organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o86-o87

Crystal structure of (2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)(phen­yl)methanone

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Lab, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 December 2014; accepted 24 December 2014; online 3 January 2015)

In the title compound, C22H16BrNO3S, the phenyl rings make dihedral angles of 84.81 (16) and 61.67 (17)° with the indole ring system (r.m.s. deviation = 0.012 Å), while the phenyl rings are inclined to one another by 69.5 (2)°. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O hydrogen bonds. The sulfonyl S atom has a distorted tetra­hedral configuration. In the crystal, there are no significant inter­molecular inter­actions present.

1. Related literature

For the various biological properties of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]); Grinev et al. (1984[Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159-163.]); Porter et al. (1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]); Rodriguez et al. (1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]); Sundberg (1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For the syntheses and crystal structures of similar compounds, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o751.], 2009[Chakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464-o465.]); Umadevi et al. (2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1781.], 2014[Umadevi, M., Ramalingam, B. M., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2014). Acta Cryst. E70, 466-468.]). For details concerning the Cambridge Structural Database, see: Groom & Allen (2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H16BrNO3S

  • Mr = 454.33

  • Monoclinic, P 21 /n

  • a = 10.3629 (5) Å

  • b = 13.4156 (7) Å

  • c = 14.1777 (8) Å

  • β = 92.864 (2)°

  • V = 1968.59 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.596, Tmax = 0.665

  • 34711 measured reflections

  • 5017 independent reflections

  • 3002 reflections with I > 2σ(I)

  • Rint = 0.056

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.146

  • S = 1.06

  • 5017 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.93 2.38 2.953 (4) 120
C15—H15A⋯O2 0.97 2.22 2.808 (4) 118
C15—H15B⋯O3 0.97 2.38 3.062 (5) 127

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

To a solution of (2-methyl-1-(phenyl­sulfonyl)-1H-indol-3-yl)(phenyl)­methanone (1 g, 2.67 mmol) in dry carbon tetra­chloride (75 mL), AIBN (0.05 g) and finely powdered NBS (0.61 g, 3.47 mmol) were added. The reaction mixture was refluxed for 2 h and cooled to room temperature. The floated succinimide was filtered off and washed with carbon tetra­chloride (15 mL). The combined filtrate was concentrated in vacuo to afford title compound (1.12 g, 92%) as a colourless solid (156-158°C), suitable for X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structural commentary top

Indole derivatives are known to exhibit anti­bacterial, anti­fungal (Singh et al., 2000), anti­tumour (Andreani et al., 2001), anti­depressant (Grinev et al., 1984), anti-inflammatory (Rodriguez et al., 1985) and physiological (Porter et al., 1977; Sundberg, 1996) properties. In recent years, we have reported the synthesis and crystal structures of a number of such compounds (Chakkaravarthi et al., 2008, 2009; Umadevi et al., 2013, 2014). We report herein on the synthesis and crystal structure of the title compound, a new 1-(phenyl­sulfonyl)-1H-indole derivative.

The molecular structure of the title compound is shown in Fig. 1. The phenyl rings (C1—C6) and (C17—C22) make the dihedral angles of 84.81 (16)° and 61.67 (17)°, respectively, with the indole ring system (N1/C7—C14). The phenyl rings (C1—C6) and (C17—C22) are inclined at an angle of 69.5 (2)° with respect to each other. As a result of electron–withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C7 = 1.415 (4) Å and N1—C14 = 1.409 (4) Å are longer than the mean value of 1.355 (14) Å observed for similar compounds in the Cambridge Structural Database (Groom & Allen et al., 2014). Atom S1 of the sulfonyl group has a distorted tetra­hedral configuration. The widening of angle O1—S1—O2 [120.70 (15)°] and the narrowing of angle N1—S1—C1 [104.71 (14)°] from the ideal tetra­hedral value are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The molecular structure is stabilized by weak C—H···O intra­molecular hydrogen bonds (Table 1).

In the crystal, there are no significant inter­molecular inter­actions present, Fig. 2.

Related literature top

For the various biological properties of indole derivatives, see: Andreani et al. (2001); Bassindale (1984); Grinev et al. (1984); Porter et al. (1977); Rodriguez et al. (1985); Singh et al. (2000); Sundberg (1996). For the Thorpe–Ingold effect, see: Bassindale (1984). For the syntheses and crystal structures of similar compounds, see: Chakkaravarthi et al. (2008, 2009); Umadevi et al. (2013, 2014). For details concerning the Cambridge Structural Database, see: Groom & Allen (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view approximately along the a axis of the crystal packing of the title compound.
(2-Bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)(phenyl)methanone top
Crystal data top
C22H16BrNO3SF(000) = 920
Mr = 454.33Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8313 reflections
a = 10.3629 (5) Åθ = 2.3–23.1°
b = 13.4156 (7) ŵ = 2.22 mm1
c = 14.1777 (8) ÅT = 295 K
β = 92.864 (2)°Block, colourless
V = 1968.59 (18) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5017 independent reflections
Radiation source: fine-focus sealed tube3002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω and ϕ scanθmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.596, Tmax = 0.665k = 1818
34711 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.6826P]
where P = (Fo2 + 2Fc2)/3
5017 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
C22H16BrNO3SV = 1968.59 (18) Å3
Mr = 454.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3629 (5) ŵ = 2.22 mm1
b = 13.4156 (7) ÅT = 295 K
c = 14.1777 (8) Å0.26 × 0.22 × 0.20 mm
β = 92.864 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5017 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3002 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.665Rint = 0.056
34711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
5017 reflectionsΔρmin = 0.97 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4019 (3)0.3474 (2)0.6542 (2)0.0375 (7)
C20.4866 (3)0.4214 (3)0.6300 (3)0.0476 (8)
H20.56620.40560.60640.057*
C30.4506 (4)0.5192 (3)0.6415 (3)0.0609 (11)
H30.50670.57020.62620.073*
C40.3325 (4)0.5421 (3)0.6754 (3)0.0571 (10)
H40.30930.60840.68300.069*
C50.2489 (4)0.4687 (3)0.6980 (3)0.0583 (10)
H50.16880.48500.72050.070*
C60.2829 (3)0.3700 (3)0.6876 (3)0.0493 (9)
H60.22620.31940.70300.059*
C70.2714 (3)0.1711 (2)0.5076 (2)0.0374 (7)
C80.1644 (3)0.1550 (3)0.5608 (3)0.0479 (8)
H80.17020.15660.62640.057*
C90.0499 (3)0.1366 (3)0.5115 (3)0.0563 (10)
H90.02380.12530.54470.068*
C100.0403 (3)0.1341 (3)0.4142 (3)0.0587 (10)
H100.03940.12100.38360.070*
C110.1456 (3)0.1506 (3)0.3619 (3)0.0500 (9)
H110.13820.15000.29620.060*
C120.2641 (3)0.1684 (2)0.4096 (2)0.0381 (7)
C130.3916 (3)0.1867 (2)0.3780 (2)0.0382 (7)
C140.4730 (3)0.2001 (2)0.4550 (2)0.0365 (7)
C150.6139 (3)0.2080 (3)0.4556 (3)0.0461 (8)
H15A0.64440.25200.50620.055*
H15B0.63930.23620.39630.055*
C160.4326 (3)0.1888 (3)0.2792 (2)0.0451 (8)
C170.3870 (3)0.1104 (3)0.2123 (2)0.0437 (8)
C180.3509 (4)0.0169 (3)0.2420 (3)0.0511 (9)
H180.34860.00300.30620.061*
C190.3180 (4)0.0558 (3)0.1765 (3)0.0663 (11)
H190.29370.11890.19620.080*
C200.3213 (5)0.0347 (4)0.0816 (3)0.0753 (13)
H200.29920.08390.03750.090*
C210.3566 (5)0.0572 (4)0.0519 (3)0.0765 (14)
H210.35790.07090.01240.092*
C220.3903 (4)0.1298 (3)0.1165 (3)0.0595 (10)
H220.41550.19240.09600.071*
N10.4022 (2)0.1883 (2)0.53652 (18)0.0379 (6)
O10.3769 (2)0.16500 (18)0.70726 (16)0.0523 (6)
O20.5868 (2)0.21867 (18)0.65144 (17)0.0500 (6)
O30.5064 (3)0.2531 (2)0.25507 (19)0.0673 (8)
S10.44977 (8)0.22304 (6)0.64628 (6)0.0400 (2)
Br10.69179 (4)0.07623 (3)0.47354 (4)0.06721 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0397 (16)0.0389 (17)0.0338 (16)0.0043 (14)0.0000 (13)0.0028 (13)
C20.0439 (18)0.047 (2)0.053 (2)0.0059 (15)0.0085 (16)0.0017 (16)
C30.065 (3)0.043 (2)0.075 (3)0.0114 (19)0.011 (2)0.0001 (19)
C40.072 (3)0.041 (2)0.059 (2)0.0008 (19)0.006 (2)0.0039 (18)
C50.055 (2)0.055 (2)0.066 (3)0.0060 (19)0.0141 (19)0.010 (2)
C60.048 (2)0.047 (2)0.054 (2)0.0087 (16)0.0107 (16)0.0060 (17)
C70.0337 (15)0.0378 (17)0.0403 (18)0.0005 (13)0.0024 (13)0.0039 (14)
C80.0427 (18)0.057 (2)0.045 (2)0.0028 (16)0.0077 (15)0.0062 (17)
C90.0365 (18)0.067 (3)0.067 (3)0.0023 (17)0.0126 (17)0.008 (2)
C100.0331 (18)0.077 (3)0.065 (3)0.0014 (18)0.0076 (17)0.005 (2)
C110.0391 (18)0.068 (2)0.0424 (19)0.0001 (17)0.0070 (15)0.0012 (17)
C120.0361 (16)0.0366 (17)0.0413 (18)0.0045 (13)0.0005 (13)0.0007 (14)
C130.0371 (16)0.0370 (17)0.0404 (18)0.0005 (13)0.0003 (13)0.0024 (14)
C140.0338 (15)0.0350 (17)0.0409 (18)0.0013 (13)0.0038 (13)0.0030 (13)
C150.0409 (18)0.046 (2)0.051 (2)0.0076 (15)0.0020 (15)0.0005 (16)
C160.0419 (18)0.048 (2)0.045 (2)0.0019 (15)0.0023 (15)0.0027 (16)
C170.0375 (17)0.054 (2)0.0398 (19)0.0025 (15)0.0026 (14)0.0045 (16)
C180.057 (2)0.049 (2)0.047 (2)0.0036 (17)0.0020 (16)0.0013 (17)
C190.073 (3)0.053 (2)0.072 (3)0.003 (2)0.003 (2)0.011 (2)
C200.081 (3)0.080 (3)0.065 (3)0.006 (3)0.004 (2)0.028 (3)
C210.082 (3)0.108 (4)0.039 (2)0.003 (3)0.001 (2)0.016 (2)
C220.064 (2)0.070 (3)0.045 (2)0.005 (2)0.0068 (18)0.002 (2)
N10.0352 (13)0.0414 (15)0.0370 (14)0.0019 (11)0.0005 (11)0.0066 (12)
O10.0671 (16)0.0479 (15)0.0419 (14)0.0081 (12)0.0011 (11)0.0074 (11)
O20.0431 (13)0.0536 (15)0.0518 (14)0.0059 (11)0.0122 (11)0.0047 (12)
O30.081 (2)0.0693 (19)0.0529 (16)0.0295 (15)0.0130 (14)0.0012 (14)
S10.0418 (4)0.0408 (5)0.0368 (4)0.0016 (3)0.0048 (3)0.0001 (3)
Br10.0408 (2)0.0659 (3)0.0953 (4)0.01197 (18)0.0068 (2)0.0010 (2)
Geometric parameters (Å, º) top
C1—C61.378 (5)C13—C141.357 (4)
C1—C21.379 (5)C13—C161.483 (5)
C1—S11.746 (3)C14—N11.409 (4)
C2—C31.377 (5)C14—C151.463 (4)
C2—H20.9300C15—Br11.955 (4)
C3—C41.371 (5)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.360 (5)C16—O31.213 (4)
C4—H40.9300C16—C171.479 (5)
C5—C61.380 (5)C17—C181.381 (5)
C5—H50.9300C17—C221.385 (5)
C6—H60.9300C18—C191.378 (5)
C7—C81.388 (4)C18—H180.9300
C7—C121.389 (4)C19—C201.376 (7)
C7—N11.415 (4)C19—H190.9300
C8—C91.370 (5)C20—C211.360 (7)
C8—H80.9300C20—H200.9300
C9—C101.378 (5)C21—C221.370 (6)
C9—H90.9300C21—H210.9300
C10—C111.368 (5)C22—H220.9300
C10—H100.9300N1—S11.675 (3)
C11—C121.392 (4)O1—S11.411 (2)
C11—H110.9300O2—S11.419 (2)
C12—C131.438 (4)
C6—C1—C2121.3 (3)C13—C14—N1108.5 (3)
C6—C1—S1119.6 (3)C13—C14—C15126.4 (3)
C2—C1—S1119.1 (3)N1—C14—C15124.3 (3)
C3—C2—C1118.5 (3)C14—C15—Br1109.9 (2)
C3—C2—H2120.8C14—C15—H15A109.7
C1—C2—H2120.8Br1—C15—H15A109.7
C4—C3—C2120.4 (4)C14—C15—H15B109.7
C4—C3—H3119.8Br1—C15—H15B109.7
C2—C3—H3119.8H15A—C15—H15B108.2
C5—C4—C3120.8 (4)O3—C16—C17120.6 (3)
C5—C4—H4119.6O3—C16—C13119.6 (3)
C3—C4—H4119.6C17—C16—C13119.7 (3)
C4—C5—C6120.0 (4)C18—C17—C22119.4 (3)
C4—C5—H5120.0C18—C17—C16122.2 (3)
C6—C5—H5120.0C22—C17—C16118.2 (3)
C1—C6—C5119.0 (3)C19—C18—C17119.9 (4)
C1—C6—H6120.5C19—C18—H18120.1
C5—C6—H6120.5C17—C18—H18120.1
C8—C7—C12122.3 (3)C20—C19—C18119.8 (4)
C8—C7—N1130.4 (3)C20—C19—H19120.1
C12—C7—N1107.3 (3)C18—C19—H19120.1
C9—C8—C7116.5 (3)C21—C20—C19120.6 (4)
C9—C8—H8121.7C21—C20—H20119.7
C7—C8—H8121.7C19—C20—H20119.7
C8—C9—C10122.2 (3)C20—C21—C22120.1 (4)
C8—C9—H9118.9C20—C21—H21120.0
C10—C9—H9118.9C22—C21—H21120.0
C11—C10—C9121.3 (3)C21—C22—C17120.3 (4)
C11—C10—H10119.4C21—C22—H22119.9
C9—C10—H10119.4C17—C22—H22119.9
C10—C11—C12118.2 (3)C14—N1—C7108.1 (2)
C10—C11—H11120.9C14—N1—S1126.2 (2)
C12—C11—H11120.9C7—N1—S1123.2 (2)
C7—C12—C11119.6 (3)O1—S1—O2120.70 (15)
C7—C12—C13107.6 (3)O1—S1—N1105.92 (14)
C11—C12—C13132.8 (3)O2—S1—N1106.48 (14)
C14—C13—C12108.4 (3)O1—S1—C1109.02 (15)
C14—C13—C16124.1 (3)O2—S1—C1108.82 (15)
C12—C13—C16127.5 (3)N1—S1—C1104.71 (14)
C6—C1—C2—C31.1 (5)O3—C16—C17—C18152.3 (4)
S1—C1—C2—C3176.4 (3)C13—C16—C17—C1825.4 (5)
C1—C2—C3—C40.7 (6)O3—C16—C17—C2222.8 (5)
C2—C3—C4—C50.1 (6)C13—C16—C17—C22159.5 (3)
C3—C4—C5—C60.5 (6)C22—C17—C18—C190.2 (5)
C2—C1—C6—C50.8 (5)C16—C17—C18—C19175.3 (4)
S1—C1—C6—C5176.7 (3)C17—C18—C19—C200.1 (6)
C4—C5—C6—C10.0 (6)C18—C19—C20—C210.0 (7)
C12—C7—C8—C90.4 (5)C19—C20—C21—C220.5 (8)
N1—C7—C8—C9177.5 (3)C20—C21—C22—C170.8 (7)
C7—C8—C9—C100.1 (6)C18—C17—C22—C210.7 (6)
C8—C9—C10—C110.3 (7)C16—C17—C22—C21176.0 (4)
C9—C10—C11—C121.1 (6)C13—C14—N1—C72.4 (4)
C8—C7—C12—C111.2 (5)C15—C14—N1—C7172.9 (3)
N1—C7—C12—C11178.9 (3)C13—C14—N1—S1164.8 (2)
C8—C7—C12—C13179.2 (3)C15—C14—N1—S124.7 (4)
N1—C7—C12—C131.5 (3)C8—C7—N1—C14179.9 (4)
C10—C11—C12—C71.5 (5)C12—C7—N1—C142.4 (3)
C10—C11—C12—C13179.0 (4)C8—C7—N1—S117.1 (5)
C7—C12—C13—C140.0 (4)C12—C7—N1—S1165.4 (2)
C11—C12—C13—C14179.5 (4)C14—N1—S1—O1158.0 (3)
C7—C12—C13—C16178.5 (3)C7—N1—S1—O142.1 (3)
C11—C12—C13—C161.9 (6)C14—N1—S1—O228.4 (3)
C12—C13—C14—N11.5 (4)C7—N1—S1—O2171.7 (2)
C16—C13—C14—N1177.1 (3)C14—N1—S1—C186.8 (3)
C12—C13—C14—C15171.7 (3)C7—N1—S1—C173.1 (3)
C16—C13—C14—C156.9 (5)C6—C1—S1—O121.0 (3)
C13—C14—C15—Br191.4 (4)C2—C1—S1—O1156.5 (3)
N1—C14—C15—Br177.3 (4)C6—C1—S1—O2154.5 (3)
C14—C13—C16—O343.9 (5)C2—C1—S1—O223.0 (3)
C12—C13—C16—O3137.8 (4)C6—C1—S1—N192.0 (3)
C14—C13—C16—C17133.8 (3)C2—C1—S1—N190.5 (3)
C12—C13—C16—C1744.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.382.953 (4)120
C15—H15A···O20.972.222.808 (4)118
C15—H15B···O30.972.383.062 (5)127
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.382.953 (4)120
C15—H15A···O20.972.222.808 (4)118
C15—H15B···O30.972.383.062 (5)127
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Sureshbabu, R., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o751.  CSD CrossRef IUCr Journals Google Scholar
First citationGrinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). Khim. Farm. Zh. 18, 159–163.  CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar
First citationUmadevi, M., Ramalingam, B. M., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2014). Acta Cryst. E70, 466–468.  CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1781.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o86-o87
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds