research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 574-577

Crystal structures of methyl 3-(4-iso­propyl­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­thio­chromeno[4,3-b]pyrrole-3a-carboxyl­ate, methyl 1-methyl-3-(o-tol­yl)-1,2,3,3a,4,9b-hexa­hydro­thio­chromeno[4,3-b]pyrrole-3a-carboxyl­ate and methyl 1-methyl-3-(o-tol­yl)-3,3a,4,9b-tetra­hydro-1H-thio­chromeno[4,3-c]isoxazole-3a-carboxyl­ate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 602 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 March 2015; accepted 23 April 2015; online 7 May 2015)

In the title compounds, C23H27NO2S, (I), and C21H23NO2S, (II), the pyrrole rings have envelope conformations with the C atom substituted by the benzene ring as the flap. In the third title compound, C20H21NO3S, (III), the isoxazole ring has a twisted conformation on the C—C bond substituted by the benzene ring and the carboxyl­ate group. In all three compounds, the thio­pyran ring has a half-chair conformation. The mean plane of the pyrrole ring is inclined to the mean plane of the thio­pyran ring by 57.07 (9), 58.98 (9) and 60.34 (12)° in (I), (II) and (III), respectively. The benzene rings are inclined to one another by 73.26 (10)° in (I), 65.781)° in (II) and 63.37 (13)° in (III). In the crystals of all three compounds, there are no classical hydrogen bonds present. Only in the crystal of compound (I) are mol­ecules linked by a pair of C—H⋯π inter­actions, forming inversion dimers. The isopropyl group in compound (I) is disordered over two sets of sites and has a refined occupancy ratio of 0.586 (13):0.414 (13).

1. Chemical context

Pyrrole derivatives are of considerable synthetic importance due to their extensive use in drug discovery (Toja et al., 1987[Toja, E., Depaoli, A., Tuan, G. & Kettenring, J. (1987). Synthesis, pp. 272-274.]) which is linked to their pharmacological activity such as anti-inflammatory (Muchowski et al., 1985[Muchowski, J. M., Unger, S. H., Ackrell, J., Cheung, P., Cook, J., Gallegra, P., Halpern, O., Koehler, R. & Kluge, A. F. (1985). J. Med. Chem. 28, 1037-1049.]), cytotoxicity (Dannhardt et al., 2000[Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499-510.]) and their use in the treatment of hyper­lipidemias (Holub et al., 2004[Holub, J. M., O'Toole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135-157.]) and as anti­tumour agents (Krowicki et al., 1988[Krowicki, K., Balzarini, J., De Clercq, E., Newman, R. A. & Lown, J. W. (1988). J. Med. Chem. 31, 341-345.]). Other pyrrole-containing heterocyclic compounds have been reported previously for biological studies (Almerico et al., 1998[Almerico, A. M., Diana, P., Barraja, P., Dattolo, G., Mingoia, F., Loi, A. G., Scintu, F., Milia, C., Puddu, I. & La Colla, P. (1998). Farmaco, 53, 33-40.]). Pyrrole derivatives have biological activity such as COX-1/COX-2 inhibitors (Dannhardt et al., 2000[Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499-510.]) as well as cytotoxic activity against a variety of marine and human tumour models (Evans et al., 2003[Evans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181-190.]). Isoxazoline derivatives have been shown to be efficient precursors for the preparation of many synthetic inter­mediates including γ-amino alcohols and β-hy­droxy ketones (Kozikowski, 1984[Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.]). They display inter­esting biological properties such as herbicidal, plant-growth regulatory and anti­tumour activities (Howe & Shelton, 1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]). Chromeno­pyrrole compounds are used in the treatment of impulsive disorders (Caine & Koob, 1993[Caine, B. & Koob, G. F. (1993). Science, 260, 1814-1816.]). Continuing our inter­est in such compounds, we have synthesized the title compounds and report herein on their crystal structures.

[Scheme 1]

2. Structural commentary

The title compounds (I)[link] and (II)[link] differ only by the substituent on the benzene ring; 4-iso­propyl­phenyl in (I)[link] and o-tolyl in (II)[link]. Compounds (II)[link] and (III)[link] differ only in that (II)[link] has a pyrrole ring while (III)[link] has an isoxazole ring.

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. The five-membered methyl-substituted pyrrole ring adopts an envelope conformation with atom C9 as the flap, deviating from the mean plane defined by the plane of the other ring atoms by 0.0167 Å. The puckering parameters of this ring are q2 = 0.4713 (15) Å and φ2 = 41.27 (19)°. The thio­pyran ring has a half-chair conformation, with the lowest asymmetry parameters ΔC2(S1—C7) = 8.34 (16) Å. The mean plane of the pyrrole ring makes dihedral angles of 57.07 (9) and 63.29 (10)° with the mean plane of the thio­pyran ring and the benzene ring, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of the compound (II)[link] is illustrated in Fig. 2[link]. The bond lengths and bond angles are similar to those in compound (I)[link]. The pyrrole ring (N1/C8–C12) adopts an envelope conformation with atom C9 atom as the flap having asymmetry parameters (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]) ΔCS(C9) = 4.51 Å and with puckering parameters q2 = 0.4673 (18) Å, φ2 = 223.5 (2)°. As in (I)[link], the thio­pyran ring has a half-chair conformation. The mean plane of the pyrrole ring is inclined to thio­pyran ring mean plane and the benzene ring by 58.98 (9) and 67.75 (11)°, respectively. The carboxyl­ate group assumes an extended conformation, as can be seen from the C8—C13—O2—C14 torsion angle of 175.4 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of mol­ecule (III)[link] is shown in Fig. 3[link]. The isoxazole ring (N1/O3/C11/C8/C9) has a twist conformation about bond C9–C8: puckering parameters q2 = 0.466 (2) Å, φ2 = 275.7 (3)°. As in (I)[link] and (II)[link], the thio­pyran ring has a half-chair conformation. The dihedral angles between the mean plane of the isoxazole ring and the thio­pyran ring mean plane and the benzene ring are 60.34 (12) and 61.30 (14)°, respectively. The geometric parameters of mol­ecule (III)[link] agree well with those reported for (I)[link] and (II)[link], and a closely related structure, 1-methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbonitrile (Gangadharan et al., 2011[Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.]).

[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystals of compounds (I)[link], (II)[link] and (III)[link], there are no classical hydrogen bonds present. Only in compound (I)[link] is there a C—H⋯π inter­action present, and mol­ecules are linked by a pair of these inter­actions forming inversion dimers (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg3i 0.93 2.91 3.695 (2) 143
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound (I)[link]. The dashed cyan lines represent the C—H⋯centroid distances (see Table 1[link]).

4. Database survey

While a search of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for chromenoisoxazole derivatives revealed over 30 hits, there were no hits for thio­chromeno­pyrroles or thio­chromenoisoxazoles.

5. Synthesis and crystallization

Compound (I)[link]: To a solution of methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-phenyl­acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml), was added pyridine (0.2 mmol) and the mixture was refluxed until completion of the reaction (monitored by TLC). The crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether–ethyl acetate (9:1) as eluent, which successfully provided the pure product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compound (I)[link].

Compound (II)[link]: Here methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-(o-tol­yl) acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compound (I)[link], and colourless crystals of compound (II)[link] were obtained.

Compound (III)[link]: Here methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-(o-tol­yl) acrylate(1 mmol) and N-methyl hydroxyl­amine hydro­chloride (1.1 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compounds (I)[link] and (II)[link], and colourless crystals of compound (III)[link] were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The isopropyl group in compound (I)[link], atoms C19–C21, is disordered over two sets of sites and has a refined occupancy ratio of 0.586 (13):0.414 (13).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C23H27NO2S C21H21NO2S C20H21NO3S
Mr 381.52 351.45 355.44
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Orthorhombic, Pbca
Temperature (K) 293 293 293
a, b, c (Å) 10.7330 (3), 7.7568 (2), 24.9436 (7) 8.1882 (3), 10.4987 (4), 10.9594 (4) 11.2629 (11), 13.2117 (11), 24.041 (3)
α, β, γ (°) 90, 98.485 (1), 90 104.554 (1), 90.983 (1), 90.134 (1) 90, 90, 90
V3) 2053.92 (10) 911.74 (6) 3577.3 (6)
Z 4 2 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.18 0.19 0.20
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.958 0.935, 0.953 0.932, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 16824, 3616, 3170 19010, 3210, 2790 37913, 3151, 2536
Rint 0.019 0.020 0.033
(sin θ/λ)max−1) 0.595 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.06 0.038, 0.115, 1.07 0.046, 0.111, 1.12
No. of reflections 3616 3210 3151
No. of parameters 272 229 229
No. of restraints 107 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.27 0.26, −0.32 0.22, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Pyrrole derivatives are of considerable synthetic importance due to their extensive use in drug discovery (Toja et al., 1987) which is linked to their pharmacological activity such as anti-inflammatory (Muchowski et al., 1985), cytotoxicity (Dannhardt et al., 2000) and their use in the treatment of hyperlipidemias (Holub et al., 2004) and as anti­tumour agents (Krowicki et al., 1988). Other pyrrole-containing heterocyclic compounds have been reported previously for biological studies (Almerico et al., 1998). Pyrrole derivatives have biological activity such as COX-1/COX-2 inhibitors (Dannhardt et al., 2000) as well as cytotoxic activity against a variety of marine and human tumour models (Evans et al., 2003). Isoxazoline derivatives have been shown to be efficient precursors for the preparation of many synthetic inter­mediates including γ-amino alcohols and β-hy­droxy ketones (Kozikowski, 1984). They display inter­esting biological properties such as herbicidal, plant-growth regulatory and anti­tumour activities (Howe & Shelton, 1990). Chromeno­pyrrole compounds are used in the treatment of impulsive disorders (Caine & Koob, 1993). Continuing our inter­est in such compounds, we have synthesized the title compounds and report herein on their crystal structures.

Structural commentary top

\ The title compounds (I) and (II) differ only by the substituent on the benzene ring; 4-iso­propyl­phenyl in (I) and o-tolyl in (II). Compounds (II) and (III) differ only in that (II) has a pyrrole ring while (III) has an isoxazole ring.

The molecular structure of compound (I) is shown in Fig. 1. The five-membered methyl-substituted pyrrole ring adopts an envelope conformation with atom C9 as the flap, deviating from the mean plane defined by the plane of the other ring atoms by 0.0167 Å. The puckering parameters of this ring are q2 = 0.4713 (15) Å and ϕ2 = 41.27 (19)°. The thio­pyran ring has a half-chair conformation, with the lowest asymmetry parameters ΔC2(S1—C7) = 8.34 (16) Å. The mean plane of the pyrrole ring makes dihedral angles of 57.07 (9) and 63.29 (10)° with the mean plane of the thio­pyran ring and the benzene ring, respectively.

The molecular structure of the compound (II) is illustrated in Fig. 2. The bond lengths and bond angles are similar to those in compound (I). The pyrrole ring (N1/C8–C12) adopts an envelope conformation with atom C9 atom as the flap having asymmetry parameters (Nardelli, 1983) ΔCS(C9) = 4.51 Å and with puckering parameters q2 = 0.4673 (18) Å, ϕ2 = 223.5 (2)°. As in (I), the thio­pyran ring has a half-chair conformation. The mean plane of the pyrrole ring is inclined to thio­pyran ring mean plane and the benzene ring by 58.98 (9) and 67.75 (11)°, respectively. The carboxyl­ate group assumes an extended conformation, as can be seen from the C8—C13—O2—C14 torsion angle of 175.4 (2)°.

The molecular structure of molecule (III) is shown in Fig. 3. The isoxazole ring (N1/O3/C11/C8/C9) has a twist conformation about bond C9–C8: puckering parameters q2 = 0.466 (2) Å, ϕ2 = 275.7 (3)°. As in (I) and (II), the thio­pyran ring has a half-chair conformation. The dihedral angles between the mean plane of the isoxazole ring and the thio­pyran ring mean plane and the benzene ring are 60.34 (12) and 61.30 (14)°, respectively. The geometric parameters of molecule (III) agree well with those reported for (I) and (II), and a closely related structure, 1-methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-\ c]isoxazole-3a-carbo­nitrile (Gangadharan et al., 2011).

Supra­molecular features top

In the crystals of compounds (I), (II) and (III), there are no classical hydrogen bonds present. Only in compound (I) is there a C—H···π inter­action present, and molecules are linked by a pair of these inter­actions forming inversion dimers (Table 1 and Fig. 4).

Database survey top

While a search of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) for chromenoisoxazole derivatives revealed over 30 hits, there were no hits for thio­chromeno­pyrroles or thio­chromenoisoxazoles.

Synthesis and crystallization top

Compound (I): To a solution of methyl (E)-2-{[(2-formyl­phenyl)­thio]­methyl}-3-phenyl­acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml), was added pyridine (0.2 mmol) and the mixture was refluxed until completion of the reaction (monitored by TLC). The crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether–ethyl acetate (9:1) as eluent, which successfully provided the pure product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compound (I).

Compound (II): Here methyl (E)-2-{[(2-formyl­phenyl)­thio]­methyl}-3-(o-tolyl) acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compound (I), and colourless crystals of compound (II) were obtained.

Compound (III): Here methyl (E)-2-{[(2-formyl­phenyl)­thio]­methyl}-3-(o-tolyl) acrylate(1 mmol) and N-methyl hydroxyl­amine hydro­chloride (1.1 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compounds (I) and (II), and colourless crystals of compound (III) were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The iso­propyl group in compound (I), atoms C19–C21, is disordered over two sets of sites and has a refined occupancy ratio of 0.586 (13):0.414 (13).

Related literature top

For related literature, see: Almerico et al. (1998); Caine (1993); Dannhardt et al. (2000); Evans et al. (2003); Gangadharan et al. (2011); Groom & Allen (2014); Holub et al. (2004); Howe & Shelton (1990); Joseph et al. (1985); Kozikowski (1984); Krowicki et al. (1988); Nardelli (1983); Toja et al. (1987).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008) for (I); ORTEP-3 for Windows (Farrugia, 2012) for (II), (III). For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A view along the b axis of the crystal packing of compound (I). The dashed cyan lines represent the C—H···centroid distances (see Table 1).
(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C23H27NO2SF(000) = 816
Mr = 381.52Dx = 1.234 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3170 reflections
a = 10.7330 (3) Åθ = 1.7–25.0°
b = 7.7568 (2) ŵ = 0.18 mm1
c = 24.9436 (7) ÅT = 293 K
β = 98.485 (1)°Block, colourless
V = 2053.92 (10) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.941, Tmax = 0.958k = 99
16824 measured reflectionsl = 2429
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 1.0371P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.24 e Å3
107 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H27NO2SV = 2053.92 (10) Å3
Mr = 381.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7330 (3) ŵ = 0.18 mm1
b = 7.7568 (2) ÅT = 293 K
c = 24.9436 (7) Å0.35 × 0.30 × 0.25 mm
β = 98.485 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3170 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.958Rint = 0.019
16824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041107 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3616 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.64364 (15)0.4800 (2)0.14949 (7)0.0333 (4)
C20.60663 (18)0.4940 (3)0.20060 (8)0.0468 (5)
H20.58340.60150.21240.056*
C30.6033 (2)0.3533 (3)0.23429 (9)0.0584 (6)
H30.57650.36600.26790.070*
C40.6398 (2)0.1946 (3)0.21793 (9)0.0606 (6)
H40.63790.09940.24050.073*
C50.67929 (19)0.1762 (3)0.16824 (9)0.0511 (5)
H50.70520.06870.15760.061*
C60.68086 (16)0.3175 (2)0.13353 (7)0.0361 (4)
C70.70294 (16)0.4766 (2)0.03604 (7)0.0327 (4)
H7A0.75070.48200.00600.039*
H7B0.61420.47750.02120.039*
C80.73260 (14)0.6355 (2)0.07149 (6)0.0279 (4)
C90.64648 (14)0.6410 (2)0.11561 (7)0.0301 (4)
H90.67240.73800.13990.036*
C100.42438 (19)0.7312 (3)0.11351 (10)0.0568 (6)
H10A0.40830.63680.13640.085*
H10B0.34920.75730.08890.085*
H10C0.44950.83050.13540.085*
C110.55213 (17)0.8256 (2)0.04721 (8)0.0399 (4)
H11A0.53840.93600.06360.048*
H11B0.49800.81830.01250.048*
C120.69127 (16)0.8060 (2)0.03967 (7)0.0324 (4)
H120.73700.90030.06000.039*
C130.87070 (15)0.6497 (2)0.09487 (7)0.0347 (4)
C141.07866 (18)0.6040 (4)0.07703 (11)0.0687 (7)
H14A1.12100.55520.04930.103*
H14B1.10340.54330.11050.103*
H14C1.10100.72340.08180.103*
C150.72199 (16)0.8169 (2)0.01743 (7)0.0333 (4)
C160.64436 (17)0.7505 (2)0.06219 (7)0.0420 (4)
H160.56870.69840.05750.050*
C170.67758 (19)0.7603 (3)0.11355 (8)0.0486 (5)
H170.62320.71580.14280.058*
C180.7893 (2)0.8346 (3)0.12255 (8)0.0515 (5)
C190.8153 (7)0.8254 (11)0.1815 (2)0.0583 (18)0.586 (13)
H190.76020.74320.20350.070*0.586 (13)
C200.8006 (10)1.0118 (12)0.2041 (3)0.102 (3)0.586 (13)
H20A0.71441.04750.20610.153*0.586 (13)
H20B0.82481.01520.23960.153*0.586 (13)
H20C0.85361.08820.18050.153*0.586 (13)
C210.9546 (11)0.7867 (18)0.1814 (5)0.091 (3)0.586 (13)
H21A0.97170.78090.21810.137*0.586 (13)
H21B0.97520.67840.16370.137*0.586 (13)
H21C1.00440.87650.16240.137*0.586 (13)
C19'0.8449 (11)0.8718 (19)0.1752 (3)0.073 (3)0.414 (13)
H19'0.89740.97520.16850.087*0.414 (13)
C20'0.7403 (12)0.915 (2)0.2199 (4)0.104 (4)0.414 (13)
H20D0.68841.00390.20790.156*0.414 (13)
H20E0.69020.81430.22950.156*0.414 (13)
H20F0.77530.95520.25090.156*0.414 (13)
C21'0.9299 (17)0.728 (2)0.1893 (8)0.088 (4)0.414 (13)
H21D0.99440.70610.15910.132*0.414 (13)
H21E0.96810.76050.22030.132*0.414 (13)
H21F0.88100.62480.19760.132*0.414 (13)
C220.8668 (2)0.9020 (3)0.07806 (9)0.0568 (6)
H220.94270.95320.08290.068*
C230.83327 (18)0.8944 (3)0.02667 (8)0.0462 (5)
H230.88650.94220.00230.055*
N10.52473 (13)0.68409 (19)0.08280 (6)0.0361 (3)
O10.90964 (14)0.7164 (3)0.13667 (7)0.0840 (7)
O20.94460 (11)0.5889 (2)0.06139 (6)0.0505 (4)
S10.73931 (5)0.27778 (6)0.07238 (2)0.04255 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0291 (8)0.0381 (9)0.0328 (9)0.0026 (7)0.0045 (7)0.0019 (7)
C20.0467 (11)0.0570 (12)0.0382 (10)0.0011 (9)0.0113 (8)0.0033 (9)
C30.0558 (12)0.0821 (17)0.0382 (11)0.0046 (12)0.0099 (9)0.0161 (11)
C40.0603 (13)0.0663 (15)0.0530 (13)0.0048 (11)0.0011 (10)0.0293 (12)
C50.0538 (12)0.0402 (11)0.0565 (13)0.0005 (9)0.0007 (10)0.0140 (9)
C60.0327 (9)0.0353 (9)0.0387 (10)0.0027 (7)0.0000 (7)0.0054 (8)
C70.0379 (9)0.0283 (8)0.0321 (9)0.0001 (7)0.0060 (7)0.0029 (7)
C80.0293 (8)0.0258 (8)0.0297 (8)0.0000 (6)0.0075 (6)0.0021 (7)
C90.0293 (8)0.0287 (8)0.0336 (9)0.0008 (7)0.0087 (7)0.0037 (7)
C100.0387 (10)0.0608 (13)0.0763 (15)0.0117 (10)0.0258 (10)0.0141 (12)
C110.0406 (10)0.0338 (9)0.0469 (11)0.0094 (8)0.0122 (8)0.0075 (8)
C120.0366 (9)0.0247 (8)0.0367 (9)0.0019 (7)0.0079 (7)0.0007 (7)
C130.0316 (9)0.0373 (9)0.0362 (10)0.0008 (7)0.0086 (7)0.0024 (8)
C140.0303 (10)0.0772 (17)0.1015 (19)0.0028 (11)0.0199 (11)0.0011 (15)
C150.0360 (9)0.0279 (8)0.0361 (9)0.0006 (7)0.0055 (7)0.0050 (7)
C160.0374 (9)0.0444 (11)0.0431 (11)0.0042 (8)0.0022 (8)0.0043 (8)
C170.0507 (11)0.0549 (12)0.0377 (11)0.0014 (10)0.0015 (9)0.0009 (9)
C180.0574 (12)0.0605 (13)0.0378 (11)0.0086 (10)0.0110 (9)0.0093 (10)
C190.056 (3)0.082 (4)0.037 (3)0.016 (3)0.010 (2)0.003 (2)
C200.128 (6)0.122 (6)0.063 (4)0.034 (5)0.039 (4)0.048 (4)
C210.100 (6)0.128 (8)0.057 (5)0.017 (5)0.046 (5)0.013 (5)
C19'0.090 (6)0.088 (6)0.043 (4)0.009 (5)0.018 (4)0.001 (4)
C20'0.127 (8)0.132 (9)0.053 (5)0.016 (6)0.012 (5)0.031 (5)
C21'0.085 (7)0.122 (10)0.058 (5)0.015 (7)0.016 (5)0.012 (6)
C220.0504 (12)0.0700 (15)0.0533 (13)0.0146 (11)0.0186 (10)0.0108 (11)
C230.0446 (10)0.0521 (12)0.0418 (11)0.0145 (9)0.0059 (8)0.0025 (9)
N10.0288 (7)0.0338 (8)0.0468 (9)0.0040 (6)0.0097 (6)0.0054 (7)
O10.0382 (8)0.1496 (19)0.0630 (10)0.0111 (9)0.0038 (7)0.0553 (12)
O20.0319 (6)0.0652 (9)0.0575 (8)0.0022 (6)0.0169 (6)0.0123 (7)
S10.0551 (3)0.0263 (2)0.0470 (3)0.00570 (19)0.0104 (2)0.00152 (19)
Geometric parameters (Å, º) top
C1—C21.394 (2)C14—H14A0.9600
C1—C61.398 (2)C14—H14B0.9600
C1—C91.510 (2)C14—H14C0.9600
C2—C31.382 (3)C15—C231.386 (2)
C2—H20.9300C15—C161.390 (2)
C3—C41.372 (4)C16—C171.382 (3)
C3—H30.9300C16—H160.9300
C4—C51.375 (3)C17—C181.378 (3)
C4—H40.9300C17—H170.9300
C5—C61.398 (3)C18—C221.387 (3)
C5—H50.9300C18—C191.539 (5)
C6—S11.7599 (19)C18—C19'1.546 (7)
C7—C81.523 (2)C19—C211.524 (12)
C7—S11.8024 (17)C19—C201.551 (11)
C7—H7A0.9700C19—H190.9800
C7—H7B0.9700C20—H20A0.9600
C8—C131.515 (2)C20—H20B0.9600
C8—C91.539 (2)C20—H20C0.9600
C8—C121.572 (2)C21—H21A0.9600
C9—N11.474 (2)C21—H21B0.9600
C9—H90.9800C21—H21C0.9600
C10—N11.457 (2)C19'—C20'1.500 (14)
C10—H10A0.9600C19'—C21'1.519 (15)
C10—H10B0.9600C19'—H19'0.9800
C10—H10C0.9600C20'—H20D0.9600
C11—N11.468 (2)C20'—H20E0.9600
C11—C121.540 (2)C20'—H20F0.9600
C11—H11A0.9700C21'—H21D0.9600
C11—H11B0.9700C21'—H21E0.9600
C12—C151.511 (2)C21'—H21F0.9600
C12—H120.9800C22—C231.383 (3)
C13—O11.184 (2)C22—H220.9300
C13—O21.321 (2)C23—H230.9300
C14—O21.439 (2)
C2—C1—C6117.55 (17)C23—C15—C16117.15 (16)
C2—C1—C9118.63 (16)C23—C15—C12119.62 (15)
C6—C1—C9123.77 (15)C16—C15—C12123.22 (15)
C3—C2—C1122.1 (2)C17—C16—C15121.20 (17)
C3—C2—H2119.0C17—C16—H16119.4
C1—C2—H2119.0C15—C16—H16119.4
C4—C3—C2119.6 (2)C18—C17—C16121.59 (18)
C4—C3—H3120.2C18—C17—H17119.2
C2—C3—H3120.2C16—C17—H17119.2
C3—C4—C5120.0 (2)C17—C18—C22117.43 (18)
C3—C4—H4120.0C17—C18—C19114.9 (3)
C5—C4—H4120.0C22—C18—C19127.6 (3)
C4—C5—C6120.7 (2)C17—C18—C19'132.0 (5)
C4—C5—H5119.7C22—C18—C19'110.4 (5)
C6—C5—H5119.7C19—C18—C19'18.3 (5)
C1—C6—C5120.03 (18)C21—C19—C18108.9 (7)
C1—C6—S1123.93 (13)C21—C19—C20103.4 (9)
C5—C6—S1115.96 (15)C18—C19—C20106.3 (6)
C8—C7—S1112.92 (11)C21—C19—H19112.6
C8—C7—H7A109.0C18—C19—H19112.6
S1—C7—H7A109.0C20—C19—H19112.6
C8—C7—H7B109.0C19—C20—H20A109.5
S1—C7—H7B109.0C19—C20—H20B109.5
H7A—C7—H7B107.8H20A—C20—H20B109.5
C13—C8—C7113.01 (13)C19—C20—H20C109.5
C13—C8—C9112.32 (13)H20A—C20—H20C109.5
C7—C8—C9109.95 (13)H20B—C20—H20C109.5
C13—C8—C12108.71 (13)C19—C21—H21A109.5
C7—C8—C12111.61 (13)C19—C21—H21B109.5
C9—C8—C12100.59 (12)H21A—C21—H21B109.5
N1—C9—C1114.12 (13)C19—C21—H21C109.5
N1—C9—C8100.71 (13)H21A—C21—H21C109.5
C1—C9—C8116.20 (13)H21B—C21—H21C109.5
N1—C9—H9108.5C20'—C19'—C21'113.7 (14)
C1—C9—H9108.5C20'—C19'—C18109.5 (8)
C8—C9—H9108.5C21'—C19'—C18112.4 (12)
N1—C10—H10A109.5C20'—C19'—H19'107.0
N1—C10—H10B109.5C21'—C19'—H19'107.0
H10A—C10—H10B109.5C18—C19'—H19'107.0
N1—C10—H10C109.5C19'—C20'—H20D109.5
H10A—C10—H10C109.5C19'—C20'—H20E109.5
H10B—C10—H10C109.5H20D—C20'—H20E109.5
N1—C11—C12106.52 (13)C19'—C20'—H20F109.5
N1—C11—H11A110.4H20D—C20'—H20F109.5
C12—C11—H11A110.4H20E—C20'—H20F109.5
N1—C11—H11B110.4C19'—C21'—H21D109.5
C12—C11—H11B110.4C19'—C21'—H21E109.5
H11A—C11—H11B108.6H21D—C21'—H21E109.5
C15—C12—C11117.38 (14)C19'—C21'—H21F109.5
C15—C12—C8116.04 (13)H21D—C21'—H21F109.5
C11—C12—C8103.18 (13)H21E—C21'—H21F109.5
C15—C12—H12106.5C23—C22—C18121.21 (19)
C11—C12—H12106.5C23—C22—H22119.4
C8—C12—H12106.5C18—C22—H22119.4
O1—C13—O2123.11 (16)C22—C23—C15121.41 (18)
O1—C13—C8124.68 (16)C22—C23—H23119.3
O2—C13—C8112.07 (14)C15—C23—H23119.3
O2—C14—H14A109.5C10—N1—C11111.09 (15)
O2—C14—H14B109.5C10—N1—C9115.36 (15)
H14A—C14—H14B109.5C11—N1—C9105.37 (13)
O2—C14—H14C109.5C13—O2—C14117.99 (16)
H14A—C14—H14C109.5C6—S1—C7101.98 (8)
H14B—C14—H14C109.5
C6—C1—C2—C31.5 (3)C8—C12—C15—C2393.3 (2)
C9—C1—C2—C3179.07 (17)C11—C12—C15—C1636.9 (2)
C1—C2—C3—C41.4 (3)C8—C12—C15—C1685.7 (2)
C2—C3—C4—C50.1 (3)C23—C15—C16—C170.5 (3)
C3—C4—C5—C61.0 (3)C12—C15—C16—C17178.64 (17)
C2—C1—C6—C50.4 (3)C15—C16—C17—C180.7 (3)
C9—C1—C6—C5177.81 (16)C16—C17—C18—C221.0 (3)
C2—C1—C6—S1176.06 (13)C16—C17—C18—C19176.5 (4)
C9—C1—C6—S11.3 (2)C16—C17—C18—C19'175.7 (7)
C4—C5—C6—C10.8 (3)C17—C18—C19—C21140.0 (8)
C4—C5—C6—S1177.59 (16)C22—C18—C19—C2137.2 (10)
S1—C7—C8—C1361.01 (16)C19'—C18—C19—C2158 (2)
S1—C7—C8—C965.37 (15)C17—C18—C19—C20109.2 (7)
S1—C7—C8—C12176.10 (11)C22—C18—C19—C2073.6 (8)
C2—C1—C9—N186.08 (19)C19'—C18—C19—C2052 (2)
C6—C1—C9—N196.55 (19)C17—C18—C19'—C20'33.7 (16)
C2—C1—C9—C8157.34 (15)C22—C18—C19'—C20'141.3 (12)
C6—C1—C9—C820.0 (2)C19—C18—C19'—C20'57 (2)
C13—C8—C9—N1161.82 (13)C17—C18—C19'—C21'93.5 (12)
C7—C8—C9—N171.42 (15)C22—C18—C19'—C21'91.4 (13)
C12—C8—C9—N146.38 (14)C19—C18—C19'—C21'71 (2)
C13—C8—C9—C174.36 (18)C17—C18—C22—C230.2 (3)
C7—C8—C9—C152.41 (18)C19—C18—C22—C23177.0 (4)
C12—C8—C9—C1170.21 (13)C19'—C18—C22—C23176.0 (6)
N1—C11—C12—C15132.25 (15)C18—C22—C23—C151.0 (3)
N1—C11—C12—C83.27 (17)C16—C15—C23—C221.3 (3)
C13—C8—C12—C1581.94 (17)C12—C15—C23—C22177.85 (19)
C7—C8—C12—C1543.37 (18)C12—C11—N1—C10152.28 (16)
C9—C8—C12—C15159.95 (14)C12—C11—N1—C926.68 (18)
C13—C8—C12—C11148.26 (14)C1—C9—N1—C1065.7 (2)
C7—C8—C12—C1186.43 (16)C8—C9—N1—C10169.06 (15)
C9—C8—C12—C1130.15 (15)C1—C9—N1—C11171.39 (14)
C7—C8—C13—O1150.6 (2)C8—C9—N1—C1146.15 (16)
C9—C8—C13—O125.5 (3)O1—C13—O2—C140.5 (3)
C12—C8—C13—O184.9 (2)C8—C13—O2—C14176.23 (17)
C7—C8—C13—O233.7 (2)C1—C6—S1—C711.94 (17)
C9—C8—C13—O2158.85 (15)C5—C6—S1—C7171.45 (14)
C12—C8—C13—O290.74 (17)C8—C7—S1—C643.36 (13)
C11—C12—C15—C23144.07 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg3i0.932.913.695 (2)143
Symmetry code: (i) x+1, y+1, z.
(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C21H21NO2SZ = 2
Mr = 351.45F(000) = 372
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1882 (3) ÅCell parameters from 2790 reflections
b = 10.4987 (4) Åθ = 1.9–25.0°
c = 10.9594 (4) ŵ = 0.19 mm1
α = 104.554 (1)°T = 293 K
β = 90.983 (1)°Block, colourless
γ = 90.134 (1)°0.35 × 0.30 × 0.25 mm
V = 911.74 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3210 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.935, Tmax = 0.953k = 1212
19010 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2766P]
where P = (Fo2 + 2Fc2)/3
3210 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H21NO2Sγ = 90.134 (1)°
Mr = 351.45V = 911.74 (6) Å3
Triclinic, P1Z = 2
a = 8.1882 (3) ÅMo Kα radiation
b = 10.4987 (4) ŵ = 0.19 mm1
c = 10.9594 (4) ÅT = 293 K
α = 104.554 (1)°0.35 × 0.30 × 0.25 mm
β = 90.983 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2790 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.953Rint = 0.020
19010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
3210 reflectionsΔρmin = 0.32 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1321 (2)0.62046 (16)0.33099 (15)0.0424 (4)
C20.0560 (3)0.6916 (2)0.43961 (18)0.0589 (5)
H20.02530.65090.47480.071*
C30.0976 (3)0.8203 (2)0.4965 (2)0.0759 (7)
H30.04340.86610.56790.091*
C40.2199 (4)0.8801 (2)0.4468 (2)0.0768 (7)
H40.24870.96700.48450.092*
C50.2994 (3)0.81250 (19)0.3421 (2)0.0614 (5)
H50.38360.85340.31020.074*
C60.2560 (2)0.68236 (17)0.28217 (16)0.0444 (4)
C70.2650 (2)0.45327 (17)0.09015 (16)0.0435 (4)
H7A0.17270.46870.03920.052*
H7B0.33730.39210.03560.052*
C80.20327 (18)0.39039 (15)0.19172 (15)0.0389 (4)
C90.07923 (18)0.48030 (16)0.27409 (15)0.0397 (4)
H90.04870.44080.34260.048*
C100.2119 (2)0.5208 (2)0.2449 (2)0.0627 (5)
H10A0.30020.49900.18440.094*
H10B0.20280.61480.27470.094*
H10C0.23280.48350.31460.094*
C110.0773 (2)0.3283 (2)0.1264 (2)0.0678 (6)
H11A0.11310.31470.03920.081*
H11B0.15690.28840.17020.081*
C120.0921 (2)0.26691 (17)0.13364 (18)0.0475 (4)
H120.08560.21660.19760.057*
C150.1522 (2)0.17354 (16)0.01548 (17)0.0480 (4)
C160.1305 (3)0.2006 (2)0.10163 (19)0.0648 (6)
H140.07420.27600.10670.078*
C170.1898 (3)0.1190 (2)0.2106 (2)0.0800 (7)
H150.17220.13870.28780.096*
C180.2745 (3)0.0093 (2)0.2041 (2)0.0790 (7)
H160.31810.04470.27670.095*
C190.2953 (3)0.02130 (19)0.0912 (2)0.0669 (6)
H170.35190.09720.08840.080*
C200.2343 (2)0.05785 (17)0.02048 (19)0.0520 (4)
C210.2546 (3)0.0131 (2)0.1378 (2)0.0727 (6)
H19A0.30500.07190.11870.109*
H19B0.14950.00750.17380.109*
H19C0.32230.07480.19690.109*
C130.3469 (2)0.34856 (16)0.26130 (16)0.0431 (4)
C140.4427 (3)0.3058 (3)0.4510 (2)0.0920 (9)
H21A0.46970.21730.40770.138*
H21B0.40480.30740.53380.138*
H21C0.53790.36090.45790.138*
N10.06074 (15)0.46851 (14)0.18600 (14)0.0455 (4)
O10.47275 (15)0.30893 (14)0.21352 (13)0.0592 (4)
O20.31503 (18)0.35417 (16)0.38084 (13)0.0709 (4)
S10.37215 (5)0.60605 (5)0.15186 (5)0.05272 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0469 (9)0.0392 (9)0.0106 (7)0.0039 (7)0.0146 (7)
C20.0667 (12)0.0659 (12)0.0451 (10)0.0183 (10)0.0044 (9)0.0155 (9)
C30.1017 (18)0.0676 (14)0.0490 (12)0.0260 (13)0.0033 (12)0.0027 (11)
C40.112 (2)0.0520 (12)0.0602 (14)0.0051 (13)0.0200 (13)0.0042 (10)
C50.0735 (13)0.0514 (11)0.0618 (12)0.0055 (10)0.0200 (10)0.0202 (10)
C60.0452 (9)0.0454 (9)0.0445 (9)0.0049 (7)0.0109 (7)0.0158 (7)
C70.0355 (8)0.0514 (10)0.0436 (9)0.0035 (7)0.0040 (7)0.0118 (7)
C80.0316 (8)0.0413 (8)0.0440 (9)0.0044 (6)0.0002 (6)0.0113 (7)
C90.0332 (8)0.0478 (9)0.0423 (9)0.0069 (7)0.0036 (6)0.0187 (7)
C100.0335 (9)0.0740 (13)0.0857 (15)0.0107 (9)0.0090 (9)0.0290 (11)
C110.0379 (10)0.0607 (12)0.0978 (16)0.0003 (9)0.0111 (10)0.0075 (11)
C120.0390 (9)0.0453 (9)0.0590 (11)0.0005 (7)0.0042 (8)0.0148 (8)
C150.0458 (9)0.0391 (9)0.0579 (11)0.0027 (7)0.0109 (8)0.0109 (8)
C160.0859 (15)0.0476 (11)0.0579 (12)0.0018 (10)0.0216 (11)0.0093 (9)
C170.114 (2)0.0635 (14)0.0567 (13)0.0073 (13)0.0173 (13)0.0061 (11)
C180.0939 (18)0.0674 (14)0.0630 (14)0.0041 (12)0.0038 (12)0.0067 (11)
C190.0627 (13)0.0398 (10)0.0896 (16)0.0022 (9)0.0081 (11)0.0011 (10)
C200.0483 (10)0.0390 (9)0.0684 (12)0.0046 (7)0.0104 (8)0.0138 (8)
C210.0836 (16)0.0532 (12)0.0876 (16)0.0003 (11)0.0119 (12)0.0305 (11)
C130.0373 (9)0.0401 (9)0.0509 (10)0.0046 (7)0.0028 (7)0.0100 (7)
C140.0858 (17)0.131 (2)0.0647 (14)0.0513 (16)0.0112 (12)0.0354 (15)
N10.0286 (7)0.0527 (8)0.0573 (9)0.0047 (6)0.0002 (6)0.0176 (7)
O10.0374 (7)0.0683 (9)0.0731 (9)0.0151 (6)0.0019 (6)0.0197 (7)
O20.0618 (9)0.1045 (12)0.0516 (8)0.0386 (8)0.0005 (6)0.0289 (8)
S10.0402 (3)0.0558 (3)0.0645 (3)0.00397 (19)0.0072 (2)0.0190 (2)
Geometric parameters (Å, º) top
C1—C61.389 (3)C11—C121.540 (2)
C1—C21.394 (2)C11—H11A0.9700
C1—C91.506 (2)C11—H11B0.9700
C2—C31.377 (3)C12—C151.505 (3)
C2—H20.9300C12—H120.9800
C3—C41.372 (4)C15—C161.391 (3)
C3—H30.9300C15—C201.402 (2)
C4—C51.364 (3)C16—C171.380 (3)
C4—H40.9300C16—H140.9300
C5—C61.401 (3)C17—C181.362 (4)
C5—H50.9300C17—H150.9300
C6—S11.7495 (18)C18—C191.362 (3)
C7—C81.522 (2)C18—H160.9300
C7—S11.7967 (17)C19—C201.397 (3)
C7—H7A0.9700C19—H170.9300
C7—H7B0.9700C20—C211.483 (3)
C8—C131.516 (2)C21—H19A0.9600
C8—C91.531 (2)C21—H19B0.9600
C8—C121.573 (2)C21—H19C0.9600
C9—N11.470 (2)C13—O11.192 (2)
C9—H90.9800C13—O21.327 (2)
C10—N11.450 (2)C14—O21.453 (2)
C10—H10A0.9600C14—H21A0.9600
C10—H10B0.9600C14—H21B0.9600
C10—H10C0.9600C14—H21C0.9600
C11—N11.458 (2)
C6—C1—C2117.86 (17)C12—C11—H11B110.3
C6—C1—C9123.26 (15)H11A—C11—H11B108.6
C2—C1—C9118.87 (16)C15—C12—C11117.07 (16)
C3—C2—C1122.0 (2)C15—C12—C8116.40 (14)
C3—C2—H2119.0C11—C12—C8102.78 (13)
C1—C2—H2119.0C15—C12—H12106.6
C4—C3—C2119.3 (2)C11—C12—H12106.6
C4—C3—H3120.3C8—C12—H12106.6
C2—C3—H3120.3C16—C15—C20118.02 (18)
C5—C4—C3120.2 (2)C16—C15—C12121.01 (16)
C5—C4—H4119.9C20—C15—C12120.96 (17)
C3—C4—H4119.9C17—C16—C15122.0 (2)
C4—C5—C6120.9 (2)C17—C16—H14119.0
C4—C5—H5119.5C15—C16—H14119.0
C6—C5—H5119.5C18—C17—C16119.5 (2)
C1—C6—C5119.60 (18)C18—C17—H15120.2
C1—C6—S1124.27 (13)C16—C17—H15120.2
C5—C6—S1116.06 (15)C19—C18—C17119.9 (2)
C8—C7—S1113.57 (12)C19—C18—H16120.1
C8—C7—H7A108.9C17—C18—H16120.1
S1—C7—H7A108.9C18—C19—C20122.1 (2)
C8—C7—H7B108.9C18—C19—H17119.0
S1—C7—H7B108.9C20—C19—H17119.0
H7A—C7—H7B107.7C19—C20—C15118.43 (19)
C13—C8—C7109.75 (13)C19—C20—C21118.35 (18)
C13—C8—C9115.80 (13)C15—C20—C21123.19 (19)
C7—C8—C9110.26 (13)C20—C21—H19A109.5
C13—C8—C12109.12 (13)C20—C21—H19B109.5
C7—C8—C12111.39 (14)H19A—C21—H19B109.5
C9—C8—C12100.21 (12)C20—C21—H19C109.5
N1—C9—C1113.43 (13)H19A—C21—H19C109.5
N1—C9—C8101.16 (13)H19B—C21—H19C109.5
C1—C9—C8116.72 (13)O1—C13—O2122.96 (16)
N1—C9—H9108.4O1—C13—C8124.25 (16)
C1—C9—H9108.4O2—C13—C8112.71 (14)
C8—C9—H9108.4O2—C14—H21A109.5
N1—C10—H10A109.5O2—C14—H21B109.5
N1—C10—H10B109.5H21A—C14—H21B109.5
H10A—C10—H10B109.5O2—C14—H21C109.5
N1—C10—H10C109.5H21A—C14—H21C109.5
H10A—C10—H10C109.5H21B—C14—H21C109.5
H10B—C10—H10C109.5C10—N1—C11110.79 (15)
N1—C11—C12106.89 (14)C10—N1—C9114.21 (15)
N1—C11—H11A110.3C11—N1—C9105.48 (13)
C12—C11—H11A110.3C13—O2—C14115.82 (16)
N1—C11—H11B110.3C6—S1—C7102.79 (8)
C6—C1—C2—C31.6 (3)C11—C12—C15—C1641.8 (3)
C9—C1—C2—C3179.75 (17)C8—C12—C15—C1680.2 (2)
C1—C2—C3—C41.4 (3)C11—C12—C15—C20139.27 (18)
C2—C3—C4—C50.1 (3)C8—C12—C15—C2098.65 (19)
C3—C4—C5—C61.3 (3)C20—C15—C16—C171.4 (3)
C2—C1—C6—C50.4 (2)C12—C15—C16—C17177.5 (2)
C9—C1—C6—C5178.98 (15)C15—C16—C17—C180.9 (4)
C2—C1—C6—S1176.50 (12)C16—C17—C18—C192.1 (4)
C9—C1—C6—S12.1 (2)C17—C18—C19—C201.0 (4)
C4—C5—C6—C11.0 (3)C18—C19—C20—C151.3 (3)
C4—C5—C6—S1178.16 (16)C18—C19—C20—C21176.6 (2)
S1—C7—C8—C1366.15 (15)C16—C15—C20—C192.5 (3)
S1—C7—C8—C962.56 (15)C12—C15—C20—C19176.46 (17)
S1—C7—C8—C12172.89 (10)C16—C15—C20—C21175.41 (19)
C6—C1—C9—N194.84 (18)C12—C15—C20—C215.7 (3)
C2—C1—C9—N186.56 (18)C7—C8—C13—O134.2 (2)
C6—C1—C9—C822.2 (2)C9—C8—C13—O1159.81 (16)
C2—C1—C9—C8156.42 (15)C12—C8—C13—O188.1 (2)
C13—C8—C9—N1163.87 (13)C7—C8—C13—O2149.08 (15)
C7—C8—C9—N170.79 (15)C9—C8—C13—O223.5 (2)
C12—C8—C9—N146.69 (14)C12—C8—C13—O288.61 (17)
C13—C8—C9—C172.56 (18)C12—C11—N1—C10149.04 (17)
C7—C8—C9—C152.78 (18)C12—C11—N1—C925.0 (2)
C12—C8—C9—C1170.27 (13)C1—C9—N1—C1066.85 (19)
N1—C11—C12—C15133.89 (17)C8—C9—N1—C10167.34 (14)
N1—C11—C12—C85.0 (2)C1—C9—N1—C11171.26 (15)
C13—C8—C12—C1577.38 (18)C8—C9—N1—C1145.45 (17)
C7—C8—C12—C1543.94 (19)O1—C13—O2—C141.3 (3)
C9—C8—C12—C15160.58 (14)C8—C13—O2—C14175.43 (19)
C13—C8—C12—C11153.30 (16)C1—C6—S1—C710.31 (16)
C7—C8—C12—C1185.38 (18)C5—C6—S1—C7172.73 (13)
C9—C8—C12—C1131.27 (17)C8—C7—S1—C640.14 (13)
(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate top
Crystal data top
C20H21NO3SF(000) = 1504
Mr = 355.44Dx = 1.320 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2536 reflections
a = 11.2629 (11) Åθ = 1.7–25.0°
b = 13.2117 (11) ŵ = 0.20 mm1
c = 24.041 (3) ÅT = 293 K
V = 3577.3 (6) Å3Block, colourless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube2536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.932, Tmax = 0.951k = 1515
37913 measured reflectionsl = 2528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0267P)2 + 3.6376P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H21NO3SV = 3577.3 (6) Å3
Mr = 355.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2629 (11) ŵ = 0.20 mm1
b = 13.2117 (11) ÅT = 293 K
c = 24.041 (3) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2536 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.951Rint = 0.033
37913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.12Δρmax = 0.22 e Å3
3151 reflectionsΔρmin = 0.22 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.1021 (2)0.96898 (18)0.15232 (10)0.0414 (6)
C50.1663 (3)1.0558 (2)0.16587 (11)0.0554 (8)
H20.24881.05490.16440.067*
C40.1082 (4)1.1428 (2)0.18133 (13)0.0682 (9)
H30.15161.20010.19080.082*
C30.0133 (4)1.1458 (2)0.18285 (13)0.0661 (9)
H40.05241.20510.19280.079*
C20.0774 (3)1.0602 (2)0.16959 (11)0.0532 (7)
H50.15991.06270.17040.064*
C10.0216 (2)0.96998 (17)0.15496 (9)0.0387 (6)
C90.0973 (2)0.87834 (17)0.14347 (9)0.0349 (5)
H70.17010.89940.12440.042*
C80.0406 (2)0.79039 (17)0.11168 (9)0.0339 (5)
C70.0803 (2)0.76400 (18)0.13613 (10)0.0396 (6)
H9A0.11080.70380.11790.048*
H9B0.07130.74890.17540.048*
C120.0283 (2)0.80429 (18)0.04923 (10)0.0402 (6)
C130.1085 (4)0.8784 (3)0.03165 (13)0.1103 (17)
H11A0.03510.90790.04390.165*
H11B0.17340.92110.04250.165*
H11C0.11790.81280.04830.165*
C110.1353 (2)0.70812 (18)0.12471 (10)0.0405 (6)
H120.20580.72090.10190.049*
C150.0373 (2)0.5505 (2)0.15990 (12)0.0485 (7)
H130.02210.58460.19300.058*
C160.0011 (3)0.4518 (2)0.15331 (15)0.0626 (9)
H140.04270.41970.18170.075*
C170.0226 (3)0.4015 (2)0.10480 (16)0.0698 (10)
H150.00410.33550.10000.084*
C180.0850 (3)0.4478 (2)0.06366 (14)0.0638 (8)
H160.10150.41220.03120.077*
C190.1248 (2)0.5466 (2)0.06874 (12)0.0483 (7)
C200.1961 (3)0.5916 (3)0.02205 (13)0.0751 (10)
H18A0.19850.54500.00860.113*
H18B0.16000.65380.01020.113*
H18C0.27550.60480.03470.113*
C140.0983 (2)0.59892 (18)0.11741 (10)0.0382 (6)
C100.2337 (3)0.8711 (2)0.22232 (12)0.0608 (8)
H20A0.29660.87370.19540.091*
H20B0.21670.93820.23530.091*
H20C0.25760.82950.25310.091*
N10.12874 (18)0.82867 (15)0.19689 (8)0.0399 (5)
O30.1645 (2)0.72567 (14)0.18158 (8)0.0649 (6)
O10.04071 (18)0.75906 (16)0.02133 (8)0.0600 (5)
O20.1069 (2)0.86808 (17)0.02891 (7)0.0757 (7)
S10.18494 (6)0.86516 (5)0.12793 (3)0.04623 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0534 (15)0.0403 (14)0.0303 (13)0.0046 (12)0.0061 (11)0.0067 (11)
C50.0688 (19)0.0493 (17)0.0482 (16)0.0181 (15)0.0132 (14)0.0071 (13)
C40.105 (3)0.0420 (18)0.0574 (19)0.0220 (18)0.0143 (19)0.0011 (14)
C30.105 (3)0.0359 (16)0.0576 (19)0.0024 (17)0.0008 (18)0.0053 (14)
C20.0725 (19)0.0397 (15)0.0472 (16)0.0070 (14)0.0027 (14)0.0022 (12)
C10.0539 (15)0.0339 (13)0.0282 (12)0.0021 (11)0.0056 (11)0.0023 (10)
C90.0377 (12)0.0378 (13)0.0293 (12)0.0064 (10)0.0032 (10)0.0017 (10)
C80.0361 (12)0.0333 (12)0.0325 (12)0.0029 (10)0.0010 (10)0.0002 (10)
C70.0386 (13)0.0366 (13)0.0436 (14)0.0013 (11)0.0005 (11)0.0016 (11)
C120.0456 (14)0.0384 (14)0.0364 (13)0.0014 (12)0.0023 (12)0.0044 (11)
C130.171 (4)0.129 (3)0.0311 (17)0.072 (3)0.005 (2)0.0142 (19)
C110.0380 (13)0.0393 (13)0.0441 (14)0.0005 (11)0.0040 (11)0.0018 (11)
C150.0466 (15)0.0459 (16)0.0531 (17)0.0084 (13)0.0029 (13)0.0046 (13)
C160.0490 (16)0.0498 (18)0.089 (2)0.0048 (14)0.0027 (16)0.0217 (17)
C170.067 (2)0.0392 (16)0.103 (3)0.0065 (15)0.025 (2)0.0020 (18)
C180.072 (2)0.0492 (17)0.070 (2)0.0109 (16)0.0155 (17)0.0181 (16)
C190.0443 (15)0.0470 (15)0.0536 (17)0.0096 (12)0.0025 (13)0.0044 (13)
C200.087 (2)0.074 (2)0.064 (2)0.0162 (19)0.0271 (19)0.0084 (17)
C140.0329 (12)0.0365 (13)0.0451 (14)0.0043 (10)0.0030 (11)0.0009 (11)
C100.0687 (19)0.0627 (19)0.0510 (16)0.0175 (16)0.0203 (15)0.0000 (14)
N10.0433 (11)0.0410 (12)0.0355 (11)0.0055 (9)0.0023 (9)0.0018 (9)
O30.0916 (16)0.0424 (11)0.0607 (13)0.0102 (10)0.0396 (12)0.0064 (9)
O10.0646 (12)0.0726 (13)0.0428 (11)0.0123 (11)0.0081 (10)0.0140 (10)
O20.1102 (18)0.0868 (16)0.0301 (10)0.0516 (14)0.0040 (11)0.0056 (10)
S10.0383 (3)0.0485 (4)0.0519 (4)0.0047 (3)0.0019 (3)0.0028 (3)
Geometric parameters (Å, º) top
C6—C51.395 (4)C13—H11B0.9600
C6—C11.395 (4)C13—H11C0.9600
C6—S11.759 (3)C11—O31.425 (3)
C5—C41.374 (4)C11—C141.512 (3)
C5—H20.9300C11—H120.9800
C4—C31.369 (5)C15—C161.383 (4)
C4—H30.9300C15—C141.387 (4)
C3—C21.379 (4)C15—H130.9300
C3—H40.9300C16—C171.368 (5)
C2—C11.392 (4)C16—H140.9300
C2—H50.9300C17—C181.359 (5)
C1—C91.506 (3)C17—H150.9300
C9—N11.485 (3)C18—C191.385 (4)
C9—C81.531 (3)C18—H160.9300
C9—H70.9800C19—C141.392 (4)
C8—C121.519 (3)C19—C201.503 (4)
C8—C71.523 (3)C20—H18A0.9600
C8—C111.555 (3)C20—H18B0.9600
C7—S11.793 (2)C20—H18C0.9600
C7—H9A0.9700C10—N11.444 (3)
C7—H9B0.9700C10—H20A0.9600
C12—O11.188 (3)C10—H20B0.9600
C12—O21.317 (3)C10—H20C0.9600
C13—O21.462 (3)N1—O31.466 (3)
C13—H11A0.9600
C5—C6—C1119.9 (3)H11B—C13—H11C109.5
C5—C6—S1116.4 (2)O3—C11—C14109.3 (2)
C1—C6—S1123.51 (19)O3—C11—C8103.74 (19)
C4—C5—C6120.3 (3)C14—C11—C8117.02 (19)
C4—C5—H2119.9O3—C11—H12108.8
C6—C5—H2119.9C14—C11—H12108.8
C3—C4—C5120.5 (3)C8—C11—H12108.8
C3—C4—H3119.8C16—C15—C14120.4 (3)
C5—C4—H3119.8C16—C15—H13119.8
C4—C3—C2119.5 (3)C14—C15—H13119.8
C4—C3—H4120.2C17—C16—C15119.6 (3)
C2—C3—H4120.2C17—C16—H14120.2
C3—C2—C1121.6 (3)C15—C16—H14120.2
C3—C2—H5119.2C18—C17—C16120.2 (3)
C1—C2—H5119.2C18—C17—H15119.9
C2—C1—C6118.1 (2)C16—C17—H15119.9
C2—C1—C9118.6 (2)C17—C18—C19121.8 (3)
C6—C1—C9123.3 (2)C17—C18—H16119.1
N1—C9—C1109.36 (18)C19—C18—H16119.1
N1—C9—C8101.30 (18)C18—C19—C14118.2 (3)
C1—C9—C8117.7 (2)C18—C19—C20118.7 (3)
N1—C9—H7109.3C14—C19—C20123.1 (3)
C1—C9—H7109.3C19—C20—H18A109.5
C8—C9—H7109.3C19—C20—H18B109.5
C12—C8—C7109.1 (2)H18A—C20—H18B109.5
C12—C8—C9116.09 (19)C19—C20—H18C109.5
C7—C8—C9110.75 (19)H18A—C20—H18C109.5
C12—C8—C11110.23 (19)H18B—C20—H18C109.5
C7—C8—C11112.07 (19)C15—C14—C19119.7 (2)
C9—C8—C1198.24 (18)C15—C14—C11119.4 (2)
C8—C7—S1111.98 (16)C19—C14—C11120.8 (2)
C8—C7—H9A109.2N1—C10—H20A109.5
S1—C7—H9A109.2N1—C10—H20B109.5
C8—C7—H9B109.2H20A—C10—H20B109.5
S1—C7—H9B109.2N1—C10—H20C109.5
H9A—C7—H9B107.9H20A—C10—H20C109.5
O1—C12—O2123.6 (2)H20B—C10—H20C109.5
O1—C12—C8123.8 (2)C10—N1—O3104.0 (2)
O2—C12—C8112.5 (2)C10—N1—C9112.9 (2)
O2—C13—H11A109.5O3—N1—C9104.98 (17)
O2—C13—H11B109.5C11—O3—N1109.19 (17)
H11A—C13—H11B109.5C12—O2—C13115.9 (2)
O2—C13—H11C109.5C6—S1—C7101.32 (12)
H11A—C13—H11C109.5
C1—C6—C5—C40.6 (4)C9—C8—C11—O340.3 (2)
S1—C6—C5—C4175.2 (2)C12—C8—C11—C1477.5 (3)
C6—C5—C4—C30.9 (5)C7—C8—C11—C1444.3 (3)
C5—C4—C3—C21.0 (5)C9—C8—C11—C14160.7 (2)
C4—C3—C2—C10.5 (5)C14—C15—C16—C170.7 (4)
C3—C2—C1—C62.0 (4)C15—C16—C17—C181.0 (5)
C3—C2—C1—C9177.3 (2)C16—C17—C18—C191.1 (5)
C5—C6—C1—C22.0 (4)C17—C18—C19—C140.6 (4)
S1—C6—C1—C2173.48 (18)C17—C18—C19—C20178.4 (3)
C5—C6—C1—C9177.2 (2)C16—C15—C14—C192.3 (4)
S1—C6—C1—C97.3 (3)C16—C15—C14—C11177.7 (2)
C2—C1—C9—N182.6 (3)C18—C19—C14—C152.2 (4)
C6—C1—C9—N196.7 (3)C20—C19—C14—C15176.6 (3)
C2—C1—C9—C8162.6 (2)C18—C19—C14—C11177.8 (2)
C6—C1—C9—C818.1 (3)C20—C19—C14—C113.3 (4)
N1—C9—C8—C12163.35 (19)O3—C11—C14—C1534.3 (3)
C1—C9—C8—C1277.5 (3)C8—C11—C14—C1583.1 (3)
N1—C9—C8—C771.5 (2)O3—C11—C14—C19145.6 (2)
C1—C9—C8—C747.7 (3)C8—C11—C14—C1996.9 (3)
N1—C9—C8—C1146.0 (2)C1—C9—N1—C1086.3 (3)
C1—C9—C8—C11165.10 (19)C8—C9—N1—C10148.7 (2)
C12—C8—C7—S164.2 (2)C1—C9—N1—O3161.01 (19)
C9—C8—C7—S164.8 (2)C8—C9—N1—O336.0 (2)
C11—C8—C7—S1173.41 (16)C14—C11—O3—N1145.05 (19)
C7—C8—C12—O132.1 (3)C8—C11—O3—N119.5 (2)
C9—C8—C12—O1158.1 (2)C10—N1—O3—C11129.1 (2)
C11—C8—C12—O191.4 (3)C9—N1—O3—C1110.3 (2)
C7—C8—C12—O2151.3 (2)O1—C12—O2—C132.2 (5)
C9—C8—C12—O225.3 (3)C8—C12—O2—C13174.4 (3)
C11—C8—C12—O285.2 (3)C5—C6—S1—C7163.25 (19)
C12—C8—C11—O3162.1 (2)C1—C6—S1—C721.1 (2)
C7—C8—C11—O376.1 (2)C8—C7—S1—C648.96 (19)
Hydrogen-bond geometry (Å, º) for (I) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg3i0.932.913.695 (2)143
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC23H27NO2SC21H21NO2SC20H21NO3S
Mr381.52351.45355.44
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Orthorhombic, Pbca
Temperature (K)293293293
a, b, c (Å)10.7330 (3), 7.7568 (2), 24.9436 (7)8.1882 (3), 10.4987 (4), 10.9594 (4)11.2629 (11), 13.2117 (11), 24.041 (3)
α, β, γ (°)90, 98.485 (1), 90104.554 (1), 90.983 (1), 90.134 (1)90, 90, 90
V3)2053.92 (10)911.74 (6)3577.3 (6)
Z428
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.180.190.20
Crystal size (mm)0.35 × 0.30 × 0.250.35 × 0.30 × 0.250.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Bruker SMART APEXII CCD
diffractometer
Bruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.941, 0.9580.935, 0.9530.932, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
16824, 3616, 3170 19010, 3210, 2790 37913, 3151, 2536
Rint0.0190.0200.033
(sin θ/λ)max1)0.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.06 0.038, 0.115, 1.07 0.046, 0.111, 1.12
No. of reflections361632103151
No. of parameters272229229
No. of restraints10700
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.270.26, 0.320.22, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAlmerico, A. M., Diana, P., Barraja, P., Dattolo, G., Mingoia, F., Loi, A. G., Scintu, F., Milia, C., Puddu, I. & La Colla, P. (1998). Farmaco, 53, 33–40.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. & Koob, G. F. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499–510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181–190.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHolub, J. M., O'Toole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135–157.  CrossRef CAS Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.  CrossRef CAS Web of Science Google Scholar
First citationKrowicki, K., Balzarini, J., De Clercq, E., Newman, R. A. & Lown, J. W. (1988). J. Med. Chem. 31, 341–345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuchowski, J. M., Unger, S. H., Ackrell, J., Cheung, P., Cook, J., Gallegra, P., Halpern, O., Koehler, R. & Kluge, A. F. (1985). J. Med. Chem. 28, 1037–1049.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToja, E., Depaoli, A., Tuan, G. & Kettenring, J. (1987). Synthesis, pp. 272–274.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 574-577
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds