B10.3 (4)
N1A—C4A—C5A—O3A53.7 (3)N1B—C4B—C5B—O3B60.1 (3)
C7A—C4A—C5A—O3A176.0 (2)C7B—C4B—C5B—O3B172.3 (2)
N1A—C4A—C7A—C9A71.8 (3)N1B—C4B—C7B—C8B44.0 (4)
C5A—C4A—C7A—C9A161.7 (3)C5B—C4B—C7B—C8B166.8 (3)
N1A—C4A—C7A—C8A53.7 (3)N1B—C4B—C7B—C9B166.6 (3)
C5A—C4A—C7A—C8A72.8 (3)C5B—C4B—C7B—C9B70.6 (3)
C11A—O5A—C10A—O4A1.1 (4)C11B—O5B—C10B—O4B1.0 (4)
C11A—O5A—C10A—N2A179.7 (2)C11B—O5B—C10B—N2B179.4 (2)
C2A—N2A—C10A—O4A7.4 (4)C2B—N2B—C10B—O4B4.3 (4)
C2A—N2A—C10A—O5A173.9 (2)C2B—N2B—C10B—O5B176.1 (2)
C10A—O5A—C11A—C12A67.5 (3)C10B—O5B—C11B—C13B57.3 (4)
C10A—O5A—C11A—C14A57.3 (3)C10B—O5B—C11B—C12B66.9 (4)
C10A—O5A—C11A—C13A174.5 (3)C10B—O5B—C11B—C14B175.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AN···O1Ai0.882.072.925 (3)164
N2B—H2BN···O1Bii0.882.052.921 (3)169
C2A—H2A···O5Ai1.002.573.549 (3)167
C1B—H1B2···O1Biii0.992.563.371 (4)139
C4A—H4A···S1Aiv1.002.703.526 (3)140
C4B—H4B···S1Biv1.002.703.488 (3)136
C9B—H9B3···O2Av0.982.523.400 (4)149
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AN···O1Ai0.882.072.925 (3)164
N2B—H2BN···O1Bii0.882.052.921 (3)169
C2A—H2A···O5Ai1.002.573.549 (3)167
C1B—H1B2···O1Biii0.992.563.371 (4)139
C4A—H4A···S1Aiv1.002.703.526 (3)140
C4B—H4B···S1Biv1.002.703.488 (3)136
C9B—H9B3···O2Av0.982.523.400 (4)149
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H24N2O5S
Mr332.41
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)11.509 (3), 5.9290 (18), 25.751 (8)
β (°) 98.307 (3)
V3)1738.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.15 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.88, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
19532, 7699, 6307
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 1.05
No. of reflections7699
No. of parameters409
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25
Absolute structureFlack x determined using 2415 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (3)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337–5340.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMontfort, R. L. M. van, Congreve, M., Tisi, D., Carr, R. & Jhoti, H. (2003). Nature, 423, 773–777.  Web of Science PubMed Google Scholar
First citationMorin, R. B., Gordon, E. M., McGrath, T. & Shuman, R. (1973). Tetrahedron Lett. 14, 2159–2162.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRanganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalmeen, A., Andersen, J. N., Myers, M. P., Meng, T.-C., Hinks, J. A., Tonks, N. K. & Barford, D. (2003). Nature, 423, 769–773.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiau, P. T., Erlanson, D. A. & Gordon, E. M. (2006). Org. Lett. 8, 5697–5699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSivaramakrishnan, S., Cummings, A. H. & Gates, K. S. (2010). Bioorg. Med. Chem. Lett. 20, 444–447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSivaramakrishnan, S., Keerthi, K. & Gates, K. S. (2005). J. Am. Chem. Soc. 127, 10830–10831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H. & Gates, K. S. (2011). Antioxid. Redox Signal. 15, 77–97.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, X., Yang, J.-X., You, C., Tan, X. & Lin, Q. (2011). Acta Cryst. E67, o3295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H., Singh, H., Parsons, Z. D., Lewis, S. M., Bhattacharya, S., Seiner, D. R., LaButti, J. N., Reilly, T. J., Tanner, J. J. & Gates, K. S. (2011). J. Am. Chem. Soc. 132, 15803–15805.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 741-743
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds