organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1244-o1245

Crystal structure of 2-[12-methyl-14-phenyl-10,13,14,16-tetra­aza­tetra­cyclo[7.7.0.02,7.011,15]hexa­deca-1(16),2,4,6,9,11(15),12-heptaen-8-yl­­idene]propandi­nitrile

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 October 2014; accepted 1 November 2014; online 8 November 2014)

In the title mol­ecule, C22H12N6, the fused tetracyclic core shows a small lengthwise twist as indicated by the dihedral of 2.7 (2)° between the outer rings. In the crystal, mol­ecules stack along the b-axis direction via offset π-stacking [centroid–centroid distances = 3.5282 (13) and 3.5597 (14) Å] with the stacks weakly associated through C—H⋯N hydrogen bonds. The phenyl ring is rotationally disordered over two orientations with an occupancy ratio of 0.516 (4):0.484 (4).

1. Related literature

For the biological properties of pyrazine scaffold compounds, see: Kaliszan et al. (1985[Kaliszan, R., Pilarski, B., OŚmiałowski, K., Strzałkowska-Grad, H. & Hać, E. (1985). Pharm. Weekbl. Sci. 7, 141-145.]); Makino et al. (1990[Makino, E., Iwasaki, N., Yagi, N., Ohashi, T., Kato, H., Ito, Y. & Azuma, H. (1990). Chem. Pharm. Bull. 38, 201-207.]); Emary & Ibrahim (2006[Emary, E. & Ibrahim, T. (2006). J. Chin. Chem. Soc. 53, 391-401.]); Silva et al. (2010[Silva, Y. K. da, Augusto, C. V., de Castro Barbosa, M. L., de Albuquerque Melo, G. M., de Queiroz, A. C., de Lima Matos Freire Dias, T., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007-5015.]); Rusinov et al. (2005[Rusinov, V. L., Kovalev, I. S., Kozhevnikov, D. N., Ustinova, M. M., Chupakhin, O. N., Pokrovskii, A. G., Ilicheva, T. N., Belanov, E. F., Bormotov, N. I., Serova, O. A. & Volkov, G. N. (2005). Pharm. Chem. J. 39, 630-635.]); Johnston & Kau (1993[Johnston, P. A. & Kau, S. T. (1993). J. Pharmacol. Exp. Ther. 264, 604-608.]); Myadaraboina et al. (2010[Myadaraboina, S., Alla, M., Saddanapu, V., Bommena, V. R. & Addlagatta, A. (2010). Eur. J. Med. Chem. 45, 5208-5216.]); Metobo et al. (2006[Metobo, E., Jin, H., Tsiang, M. & Kim, C. U. (2006). Bioorg. Med. Chem. Lett. 16, 3985-3988.]). For use of pyrazines in industrial chemistry see: Rangnekar & Dhamnaskar, 1990[Rangnekar, D. W. & Dhamnaskar, S. V. (1990). Dyes and Pigments, 13, 241-250.]). For the preparation of the title compound, see: El-Emary & El-Kashef (2013[El-Emary, T. & El-Kashef, H. (2013). Eur. J. Med. Chem. 62, 478-485.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H12N6

  • Mr = 360.38

  • Monoclinic, C 2/c

  • a = 35.968 (5) Å

  • b = 4.6483 (6) Å

  • c = 26.596 (3) Å

  • β = 129.6130 (12)°

  • V = 3425.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.21 × 0.13 × 0.07 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.77, Tmax = 0.99

  • 15751 measured reflections

  • 3921 independent reflections

  • 2489 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 1.03

  • 3921 reflections

  • 249 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N5i 0.98 2.69 3.362 (3) 126
Symmetry code: (i) [-x+1, y-1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Over recent years there has been an increasing interest in the chemistry of pyrazine scaffold compounds due to their biological significance. Pyrazine ring is found in numerous pharmaceutically active compounds such as analgesic (Kaliszan et al., 1985), antiallergic (Makino et al., 1990), antibacterial (Emary & Ibrahim 2006), anti-inflammatory (Silva et al., 2010), antiviral (Rusinov et al., 2005), diuretic (Johnston & Kau, 1993), anticancer (Myadaraboina et al., 2010), and anti-HIV (Metobo et al., 2006) medications. Other pyrazine derivatives are also used as fluorescent dyes or dispersed dyes for polyester fibers (Rangnekar & Dhamnaskar, 1990). As part of our investigations of pyrazine derivatives to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title compound, Fig. 1, the fused 4-ring core of the title molecule is nearly planar with only a slight lengthwise twist as indicated by the dihedral angle between the N1/N2/C7/C8/C9 and C12–C17 rings of 2.7 (2)°.

In the crystal, molecules pack in columns along [010] which involve offset π-stacking in which atom N2 is 3.36 (4) Å from the centroid of the N3/C11/C19/N4/C8/C7 ring one unit cell translation in b above it while C17 is 3.41 (4) Å from the centroid of the N3/C11/C19/N4/C8/C7 ring one unit cell translation in b below it (Fig. 2). Adjacent stacks are weakly associated via C—H···N hydrogen bonds (Fig. 3 and Table 1) and are inclined at ca 43.5° in opposite directions from (010).

Related literature top

For the biological properties of pyrazine scaffold compounds, see: Kaliszan et al. (1985); Makino et al. (1990); Emary & Ibrahim (2006); Silva et al. (2010); Rusinov et al. (2005); Johnston & Kau (1993); Myadaraboina et al. (2010); Metobo et al. (2006). For use of pyrazines in industrial chemistry see: Rangnekar & Dhamnaskar, 1990). For the preparation of the title compound, see: El-Emary & El-Kashef (2013)

Experimental top

The title compound was prepared according to the reported procedure (El-Emary & El-Kashef, 2013). Orange crystals suitable for X-ray diffraction were obtained by recrystallization of the reaction product from dimethylformamide (m.p. 587–589 K).

Refinement top

C-bound H atoms were placed in calculated positions and treated as riding atoms, with C—H = 0.95–0.98 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The phenyl ring attached to N1 is rotationally disordered over two sites with an occupancy ratio of 0.516 (4):0.484 (4). The components of the disorder were refined as rigid hexagons.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Portions of two neighboring stacks showing the offset π-stacking and C—H···N interactions (Table 1) as green and blue dotted line, respectively.

Crystal packing viewed along the b axis showing stacks of molecules connected by the weak C—H···N interactions (blue dotted lines; see Table 1 for details).
2-{12-Methyl-14-phenyl-10,13,14,16-tetraazatetracyclo[7.7.0.02,7.011,15]hexadeca-1(16),2,4,6,9,11 (15),12-heptaen-8-ylidene}propandinitrile top
Crystal data top
C22H12N6F(000) = 1488
Mr = 360.38Dx = 1.398 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.968 (5) ÅCell parameters from 4540 reflections
b = 4.6483 (6) Åθ = 2.3–27.4°
c = 26.596 (3) ŵ = 0.09 mm1
β = 129.6130 (12)°T = 150 K
V = 3425.5 (8) Å3Column, orange
Z = 80.21 × 0.13 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3660 pixels mm-1θmax = 27.5°, θmin = 2.0°
ϕ and ω scansh = 4646
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 66
Tmin = 0.77, Tmax = 0.99l = 3434
15751 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.9123P]
where P = (Fo2 + 2Fc2)/3
3921 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C22H12N6V = 3425.5 (8) Å3
Mr = 360.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.968 (5) ŵ = 0.09 mm1
b = 4.6483 (6) ÅT = 150 K
c = 26.596 (3) Å0.21 × 0.13 × 0.07 mm
β = 129.6130 (12)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2489 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.99Rint = 0.050
15751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3921 reflectionsΔρmin = 0.20 e Å3
249 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 400 frames (0.5° width in ω) at ϕ = 0, 120 and 240°. A scan time of 90 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The phenyl ring attached to N1 is rotationally disordered over two sites in approximately equal amounts. The components of the disorder were refined as rigid hexagons.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.69392 (6)0.2255 (4)0.36211 (8)0.0427 (4)
N20.66369 (7)0.0716 (4)0.36798 (9)0.0482 (5)
N30.68329 (6)0.5915 (3)0.28798 (8)0.0385 (4)
N40.58234 (6)0.5174 (4)0.23053 (8)0.0418 (4)
N50.46527 (7)0.6261 (5)0.12918 (10)0.0679 (6)
N60.46809 (7)1.2638 (5)0.01592 (10)0.0657 (6)
C10.74396 (18)0.1886 (11)0.4101 (2)0.0444 (5)0.516 (4)
C20.7750 (3)0.2928 (12)0.4002 (2)0.0565 (14)0.516 (4)
H20.76240.38760.36050.068*0.516 (4)
C30.8246 (2)0.2582 (13)0.4482 (3)0.0568 (13)0.516 (4)
H30.84580.32940.44140.068*0.516 (4)
C40.84309 (16)0.1195 (12)0.5063 (3)0.0611 (7)0.516 (4)
H40.87700.09590.53910.073*0.516 (4)
C50.81201 (19)0.0153 (11)0.5163 (2)0.0596 (12)0.516 (4)
H50.82460.07950.55590.072*0.516 (4)
C60.76244 (18)0.0498 (11)0.4682 (2)0.0551 (11)0.516 (4)
H60.74120.02140.47500.066*0.516 (4)
C1A0.74487 (19)0.1788 (12)0.4091 (2)0.0444 (5)0.484 (4)
C2A0.7774 (3)0.3742 (10)0.4168 (3)0.0565 (14)0.484 (4)
H2A0.76600.53500.38840.068*0.484 (4)
C3A0.8267 (3)0.3344 (11)0.4661 (4)0.0568 (13)0.484 (4)
H3A0.84900.46790.47140.068*0.484 (4)
C4A0.84344 (17)0.0991 (13)0.5077 (3)0.0611 (7)0.484 (4)
H4A0.87710.07190.54140.073*0.484 (4)
C5A0.8109 (2)0.0963 (11)0.5000 (2)0.0596 (12)0.484 (4)
H5A0.82230.25710.52840.072*0.484 (4)
C6A0.76159 (19)0.0564 (11)0.4507 (3)0.0551 (11)0.484 (4)
H6A0.73930.19000.44540.066*0.484 (4)
C70.66759 (7)0.4096 (4)0.31061 (9)0.0385 (5)
C80.61906 (7)0.3724 (4)0.28314 (10)0.0395 (5)
C90.61930 (8)0.1579 (4)0.32169 (11)0.0458 (5)
C100.57752 (8)0.0445 (5)0.31473 (12)0.0575 (6)
H10A0.58840.11180.34610.086*
H10B0.55300.02860.27030.086*
H10C0.56360.19910.32320.086*
C110.64643 (7)0.7328 (4)0.23600 (9)0.0360 (4)
C120.64814 (7)0.9456 (4)0.19683 (9)0.0368 (4)
C130.68659 (7)1.0487 (4)0.20208 (10)0.0424 (5)
H130.71850.98340.23590.051*
C140.67732 (8)1.2503 (5)0.15671 (10)0.0470 (5)
H140.70321.32280.15940.056*
C150.63093 (8)1.3466 (5)0.10772 (10)0.0480 (5)
H150.62551.48500.07740.058*
C160.59220 (7)1.2445 (4)0.10213 (10)0.0440 (5)
H160.56041.31250.06840.053*
C170.60064 (7)1.0419 (4)0.14650 (9)0.0387 (5)
C180.56731 (7)0.8908 (4)0.15189 (9)0.0389 (5)
C190.59741 (7)0.6983 (4)0.20825 (9)0.0379 (4)
C200.51870 (7)0.9165 (4)0.11397 (10)0.0421 (5)
C210.49030 (8)0.7526 (5)0.12444 (11)0.0499 (5)
C220.49111 (8)1.1104 (5)0.05965 (11)0.0491 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0487 (10)0.0408 (9)0.0452 (10)0.0038 (8)0.0331 (9)0.0037 (8)
N20.0606 (12)0.0437 (10)0.0563 (11)0.0011 (9)0.0447 (11)0.0022 (9)
N30.0421 (9)0.0351 (9)0.0406 (9)0.0017 (7)0.0274 (8)0.0007 (7)
N40.0452 (10)0.0383 (9)0.0471 (10)0.0017 (8)0.0318 (9)0.0063 (8)
N50.0494 (12)0.0848 (16)0.0745 (15)0.0056 (11)0.0418 (12)0.0071 (12)
N60.0538 (12)0.0703 (14)0.0579 (13)0.0127 (11)0.0287 (11)0.0066 (12)
C10.0527 (13)0.0398 (12)0.0459 (12)0.0081 (10)0.0339 (11)0.0016 (9)
C20.0545 (17)0.058 (3)0.060 (3)0.018 (2)0.037 (2)0.020 (3)
C30.0543 (17)0.058 (3)0.063 (4)0.015 (2)0.040 (2)0.006 (2)
C40.0583 (15)0.0649 (17)0.0510 (14)0.0200 (13)0.0306 (13)0.0071 (13)
C50.073 (2)0.056 (3)0.047 (3)0.017 (3)0.038 (2)0.008 (2)
C60.0618 (18)0.054 (3)0.050 (3)0.006 (2)0.036 (2)0.006 (2)
C1A0.0527 (13)0.0398 (12)0.0459 (12)0.0081 (10)0.0339 (11)0.0016 (9)
C2A0.0545 (17)0.058 (3)0.060 (3)0.018 (2)0.037 (2)0.020 (3)
C3A0.0543 (17)0.058 (3)0.063 (4)0.015 (2)0.040 (2)0.006 (2)
C4A0.0583 (15)0.0649 (17)0.0510 (14)0.0200 (13)0.0306 (13)0.0071 (13)
C5A0.073 (2)0.056 (3)0.047 (3)0.017 (3)0.038 (2)0.008 (2)
C6A0.0618 (18)0.054 (3)0.050 (3)0.006 (2)0.036 (2)0.006 (2)
C70.0458 (11)0.0339 (10)0.0412 (11)0.0034 (9)0.0302 (10)0.0016 (9)
C80.0460 (12)0.0344 (10)0.0469 (12)0.0009 (9)0.0337 (10)0.0038 (9)
C90.0551 (13)0.0421 (11)0.0521 (13)0.0012 (10)0.0398 (12)0.0045 (10)
C100.0674 (15)0.0569 (14)0.0712 (16)0.0045 (12)0.0548 (14)0.0006 (12)
C110.0381 (11)0.0328 (10)0.0377 (10)0.0001 (8)0.0245 (9)0.0044 (8)
C120.0396 (11)0.0326 (10)0.0381 (10)0.0005 (8)0.0247 (9)0.0043 (8)
C130.0393 (11)0.0429 (11)0.0410 (11)0.0017 (9)0.0238 (10)0.0040 (9)
C140.0468 (12)0.0497 (12)0.0511 (13)0.0024 (10)0.0342 (11)0.0006 (10)
C150.0541 (13)0.0479 (12)0.0446 (12)0.0024 (10)0.0327 (11)0.0035 (10)
C160.0442 (12)0.0431 (11)0.0404 (11)0.0038 (10)0.0249 (10)0.0008 (9)
C170.0392 (11)0.0352 (10)0.0407 (11)0.0004 (8)0.0250 (9)0.0051 (9)
C180.0410 (11)0.0352 (10)0.0409 (11)0.0011 (8)0.0262 (10)0.0088 (9)
C190.0394 (11)0.0345 (10)0.0409 (11)0.0003 (8)0.0261 (10)0.0042 (8)
C200.0391 (11)0.0420 (11)0.0411 (11)0.0023 (9)0.0238 (10)0.0052 (9)
C210.0392 (12)0.0558 (13)0.0516 (13)0.0009 (11)0.0274 (11)0.0101 (11)
C220.0412 (12)0.0528 (13)0.0481 (13)0.0026 (11)0.0261 (11)0.0072 (11)
Geometric parameters (Å, º) top
N1—C71.361 (2)C4A—C5A1.3900
N1—N21.391 (2)C4A—H4A0.9500
N1—C11.403 (5)C5A—C6A1.3900
N1—C1A1.430 (5)C5A—H5A0.9500
N2—C91.311 (3)C6A—H6A0.9500
N3—C111.328 (2)C7—C81.409 (3)
N3—C71.353 (2)C8—C91.426 (3)
N4—C191.327 (2)C9—C101.489 (3)
N4—C81.342 (3)C10—H10A0.9800
N5—C211.147 (3)C10—H10B0.9800
N6—C221.148 (3)C10—H10C0.9800
C1—C21.3900C11—C191.421 (3)
C1—C61.3900C11—C121.466 (3)
C2—C31.3900C12—C131.384 (3)
C2—H20.9500C12—C171.413 (3)
C3—C41.3900C13—C141.390 (3)
C3—H30.9500C13—H130.9500
C4—C51.3900C14—C151.382 (3)
C4—H40.9500C14—H140.9500
C5—C61.3900C15—C161.387 (3)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—C171.384 (3)
C1A—C2A1.3900C16—H160.9500
C1A—C6A1.3900C17—C181.474 (3)
C2A—C3A1.3900C18—C201.356 (3)
C2A—H2A0.9500C18—C191.466 (3)
C3A—C4A1.3900C20—C221.434 (3)
C3A—H3A0.9500C20—C211.437 (3)
C7—N1—N2110.14 (16)N1—C7—C8106.37 (17)
C7—N1—C1131.2 (3)N4—C8—C7123.33 (18)
N2—N1—C1118.4 (3)N4—C8—C9130.67 (19)
C7—N1—C1A131.0 (3)C7—C8—C9105.99 (18)
N2—N1—C1A118.8 (3)N2—C9—C8109.54 (18)
C9—N2—N1107.95 (16)N2—C9—C10122.5 (2)
C11—N3—C7110.46 (16)C8—C9—C10128.0 (2)
C19—N4—C8111.93 (16)C9—C10—H10A109.5
C2—C1—C6120.0C9—C10—H10B109.5
C2—C1—N1120.3 (4)H10A—C10—H10B109.5
C6—C1—N1119.7 (4)C9—C10—H10C109.5
C3—C2—C1120.0H10A—C10—H10C109.5
C3—C2—H2120.0H10B—C10—H10C109.5
C1—C2—H2120.0N3—C11—C19124.72 (17)
C2—C3—C4120.0N3—C11—C12127.38 (17)
C2—C3—H3120.0C19—C11—C12107.90 (16)
C4—C3—H3120.0C13—C12—C17120.84 (18)
C5—C4—C3120.0C13—C12—C11130.85 (18)
C5—C4—H4120.0C17—C12—C11108.30 (16)
C3—C4—H4120.0C12—C13—C14118.35 (19)
C6—C5—C4120.0C12—C13—H13120.8
C6—C5—H5120.0C14—C13—H13120.8
C4—C5—H5120.0C15—C14—C13120.9 (2)
C5—C6—C1120.0C15—C14—H14119.5
C5—C6—H6120.0C13—C14—H14119.5
C1—C6—H6120.0C14—C15—C16121.1 (2)
C2A—C1A—C6A120.0C14—C15—H15119.4
C2A—C1A—N1121.3 (4)C16—C15—H15119.4
C6A—C1A—N1118.5 (4)C17—C16—C15118.82 (19)
C1A—C2A—C3A120.0C17—C16—H16120.6
C1A—C2A—H2A120.0C15—C16—H16120.6
C3A—C2A—H2A120.0C16—C17—C12119.95 (18)
C4A—C3A—C2A120.0C16—C17—C18131.13 (18)
C4A—C3A—H3A120.0C12—C17—C18108.91 (17)
C2A—C3A—H3A120.0C20—C18—C19125.14 (18)
C5A—C4A—C3A120.0C20—C18—C17128.95 (19)
C5A—C4A—H4A120.0C19—C18—C17105.91 (16)
C3A—C4A—H4A120.0N4—C19—C11124.33 (18)
C4A—C5A—C6A120.0N4—C19—C18126.69 (17)
C4A—C5A—H5A120.0C11—C19—C18108.98 (17)
C6A—C5A—H5A120.0C18—C20—C22122.7 (2)
C5A—C6A—C1A120.0C18—C20—C21123.22 (19)
C5A—C6A—H6A120.0C22—C20—C21114.06 (18)
C1A—C6A—H6A120.0N5—C21—C20176.0 (2)
N3—C7—N1128.40 (18)N6—C22—C20178.4 (2)
N3—C7—C8125.22 (18)
C7—N1—N2—C90.6 (2)N3—C7—C8—C9178.93 (17)
C1—N1—N2—C9174.4 (2)N1—C7—C8—C90.0 (2)
C1A—N1—N2—C9177.4 (3)N1—N2—C9—C80.6 (2)
C7—N1—C1—C218.7 (4)N1—N2—C9—C10177.98 (18)
N2—N1—C1—C2167.6 (2)N4—C8—C9—N2178.80 (19)
C1A—N1—C1—C269 (11)C7—C8—C9—N20.3 (2)
C7—N1—C1—C6160.6 (3)N4—C8—C9—C102.8 (4)
N2—N1—C1—C613.1 (4)C7—C8—C9—C10178.1 (2)
C1A—N1—C1—C6112 (11)C7—N3—C11—C190.2 (3)
C6—C1—C2—C30.0C7—N3—C11—C12179.09 (17)
N1—C1—C2—C3179.3 (4)N3—C11—C12—C131.4 (3)
C1—C2—C3—C40.0C19—C11—C12—C13177.97 (19)
C2—C3—C4—C50.0N3—C11—C12—C17179.69 (18)
C3—C4—C5—C60.0C19—C11—C12—C170.9 (2)
C4—C5—C6—C10.0C17—C12—C13—C140.2 (3)
C2—C1—C6—C50.0C11—C12—C13—C14178.95 (19)
N1—C1—C6—C5179.3 (4)C12—C13—C14—C150.3 (3)
C7—N1—C1A—C2A14.8 (4)C13—C14—C15—C160.3 (3)
N2—N1—C1A—C2A162.6 (3)C14—C15—C16—C170.3 (3)
C1—N1—C1A—C2A80 (11)C15—C16—C17—C120.8 (3)
C7—N1—C1A—C6A169.9 (3)C15—C16—C17—C18178.22 (19)
N2—N1—C1A—C6A12.7 (4)C13—C12—C17—C160.8 (3)
C1—N1—C1A—C6A95 (11)C11—C12—C17—C16179.76 (17)
C6A—C1A—C2A—C3A0.0C13—C12—C17—C18178.45 (17)
N1—C1A—C2A—C3A175.2 (4)C11—C12—C17—C180.6 (2)
C1A—C2A—C3A—C4A0.0C16—C17—C18—C200.9 (3)
C2A—C3A—C4A—C5A0.0C12—C17—C18—C20179.99 (19)
C3A—C4A—C5A—C6A0.0C16—C17—C18—C19179.1 (2)
C4A—C5A—C6A—C1A0.0C12—C17—C18—C190.0 (2)
C2A—C1A—C6A—C5A0.0C8—N4—C19—C110.8 (3)
N1—C1A—C6A—C5A175.3 (4)C8—N4—C19—C18179.82 (17)
C11—N3—C7—N1179.02 (18)N3—C11—C19—N40.8 (3)
C11—N3—C7—C80.3 (3)C12—C11—C19—N4178.58 (17)
N2—N1—C7—N3178.56 (18)N3—C11—C19—C18179.68 (17)
C1—N1—C7—N37.3 (4)C12—C11—C19—C180.9 (2)
C1A—N1—C7—N33.8 (4)C20—C18—C19—N41.1 (3)
N2—N1—C7—C80.4 (2)C17—C18—C19—N4178.91 (18)
C1—N1—C7—C8173.8 (3)C20—C18—C19—C11179.43 (18)
C1A—N1—C7—C8177.2 (3)C17—C18—C19—C110.6 (2)
C19—N4—C8—C70.3 (3)C19—C18—C20—C22179.49 (18)
C19—N4—C8—C9179.28 (19)C17—C18—C20—C220.5 (3)
N3—C7—C8—N40.3 (3)C19—C18—C20—C210.6 (3)
N1—C7—C8—N4179.24 (17)C17—C18—C20—C21179.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N5i0.982.693.362 (3)126
Symmetry code: (i) x+1, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N5i0.982.693.362 (3)126
Symmetry code: (i) x+1, y1, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. SKM and HMSE would like to thank Professor T. El-Emary, Assiut University, for his contribution to this study.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emary, T. & El-Kashef, H. (2013). Eur. J. Med. Chem. 62, 478–485.  CAS PubMed Google Scholar
First citationEmary, E. & Ibrahim, T. (2006). J. Chin. Chem. Soc. 53, 391–401.  Google Scholar
First citationJohnston, P. A. & Kau, S. T. (1993). J. Pharmacol. Exp. Ther. 264, 604–608.  CAS PubMed Google Scholar
First citationKaliszan, R., Pilarski, B., OŚmiałowski, K., Strzałkowska-Grad, H. & Hać, E. (1985). Pharm. Weekbl. Sci. 7, 141–145.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMakino, E., Iwasaki, N., Yagi, N., Ohashi, T., Kato, H., Ito, Y. & Azuma, H. (1990). Chem. Pharm. Bull. 38, 201–207.  CrossRef PubMed CAS Google Scholar
First citationMetobo, E., Jin, H., Tsiang, M. & Kim, C. U. (2006). Bioorg. Med. Chem. Lett. 16, 3985–3988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMyadaraboina, S., Alla, M., Saddanapu, V., Bommena, V. R. & Addlagatta, A. (2010). Eur. J. Med. Chem. 45, 5208–5216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRangnekar, D. W. & Dhamnaskar, S. V. (1990). Dyes and Pigments, 13, 241–250.  CrossRef CAS Web of Science Google Scholar
First citationRusinov, V. L., Kovalev, I. S., Kozhevnikov, D. N., Ustinova, M. M., Chupakhin, O. N., Pokrovskii, A. G., Ilicheva, T. N., Belanov, E. F., Bormotov, N. I., Serova, O. A. & Volkov, G. N. (2005). Pharm. Chem. J. 39, 630–635.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, Y. K. da, Augusto, C. V., de Castro Barbosa, M. L., de Albuquerque Melo, G. M., de Queiroz, A. C., de Lima Matos Freire Dias, T., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007–5015.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1244-o1245
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds