organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o150-o151

Crystal structure of 15-(naphthalen-1-yl)-7,7a,8,9,10,11-hexa­hydro-6a,12a-(methano­ep­oxy­methano)­indolizino[2,3-c]quinoline-6,13(5H)-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Queen Mary's College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2015; accepted 30 January 2015; online 7 February 2015)

In the title compound, C27H24N2O3, the dihedral angle between the mean planes of the di­hydro­furan and 3,4-di­hydro­quinoline ring systems is 70.65 (9)°. The di­hydro­furan ring adopts an envelope conformation with the C atom adjacent to the methyl­ene C atom of the pyrrolidine ring as the flap. The five-membered pyrrolidine ring adopts a twist conformation on the N—C(tetra­substituted) bond. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via pairs of C—H⋯O hydrogen bonds, forming ribbons enclosing R22(12) ring motifs lying in a plane parallel to (01-1).

1. Related literature

For general background to quinoline and pyrrolidine derivatives, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For a related structure, see: Govindan et al. (2014[Govindan, E., Yuvaraj, P. S., Reddy, B. S. R., Bangaru Sudarsan Alwar, S. & SubbiahPandi, A. (2014). Acta Cryst. E70, o168.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C27H24N2O3

  • Mr = 424.49

  • Triclinic, [P \overline 1]

  • a = 9.4184 (3) Å

  • b = 9.8804 (4) Å

  • c = 12.5401 (5) Å

  • α = 95.341 (2)°

  • β = 107.535 (2)°

  • γ = 99.940 (2)°

  • V = 1082.87 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.975

  • 28346 measured reflections

  • 3817 independent reflections

  • 3007 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.157

  • S = 0.87

  • 3817 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.94 (3) 1.92 (3) 2.8413 (19) 167 (2)
C24—H24⋯O1ii 0.93 2.59 3.268 (2) 131
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

A large number of natural products contain the quinoline and indole heterocycles, and are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The furan ring system has an envelope conformation with atom C14 as the flap. The quinoline ring adopts a planar conformation with a maximum deviation of 0.326 (2) Å for the spiro C atom, C14. The five-membered pyrrolidine ring (N2/C13–C16) is twisted on N2—C13. The sum of the bond angles around atom N2 of the o­cta­hydro­indolizine ring is 338.61° and for N1 of the quinoline ring it is 359.71°, confirming the sp3 and sp2 hybridization, respectively.

In the crystal, molecules are linked by two pairs of N1—H1A···O3, C24—H24···O1 hydrogen bonds (Table 1), forming two inversion dimers and containing two R22(8), R22(12) ring motifs, respectively; see Fig. 2. In the crystal structure, inter­molecular C24—H24···O1, N1—H1A···O3 hydrogen bonds link the molecules into ribbons lying parallel to the (011; Fig. 3 and Table 1.

Synthesis and crystallization top

A mixture of methyl 2-((hydroxyl(naphthalene-2-yl) methyl) acrylate (1 mmol), isatin (1.1 mmol) and pipecolic acid (1.1 mmol) was placed in a round bottom flask and melted at 180°C until completion of the reaction was evidenced by TLC analysis. After completion of the reaction, the crude product was washed with 5 ml of ethyl­acetate and hexane mixture (1:4 ratio) which successfully provided the pure product as colorless solid. The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93-0.98 Å with Uiso (H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Related literature top

For general background to quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For a related structure, see: Govindan et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. The molecular packing viewed along the a axis. Dashed lines shows the intermolecular C—H···O and N—H···O hydrogen bonds (see Table 1 for details).
15-(Naphthalen-1-yl)-7,7a,8,9,10,11-hexahydro-6a,12a-(methanoepoxymethano)indolizino[2,3-c]quinoline-6,13(5H)-dione top
Crystal data top
C27H24N2O3Z = 2
Mr = 424.49F(000) = 448
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4184 (3) ÅCell parameters from 3817 reflections
b = 9.8804 (4) Åθ = 1.7–25.0°
c = 12.5401 (5) ŵ = 0.09 mm1
α = 95.341 (2)°T = 293 K
β = 107.535 (2)°Block, colourless
γ = 99.940 (2)°0.35 × 0.30 × 0.30 mm
V = 1082.87 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3817 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.971, Tmax = 0.975k = 1111
28346 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.6313P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C27H24N2O3γ = 99.940 (2)°
Mr = 424.49V = 1082.87 (7) Å3
Triclinic, P1Z = 2
a = 9.4184 (3) ÅMo Kα radiation
b = 9.8804 (4) ŵ = 0.09 mm1
c = 12.5401 (5) ÅT = 293 K
α = 95.341 (2)°0.35 × 0.30 × 0.30 mm
β = 107.535 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3007 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.023
28346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.17 e Å3
3817 reflectionsΔρmin = 0.21 e Å3
293 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03845 (17)0.39247 (17)0.35495 (13)0.0396 (4)
O30.17604 (14)0.48033 (14)0.50098 (11)0.0464 (4)
N20.20514 (17)0.37970 (17)0.19482 (12)0.0406 (4)
O20.20942 (17)0.07713 (15)0.31755 (11)0.0536 (4)
C130.12431 (19)0.26604 (18)0.23296 (13)0.0340 (4)
O10.19536 (18)0.07035 (17)0.13733 (12)0.0619 (5)
C220.12077 (19)0.30793 (18)0.25108 (14)0.0357 (4)
C210.10973 (19)0.40178 (18)0.41158 (14)0.0351 (4)
C240.1323 (2)0.1598 (2)0.08548 (15)0.0422 (5)
H240.08380.11490.04270.051*
C110.1637 (2)0.16082 (19)0.39818 (15)0.0427 (5)
H110.05410.12840.38260.051*
C140.18956 (19)0.30545 (18)0.36204 (13)0.0346 (4)
C230.04632 (19)0.24314 (18)0.18736 (14)0.0338 (4)
C160.3652 (2)0.3986 (2)0.26462 (16)0.0446 (5)
H160.40820.32450.23700.054*
C250.2888 (2)0.1423 (2)0.04654 (17)0.0494 (5)
H250.34530.08700.02250.059*
C260.3607 (2)0.2069 (2)0.11008 (18)0.0528 (5)
H260.46620.19480.08410.063*
C150.3561 (2)0.3777 (2)0.38191 (15)0.0445 (5)
H15A0.38230.46630.43100.053*
H15B0.42520.31990.41640.053*
C270.2778 (2)0.2894 (2)0.21180 (18)0.0482 (5)
H270.32740.33290.25440.058*
C170.1838 (2)0.3772 (3)0.07473 (16)0.0536 (5)
H17A0.07620.36270.03250.064*
H17B0.22340.30160.04720.064*
C120.1767 (2)0.1274 (2)0.21866 (15)0.0434 (5)
C10.1724 (3)0.1607 (2)0.60132 (17)0.0569 (6)
C190.4345 (3)0.5443 (3)0.1301 (2)0.0723 (7)
H19A0.48380.63610.12310.087*
H19B0.48420.47710.10270.087*
C180.2675 (3)0.5145 (3)0.0586 (2)0.0695 (7)
H18A0.22090.58850.07960.083*
H18B0.25920.51230.02060.083*
C20.0310 (3)0.1993 (3)0.5812 (2)0.0656 (7)
H20.02320.21010.50820.079*
C200.4522 (3)0.5368 (3)0.2539 (2)0.0614 (6)
H20A0.55910.54820.29700.074*
H20B0.41390.61140.28430.074*
C100.2439 (3)0.1421 (2)0.51715 (17)0.0552 (6)
C60.2489 (4)0.1394 (3)0.71308 (19)0.0754 (8)
C50.1817 (5)0.1622 (3)0.7981 (2)0.0969 (12)
H50.23100.14860.87140.116*
C30.0285 (4)0.2215 (3)0.6662 (2)0.0888 (9)
H30.12130.24910.65100.107*
C90.3821 (3)0.1050 (3)0.5444 (2)0.0792 (9)
H90.42890.09490.48950.095*
C70.3883 (5)0.0989 (3)0.7356 (2)0.0964 (12)
H70.43700.08300.80830.116*
C80.4544 (4)0.0820 (3)0.6556 (3)0.1010 (12)
H80.54770.05520.67330.121*
C40.0487 (5)0.2030 (4)0.7754 (3)0.1065 (13)
H40.00780.21910.83310.128*
H1A0.091 (3)0.440 (2)0.393 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (8)0.0502 (9)0.0332 (8)0.0164 (7)0.0089 (6)0.0094 (7)
O30.0422 (7)0.0548 (8)0.0349 (7)0.0115 (6)0.0082 (6)0.0179 (6)
N20.0341 (8)0.0564 (10)0.0288 (8)0.0092 (7)0.0095 (6)0.0019 (7)
O20.0661 (9)0.0510 (8)0.0385 (8)0.0316 (7)0.0030 (7)0.0080 (6)
C130.0320 (9)0.0450 (10)0.0234 (8)0.0132 (7)0.0067 (7)0.0056 (7)
O10.0664 (10)0.0727 (10)0.0443 (8)0.0301 (8)0.0147 (7)0.0206 (7)
C220.0324 (9)0.0414 (9)0.0305 (9)0.0107 (7)0.0068 (7)0.0019 (7)
C210.0357 (9)0.0398 (9)0.0282 (9)0.0101 (7)0.0097 (7)0.0048 (7)
C240.0429 (10)0.0480 (11)0.0297 (9)0.0134 (8)0.0042 (8)0.0048 (8)
C110.0524 (11)0.0426 (10)0.0297 (9)0.0186 (8)0.0064 (8)0.0029 (7)
C140.0318 (9)0.0452 (10)0.0233 (8)0.0139 (7)0.0039 (7)0.0064 (7)
C230.0330 (9)0.0387 (9)0.0265 (8)0.0104 (7)0.0052 (7)0.0006 (7)
C160.0314 (9)0.0609 (12)0.0380 (10)0.0119 (8)0.0093 (8)0.0076 (9)
C250.0440 (11)0.0504 (11)0.0382 (10)0.0071 (9)0.0044 (8)0.0053 (9)
C260.0317 (10)0.0616 (13)0.0539 (12)0.0101 (9)0.0007 (9)0.0017 (10)
C150.0316 (9)0.0626 (12)0.0345 (10)0.0145 (8)0.0052 (8)0.0068 (8)
C270.0340 (10)0.0602 (12)0.0491 (11)0.0155 (9)0.0113 (8)0.0013 (9)
C170.0490 (11)0.0771 (15)0.0322 (10)0.0095 (10)0.0128 (9)0.0046 (10)
C120.0402 (10)0.0516 (11)0.0327 (10)0.0176 (8)0.0040 (8)0.0111 (8)
C10.0829 (16)0.0431 (11)0.0329 (11)0.0028 (11)0.0078 (10)0.0049 (8)
C190.0646 (15)0.0815 (17)0.0676 (16)0.0036 (13)0.0276 (13)0.0107 (13)
C180.0693 (15)0.0873 (18)0.0520 (14)0.0087 (13)0.0214 (12)0.0196 (13)
C20.0790 (17)0.0698 (15)0.0427 (12)0.0030 (13)0.0229 (11)0.0061 (11)
C200.0452 (12)0.0704 (15)0.0592 (14)0.0003 (10)0.0137 (10)0.0018 (11)
C100.0737 (15)0.0474 (11)0.0347 (11)0.0220 (10)0.0004 (10)0.0013 (9)
C60.116 (2)0.0507 (13)0.0370 (12)0.0002 (14)0.0025 (13)0.0049 (10)
C50.149 (3)0.082 (2)0.0337 (14)0.018 (2)0.0167 (17)0.0072 (12)
C30.095 (2)0.105 (2)0.0605 (16)0.0118 (17)0.0393 (16)0.0013 (15)
C90.096 (2)0.0807 (18)0.0517 (14)0.0534 (16)0.0060 (13)0.0000 (12)
C70.147 (3)0.0656 (17)0.0456 (15)0.0313 (19)0.0193 (18)0.0083 (13)
C80.131 (3)0.090 (2)0.0613 (18)0.066 (2)0.0203 (18)0.0001 (15)
C40.132 (3)0.123 (3)0.0484 (17)0.026 (3)0.0393 (19)0.0020 (17)
Geometric parameters (Å, º) top
N1—C211.344 (2)C15—H15B0.9700
N1—C221.400 (2)C27—H270.9300
N1—H1A0.94 (3)C17—C181.510 (3)
O3—C211.224 (2)C17—H17A0.9700
N2—C131.447 (2)C17—H17B0.9700
N2—C171.455 (2)C1—C21.405 (4)
N2—C161.466 (2)C1—C61.423 (3)
O2—C121.348 (2)C1—C101.427 (3)
O2—C111.456 (2)C19—C181.519 (4)
C13—C231.503 (2)C19—C201.521 (3)
C13—C141.533 (2)C19—H19A0.9700
C13—C121.547 (2)C19—H19B0.9700
O1—C121.193 (2)C18—H18A0.9700
C22—C271.384 (3)C18—H18B0.9700
C22—C231.392 (2)C2—C31.363 (4)
C21—C141.508 (2)C2—H20.9300
C24—C251.380 (3)C20—H20A0.9700
C24—C231.384 (2)C20—H20B0.9700
C24—H240.9300C10—C91.365 (4)
C11—C101.500 (3)C6—C71.394 (5)
C11—C141.541 (3)C6—C51.414 (5)
C11—H110.9800C5—C41.340 (5)
C14—C151.541 (3)C5—H50.9300
C16—C201.506 (3)C3—C41.390 (5)
C16—C151.530 (3)C3—H30.9300
C16—H160.9800C9—C81.414 (4)
C25—C261.371 (3)C9—H90.9300
C25—H250.9300C7—C81.343 (5)
C26—C271.374 (3)C7—H70.9300
C26—H260.9300C8—H80.9300
C15—H15A0.9700C4—H40.9300
C21—N1—C22125.41 (15)N2—C17—C18108.53 (18)
C21—N1—H1A115.6 (14)N2—C17—H17A110.0
C22—N1—H1A118.7 (15)C18—C17—H17A110.0
C13—N2—C17120.05 (15)N2—C17—H17B110.0
C13—N2—C16105.17 (14)C18—C17—H17B110.0
C17—N2—C16113.39 (15)H17A—C17—H17B108.4
C12—O2—C11109.27 (14)O1—C12—O2121.41 (18)
N2—C13—C23114.84 (14)O1—C12—C13128.67 (19)
N2—C13—C14102.34 (14)O2—C12—C13109.83 (14)
C23—C13—C14113.67 (14)C2—C1—C6117.6 (2)
N2—C13—C12114.32 (14)C2—C1—C10124.17 (19)
C23—C13—C12110.67 (14)C6—C1—C10118.2 (3)
C14—C13—C1299.78 (13)C18—C19—C20111.0 (2)
C27—C22—C23119.98 (16)C18—C19—H19A109.4
C27—C22—N1119.28 (16)C20—C19—H19A109.4
C23—C22—N1120.73 (15)C18—C19—H19B109.4
O3—C21—N1122.18 (16)C20—C19—H19B109.4
O3—C21—C14121.21 (15)H19A—C19—H19B108.0
N1—C21—C14116.56 (14)C17—C18—C19111.0 (2)
C25—C24—C23120.89 (18)C17—C18—H18A109.4
C25—C24—H24119.6C19—C18—H18A109.4
C23—C24—H24119.6C17—C18—H18B109.4
O2—C11—C10110.77 (15)C19—C18—H18B109.4
O2—C11—C14101.78 (15)H18A—C18—H18B108.0
C10—C11—C14119.79 (16)C3—C2—C1121.5 (3)
O2—C11—H11108.0C3—C2—H2119.2
C10—C11—H11108.0C1—C2—H2119.2
C14—C11—H11108.0C16—C20—C19109.81 (19)
C21—C14—C13114.24 (14)C16—C20—H20A109.7
C21—C14—C11111.47 (15)C19—C20—H20A109.7
C13—C14—C11100.47 (14)C16—C20—H20B109.7
C21—C14—C15110.41 (14)C19—C20—H20B109.7
C13—C14—C15103.12 (14)H20A—C20—H20B108.2
C11—C14—C15116.61 (15)C9—C10—C1120.2 (2)
C24—C23—C22118.81 (16)C9—C10—C11120.6 (2)
C24—C23—C13122.87 (16)C1—C10—C11119.1 (2)
C22—C23—C13118.32 (14)C7—C6—C5122.1 (3)
N2—C16—C20109.22 (17)C7—C6—C1119.1 (3)
N2—C16—C15103.46 (14)C5—C6—C1118.8 (3)
C20—C16—C15117.31 (17)C4—C5—C6121.4 (3)
N2—C16—H16108.8C4—C5—H5119.3
C20—C16—H16108.8C6—C5—H5119.3
C15—C16—H16108.8C2—C3—C4120.3 (4)
C26—C25—C24119.69 (17)C2—C3—H3119.9
C26—C25—H25120.2C4—C3—H3119.9
C24—C25—H25120.2C10—C9—C8120.5 (3)
C25—C26—C27120.44 (18)C10—C9—H9119.8
C25—C26—H26119.8C8—C9—H9119.8
C27—C26—H26119.8C8—C7—C6122.0 (2)
C16—C15—C14105.51 (14)C8—C7—H7119.0
C16—C15—H15A110.6C6—C7—H7119.0
C14—C15—H15A110.6C7—C8—C9119.9 (3)
C16—C15—H15B110.6C7—C8—H8120.0
C14—C15—H15B110.6C9—C8—H8120.0
H15A—C15—H15B108.8C5—C4—C3120.4 (3)
C26—C27—C22120.18 (19)C5—C4—H4119.8
C26—C27—H27119.9C3—C4—H4119.8
C22—C27—H27119.9
C17—N2—C13—C2360.8 (2)C24—C25—C26—C270.4 (3)
C16—N2—C13—C23169.99 (14)N2—C16—C15—C1416.5 (2)
C17—N2—C13—C14175.55 (16)C20—C16—C15—C14136.84 (18)
C16—N2—C13—C1446.34 (16)C21—C14—C15—C16112.10 (16)
C17—N2—C13—C1268.7 (2)C13—C14—C15—C1610.35 (19)
C16—N2—C13—C1260.50 (17)C11—C14—C15—C16119.34 (17)
C21—N1—C22—C27168.63 (18)C25—C26—C27—C220.0 (3)
C21—N1—C22—C2311.5 (3)C23—C22—C27—C260.1 (3)
C22—N1—C21—O3178.26 (18)N1—C22—C27—C26179.97 (18)
C22—N1—C21—C144.4 (3)C13—N2—C17—C18173.85 (18)
C12—O2—C11—C10160.48 (17)C16—N2—C17—C1860.7 (2)
C12—O2—C11—C1432.03 (19)C11—O2—C12—O1175.29 (19)
O3—C21—C14—C13153.33 (17)C11—O2—C12—C137.8 (2)
N1—C21—C14—C1329.3 (2)N2—C13—C12—O148.6 (3)
O3—C21—C14—C1193.6 (2)C23—C13—C12—O183.0 (2)
N1—C21—C14—C1183.75 (19)C14—C13—C12—O1157.0 (2)
O3—C21—C14—C1537.7 (2)N2—C13—C12—O2128.05 (16)
N1—C21—C14—C15144.95 (16)C23—C13—C12—O2100.40 (17)
N2—C13—C14—C2185.93 (17)C14—C13—C12—O219.64 (19)
C23—C13—C14—C2138.5 (2)N2—C17—C18—C1955.8 (3)
C12—C13—C14—C21156.33 (15)C20—C19—C18—C1754.5 (3)
N2—C13—C14—C11154.64 (13)C6—C1—C2—C32.6 (4)
C23—C13—C14—C1180.93 (17)C10—C1—C2—C3177.1 (2)
C12—C13—C14—C1136.89 (16)N2—C16—C20—C1956.7 (2)
N2—C13—C14—C1533.92 (17)C15—C16—C20—C19173.89 (19)
C23—C13—C14—C15158.35 (15)C18—C19—C20—C1654.5 (3)
C12—C13—C14—C1583.83 (17)C2—C1—C10—C9179.6 (2)
O2—C11—C14—C21164.11 (14)C6—C1—C10—C90.1 (3)
C10—C11—C14—C2173.4 (2)C2—C1—C10—C111.6 (3)
O2—C11—C14—C1342.69 (16)C6—C1—C10—C11178.66 (19)
C10—C11—C14—C13165.16 (18)O2—C11—C10—C926.4 (3)
O2—C11—C14—C1567.84 (17)C14—C11—C10—C991.6 (3)
C10—C11—C14—C1554.6 (2)O2—C11—C10—C1152.35 (19)
C25—C24—C23—C220.9 (3)C14—C11—C10—C189.7 (3)
C25—C24—C23—C13179.63 (18)C2—C1—C6—C7179.0 (2)
C27—C22—C23—C240.5 (3)C10—C1—C6—C71.3 (3)
N1—C22—C23—C24179.61 (17)C2—C1—C6—C51.9 (3)
C27—C22—C23—C13179.96 (17)C10—C1—C6—C5177.8 (2)
N1—C22—C23—C130.1 (3)C7—C6—C5—C4179.1 (3)
N2—C13—C23—C2487.6 (2)C1—C6—C5—C40.0 (4)
C14—C13—C23—C24155.05 (17)C1—C2—C3—C41.5 (4)
C12—C13—C23—C2443.7 (2)C1—C10—C9—C81.3 (4)
N2—C13—C23—C2292.97 (19)C11—C10—C9—C8177.5 (3)
C14—C13—C23—C2224.4 (2)C5—C6—C7—C8177.6 (3)
C12—C13—C23—C22135.75 (17)C1—C6—C7—C81.4 (4)
C13—N2—C16—C20165.09 (15)C6—C7—C8—C90.3 (5)
C17—N2—C16—C2061.9 (2)C10—C9—C8—C71.1 (5)
C13—N2—C16—C1539.42 (18)C6—C5—C4—C31.3 (5)
C17—N2—C16—C15172.47 (17)C2—C3—C4—C50.6 (5)
C23—C24—C25—C260.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.94 (3)1.92 (3)2.8413 (19)167 (2)
C24—H24···O1ii0.932.593.268 (2)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.94 (3)1.92 (3)2.8413 (19)167 (2)
C24—H24···O1ii0.932.593.268 (2)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGovindan, E., Yuvaraj, P. S., Reddy, B. S. R., Bangaru Sudarsan Alwar, S. & SubbiahPandi, A. (2014). Acta Cryst. E70, o168.  CSD CrossRef IUCr Journals Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages o150-o151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds