organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-chloro-N-[2-(piperidin-1-yl)eth­yl]benzamide monohydrate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 December 2014; accepted 7 December 2014; online 1 January 2015)

In the title compound, C14H19ClN2O2·H2O, the piperdine ring adopts a chair conformation. The dihedral angle between the mean plane of the piperidine ring and that of the phenyl ring is 41.64 (1)°. In the crystal, mol­ecules are linked by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds involving the water mol­ecule, forming double-stranded chains propagating along [010].

1. Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.], 2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.]). For the biological activities of piperdine derivatives, see: Pandey & Chawla (2012[Pandey, P. & Chawla, P. (2012). Int. J. Pharm. Pharm. Sci. 2, 305-309.]); Jayalakshmi & Nanjundan (2008[Jayalakshmi, N. & Nanjundan, S. (2008). Int. J. Chem. Sci. 6, 1177-1188.]); Parthiban et al. (2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.]); Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.]); Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]). For related structures, see: Prathebha et al. (2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.]); Ávila et al. (2010[Ávila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.]); Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H19ClN2O·H2O

  • Mr = 284.78

  • Monoclinic, P 21 /n

  • a = 14.9115 (6) Å

  • b = 6.6899 (3) Å

  • c = 15.6215 (7) Å

  • β = 102.956 (2)°

  • V = 1518.67 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.951

  • 12566 measured reflections

  • 3780 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.160

  • S = 1.01

  • 3780 reflections

  • 181 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N1i 0.83 (2) 2.03 (2) 2.851 (3) 174 (2)
N2—H2⋯O1W 0.86 2.06 2.855 (2) 153
C6—H6B⋯O1W 0.97 2.59 3.406 (3) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: XPREP in SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The piperidine derivatives were reported to have antimicrobial activity. Piperidine derivatives have been synthesized for pharmaceutical research as they are very efficient against resistance microorganisms. The substituted piperidine derivatives were also reported to have antimicrobial activity (Pandey & Chawla, 2012; Jayalakshmi & Nanjundan, 2008; Parthiban et al., 2005; Aridoss et al., 2008; Ramachandran et al. 2011).

In the title compound, Fig. 1, the piperidine ring is cis to the phenyl ring. The C—N distances [1.335 (2) - 1.464 (2) Å] are in the normal range and are in good agreement with values of from similar structures (Ávila et al., 2010; Prathebha et al., 2014). The bond angle sum around atoms N1 and N2 [333.2 (4)° and 359.97 (1)°, respectively] shows sp3 hybridization. The CO distance [1.231 (2) Å] is comparable with the value reported previously (Al-abbasi et al., 2010). The piperdine ring adopts a chair conformation with puckering parameters of q2 = 0.6994 (0) Å, φ2 = 88.60 (0)° q3 = -0.0267 (0) Å, QT = 0.6999 Å and θ2 = 92.19 (2)°.

In the crystal, adjacent molecules are linked by O-H···N, O-H···O and C-H···O hydrogen bonds, involving the water molecule, forming double stranded chains propagating along [010]; see Table 1 and Fig. 2

Related literature top

For the synthesis of the title compound, see: Prathebha et al. (2013, 2014). For the biological activities of piperdine derivatives, see: Pandey & Chawla (2012); Jayalakshmi & Nanjundan (2008); Parthiban et al. (2005); Aridoss et al. (2008); Ramachandran et al. (2011). For related structures, see: Prathebha et al. (2014); Ávila et al. (2010); Al-abbasi et al. (2010).

Experimental top

The title compound was synthesized following a publish procedure (Prathebha et al., 2013, 2014). In a 250 mL round-bottomed flask 120 mL of ethylmethylketone was added to 1,2-aminoethylpiperidine (0.02 mol) and stirred at room temperature. After 5 min triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. Then 4-chlorobenzoylchloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for ca. 2 h. A white precipitate of triethylammoniumchloride was formed. It was filtered and the filtrate was evaporated to give the crude product. It was recrystallized twice from ethylmethylketone (yield: 82%) giving colourless block-like crystals of the title compound.

Refinement top

The water H atoms were located in a difference Fourier map and freely refined. The NH and C-bound H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 - 0.97 Å, N—H = 0.86 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Structure description top

The piperidine derivatives were reported to have antimicrobial activity. Piperidine derivatives have been synthesized for pharmaceutical research as they are very efficient against resistance microorganisms. The substituted piperidine derivatives were also reported to have antimicrobial activity (Pandey & Chawla, 2012; Jayalakshmi & Nanjundan, 2008; Parthiban et al., 2005; Aridoss et al., 2008; Ramachandran et al. 2011).

In the title compound, Fig. 1, the piperidine ring is cis to the phenyl ring. The C—N distances [1.335 (2) - 1.464 (2) Å] are in the normal range and are in good agreement with values of from similar structures (Ávila et al., 2010; Prathebha et al., 2014). The bond angle sum around atoms N1 and N2 [333.2 (4)° and 359.97 (1)°, respectively] shows sp3 hybridization. The CO distance [1.231 (2) Å] is comparable with the value reported previously (Al-abbasi et al., 2010). The piperdine ring adopts a chair conformation with puckering parameters of q2 = 0.6994 (0) Å, φ2 = 88.60 (0)° q3 = -0.0267 (0) Å, QT = 0.6999 Å and θ2 = 92.19 (2)°.

In the crystal, adjacent molecules are linked by O-H···N, O-H···O and C-H···O hydrogen bonds, involving the water molecule, forming double stranded chains propagating along [010]; see Table 1 and Fig. 2

For the synthesis of the title compound, see: Prathebha et al. (2013, 2014). For the biological activities of piperdine derivatives, see: Pandey & Chawla (2012); Jayalakshmi & Nanjundan (2008); Parthiban et al. (2005); Aridoss et al. (2008); Ramachandran et al. (2011). For related structures, see: Prathebha et al. (2014); Ávila et al. (2010); Al-abbasi et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: XPREP in SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1 for details; C-bound H atoms have been omitted for clarity).
4-Chloro-N-[2-(piperidin-1-yl)ethyl]benzamide monohydrate top
Crystal data top
C14H19ClN2O·H2OF(000) = 608
Mr = 284.78Dx = 1.245 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3780 reflections
a = 14.9115 (6) Åθ = 1.7–28.4°
b = 6.6899 (3) ŵ = 0.25 mm1
c = 15.6215 (7) ÅT = 293 K
β = 102.956 (2)°Block, colourless
V = 1518.67 (11) Å30.25 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3780 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scanθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1919
Tmin = 0.939, Tmax = 0.951k = 87
12566 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.2535P]
where P = (Fo2 + 2Fc2)/3
3780 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H19ClN2O·H2OV = 1518.67 (11) Å3
Mr = 284.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9115 (6) ŵ = 0.25 mm1
b = 6.6899 (3) ÅT = 293 K
c = 15.6215 (7) Å0.25 × 0.23 × 0.20 mm
β = 102.956 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1953 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.951Rint = 0.036
12566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
3780 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.36430 (12)0.0064 (2)0.33083 (13)0.0544 (4)
H1WA0.3601 (17)0.005 (4)0.2772 (11)0.062 (8)*
H1WB0.3987 (15)0.082 (3)0.3533 (15)0.064 (8)*
C10.13069 (15)0.6539 (4)0.39904 (16)0.0561 (6)
H1A0.13470.62400.46050.067*
H1B0.17730.75280.39570.067*
C20.03637 (15)0.7388 (4)0.35887 (18)0.0671 (7)
H2A0.03420.77950.29880.081*
H2B0.02570.85630.39160.081*
C30.03859 (16)0.5866 (4)0.35964 (18)0.0682 (7)
H3A0.04280.56050.41970.082*
H3B0.09730.63900.32790.082*
C40.01743 (15)0.3941 (4)0.31710 (18)0.0665 (7)
H4A0.02230.41630.25490.080*
H4B0.06210.29300.32340.080*
C50.07842 (15)0.3203 (4)0.35883 (17)0.0610 (7)
H5A0.09100.19940.32930.073*
H5B0.08170.28780.42000.073*
C60.24037 (14)0.3914 (3)0.38842 (15)0.0508 (6)
H6A0.25000.37800.45170.061*
H6B0.24480.25930.36410.061*
C70.31449 (13)0.5225 (3)0.36732 (16)0.0511 (6)
H7A0.32260.63930.40510.061*
H7B0.29610.56780.30690.061*
C80.48147 (13)0.5074 (3)0.38619 (13)0.0411 (5)
C90.56372 (13)0.3766 (3)0.39205 (13)0.0405 (5)
C100.63653 (15)0.4479 (4)0.35953 (15)0.0530 (6)
H100.63430.57690.33700.064*
C110.71251 (15)0.3293 (4)0.36017 (16)0.0633 (7)
H110.76100.37730.33770.076*
C120.71562 (14)0.1406 (4)0.39423 (16)0.0552 (6)
C130.64543 (15)0.0669 (4)0.42879 (15)0.0541 (6)
H130.64910.06070.45290.065*
C140.56919 (14)0.1860 (3)0.42700 (14)0.0479 (5)
H140.52090.13710.44970.058*
N10.14836 (11)0.4716 (2)0.35340 (11)0.0435 (4)
N20.40087 (11)0.4147 (3)0.37969 (11)0.0480 (5)
H20.40020.28640.38300.058*
O10.48880 (10)0.6908 (2)0.38625 (10)0.0573 (4)
Cl10.81091 (5)0.01012 (12)0.39483 (6)0.0952 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0567 (10)0.0380 (10)0.0677 (12)0.0102 (8)0.0123 (9)0.0000 (9)
C10.0484 (13)0.0450 (14)0.0746 (15)0.0061 (11)0.0129 (11)0.0122 (12)
C20.0503 (14)0.0549 (16)0.0971 (19)0.0147 (12)0.0184 (13)0.0019 (14)
C30.0445 (13)0.0754 (19)0.0887 (18)0.0116 (13)0.0234 (12)0.0014 (15)
C40.0427 (13)0.0672 (18)0.0939 (18)0.0093 (12)0.0244 (12)0.0050 (15)
C50.0478 (13)0.0479 (15)0.0937 (18)0.0037 (11)0.0297 (12)0.0020 (13)
C60.0437 (12)0.0424 (13)0.0682 (14)0.0064 (10)0.0164 (10)0.0050 (11)
C70.0364 (11)0.0373 (13)0.0779 (15)0.0021 (9)0.0091 (10)0.0042 (11)
C80.0383 (11)0.0353 (12)0.0482 (12)0.0031 (9)0.0067 (8)0.0020 (9)
C90.0365 (10)0.0375 (12)0.0456 (11)0.0029 (9)0.0049 (8)0.0003 (9)
C100.0440 (12)0.0439 (13)0.0720 (15)0.0020 (10)0.0150 (11)0.0097 (11)
C110.0442 (13)0.0648 (18)0.0857 (18)0.0042 (12)0.0247 (12)0.0076 (14)
C120.0413 (12)0.0530 (16)0.0710 (15)0.0140 (10)0.0121 (11)0.0048 (12)
C130.0495 (13)0.0394 (13)0.0718 (15)0.0083 (10)0.0102 (11)0.0057 (11)
C140.0397 (11)0.0420 (13)0.0628 (14)0.0029 (9)0.0129 (10)0.0057 (11)
N10.0361 (9)0.0344 (10)0.0610 (11)0.0010 (7)0.0132 (8)0.0014 (8)
N20.0360 (9)0.0314 (10)0.0751 (12)0.0035 (7)0.0094 (8)0.0013 (9)
O10.0493 (9)0.0342 (10)0.0869 (11)0.0040 (7)0.0124 (8)0.0050 (8)
Cl10.0650 (5)0.0851 (6)0.1438 (8)0.0346 (4)0.0410 (5)0.0043 (5)
Geometric parameters (Å, º) top
O1W—H1WA0.826 (16)C6—H6A0.9700
O1W—H1WB0.808 (16)C6—H6B0.9700
C1—N11.466 (3)C7—N21.451 (2)
C1—C21.516 (3)C7—H7A0.9700
C1—H1A0.9700C7—H7B0.9700
C1—H1B0.9700C8—O11.231 (2)
C2—C31.514 (3)C8—N21.336 (2)
C2—H2A0.9700C8—C91.493 (3)
C2—H2B0.9700C9—C101.383 (3)
C3—C41.515 (4)C9—C141.382 (3)
C3—H3A0.9700C10—C111.381 (3)
C3—H3B0.9700C10—H100.9300
C4—C51.514 (3)C11—C121.366 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.372 (3)
C5—N11.469 (3)C12—Cl11.741 (2)
C5—H5A0.9700C13—C141.383 (3)
C5—H5B0.9700C13—H130.9300
C6—N11.460 (3)C14—H140.9300
C6—C71.504 (3)N2—H20.8600
H1WA—O1W—H1WB109 (2)C7—C6—H6B109.2
N1—C1—C2111.19 (19)H6A—C6—H6B107.9
N1—C1—H1A109.4N2—C7—C6110.77 (17)
C2—C1—H1A109.4N2—C7—H7A109.5
N1—C1—H1B109.4C6—C7—H7A109.5
C2—C1—H1B109.4N2—C7—H7B109.5
H1A—C1—H1B108.0C6—C7—H7B109.5
C3—C2—C1111.3 (2)H7A—C7—H7B108.1
C3—C2—H2A109.4O1—C8—N2122.74 (18)
C1—C2—H2A109.4O1—C8—C9120.83 (18)
C3—C2—H2B109.4N2—C8—C9116.42 (18)
C1—C2—H2B109.4C10—C9—C14118.80 (18)
H2A—C2—H2B108.0C10—C9—C8118.50 (18)
C2—C3—C4109.98 (18)C14—C9—C8122.69 (18)
C2—C3—H3A109.7C11—C10—C9120.6 (2)
C4—C3—H3A109.7C11—C10—H10119.7
C2—C3—H3B109.7C9—C10—H10119.7
C4—C3—H3B109.7C12—C11—C10119.3 (2)
H3A—C3—H3B108.2C12—C11—H11120.3
C5—C4—C3110.9 (2)C10—C11—H11120.3
C5—C4—H4A109.4C11—C12—C13121.5 (2)
C3—C4—H4A109.4C11—C12—Cl1119.58 (18)
C5—C4—H4B109.4C13—C12—Cl1118.89 (19)
C3—C4—H4B109.4C12—C13—C14118.7 (2)
H4A—C4—H4B108.0C12—C13—H13120.6
N1—C5—C4111.4 (2)C14—C13—H13120.6
N1—C5—H5A109.4C9—C14—C13120.98 (19)
C4—C5—H5A109.4C9—C14—H14119.5
N1—C5—H5B109.4C13—C14—H14119.5
C4—C5—H5B109.4C6—N1—C1112.30 (17)
H5A—C5—H5B108.0C6—N1—C5110.17 (17)
N1—C6—C7112.24 (17)C1—N1—C5109.74 (16)
N1—C6—H6A109.2C8—N2—C7122.38 (17)
C7—C6—H6A109.2C8—N2—H2118.8
N1—C6—H6B109.2C7—N2—H2118.8
N1—C1—C2—C357.0 (3)C11—C12—C13—C141.4 (4)
C1—C2—C3—C453.1 (3)Cl1—C12—C13—C14179.04 (17)
C2—C3—C4—C553.1 (3)C10—C9—C14—C130.7 (3)
C3—C4—C5—N157.3 (3)C8—C9—C14—C13178.0 (2)
N1—C6—C7—N2163.46 (18)C12—C13—C14—C90.7 (3)
O1—C8—C9—C1028.2 (3)C7—C6—N1—C169.4 (2)
N2—C8—C9—C10150.8 (2)C7—C6—N1—C5167.94 (19)
O1—C8—C9—C14153.1 (2)C2—C1—N1—C6177.55 (19)
N2—C8—C9—C1427.9 (3)C2—C1—N1—C559.6 (2)
C14—C9—C10—C111.4 (3)C4—C5—N1—C6175.98 (19)
C8—C9—C10—C11177.3 (2)C4—C5—N1—C159.9 (2)
C9—C10—C11—C120.7 (4)O1—C8—N2—C73.5 (3)
C10—C11—C12—C130.8 (4)C9—C8—N2—C7175.58 (18)
C10—C11—C12—Cl1179.72 (18)C6—C7—N2—C8163.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.83 (2)2.03 (2)2.851 (3)174 (2)
N2—H2···O1W0.862.062.855 (2)153
C6—H6B···O1W0.972.593.406 (3)142
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.826 (16)2.028 (17)2.851 (3)174 (2)
N2—H2···O1W0.862.062.855 (2)153
C6—H6B···O1W0.972.593.406 (3)142
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection facilities.

References

First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationÁvila, R. M. D., Landre, I. M. R., Souza, T. E., Veloso, M. P. & Doriguetto, A. C. (2010). Acta Cryst. E66, o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayalakshmi, N. & Nanjundan, S. (2008). Int. J. Chem. Sci. 6, 1177–1188.  CAS Google Scholar
First citationPandey, P. & Chawla, P. (2012). Int. J. Pharm. Pharm. Sci. 2, 305–309.  CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.  CSD CrossRef IUCr Journals Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds