organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,4-Di­hydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thia­zin-3-ol

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elghoulmostafa00@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 March 2017; accepted 17 March 2017; online 24 March 2017)

In the title compound, C10H10N2OS, the benzimidazole ring system is almost planar (r.m.s. deviation = 0.007 Å), whereas the heterocyclic six-membered thia­zine ring has an envelope conformation, with the hy­droxy-substituted C atom as the flap. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds to form zigzag chains running along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The benzimidazole heterocyclic system is an important pharmacophore and privileged structure in the medicinal chemistry. Its derivatives, and particularly 2-mercaptobenz­imidazoles, exert various biological activities such as anti­convulsant (Anandarajagopal et al., 2010[Anandarajagopal, K., Tiwari, R. N., Bothara, K. G., Anbu Jeba Sunilson, J., Dineshkumar, C. & Promwichit, P. (2010). Adv. Appl. Sci. Res. 1, 132-138.]; Bansal & Silakari, 2012[Bansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208-6236.]), anti­viral, anti­cancer (Enumula et al., 2014[Enumula, S., Pangal, A., Gazge, M., Shaikh, J. A. & Ahmed, K. (2014). Res. J. Chem. Sci. 4, 78-88.]), anti-ulcer (Gaba et al., 2014[Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494-505.]), anti­oxidant, anti­bacterial (Mavrova et al., 2015[Mavrova, A. Ts., Yancheva, D., Anastassova, N., Anichina, K., Zvezdanovic, J., Djordjevic, A., Markovic, D. & Smelcerovic, A. (2015). Bioorg. Med. Chem. 23, 6317-6326.]), anti­protozoal (Pérez-Villanueva et al., 2013[Pérez-Villanueva, J., Hernández-Campos, A., Yépez-Mulia, L., Méndez-Cuesta, C., Méndez-Lucio, O., Hernández-Luis, F. & Castillo, R. (2013). Bioorg. Med. Chem. Lett. 23, 4221-4224.]; Walia et al., 2013[Walia, R., Hedaitullah, Md., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2013). Int. J. Res. Pharm. Chem. 1, 565-574.]) and anti­microbial (Yaseen et al., 2010[Yaseen, G. & Sudhakar, J. (2010). Int. J. Pharm. Bio Sci. 1, 281-286.]). The 2-mercaptobenzimidazole ring system is present in the structures of many anti­parasitic, anthelmintic, anti­fungal, anti­viral and anti­tumor drugs. In the present work, we have studied the action of epichlorhydrin towards 2-mercaptobenzimidazole in 2-propanol in the presence of a saturated aqueous solution of sodium bicarbonate. This led to the characterized title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The benzimidazole ring system (N1/N2/C1–C7) is almost planar with an r.m.s. deviation of 0.007 Å. The heterocyclic six-membered thia­zine ring (S1/N2/C7–C10) has an envelope conformation [puckering parameters: amplitude (Q) = 0.5154 (13) Å, θ = 126.91 (13)°, φ = 63.60 (16)°], with the hy­droxy-substituted C atom, C9, as the flap. It deviates from the mean plane through the other 12 atoms of the three-fused ring system by 0.737 (1) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, structural cohesion is ensured by O1—H1⋯N1i hydrogen bonds, which link the mol­ecules into zigzag chains propagating along the b-axis direction. The chains are linked by C8—H8A⋯O1ii hydrogen bonds to form layers parallel to the bc plane (Fig. 2[link] and Table 1[link]). Within the layers there are also C—H⋯π inter­actions present (Table 1[link] and Fig. 2[link])

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1/C6/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.02 2.7536 (14) 148
C8—H8A⋯O1ii 0.97 2.38 3.2231 (15) 145
C10—H10ACg1ii 0.97 2.62 3.422 (14) 138
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the a axis, showing mol­ecules linked by hydrogen bonds (dashed lines) and C—H⋯π inter­actions (blue arrows); see Table 1[link] for details. For clarity, only H atoms (grey balls) H1, H8A and H10A have been included.

Synthesis and crystallization

A mixture of 2-mercaptobenzimidazole (1 g, 7 mmol) and epichlorhydrin (0.43 g, 4.7 mmol) in 20 ml of a saturated aqueous solution of sodium bicarbonate and 20 ml of 2-propanol, was heated under reflux for 6 h. After cooling, the product which precipitated was filtered, washed with water and then recrystallized from ethanol solution to afford the title compound as colourless block-like crystals (yield 44%; m.p. 485–487 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H10N2OS
Mr 206.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 17.570 (3), 6.3994 (10), 8.8690 (15)
β (°) 95.641 (8)
V3) 992.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.32 × 0.26 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.680, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 32163, 3459, 2928
Rint 0.027
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.08
No. of reflections 3459
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol top
Crystal data top
C10H10N2OSDx = 1.381 Mg m3
Mr = 206.26Melting point: 486 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.570 (3) ÅCell parameters from 3459 reflections
b = 6.3994 (10) Åθ = 3.4–32.0°
c = 8.8690 (15) ŵ = 0.29 mm1
β = 95.641 (8)°T = 296 K
V = 992.4 (3) Å3Block, colourless
Z = 40.32 × 0.26 × 0.21 mm
F(000) = 432
Data collection top
Bruker X8 APEX
diffractometer
3459 independent reflections
Radiation source: fine-focus sealed tube2928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 32.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2626
Tmin = 0.680, Tmax = 0.747k = 99
32163 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1833P]
where P = (Fo2 + 2Fc2)/3
3459 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79752 (7)0.5625 (2)0.73771 (14)0.0431 (3)
C20.87063 (9)0.6448 (3)0.7334 (2)0.0649 (4)
H20.87910.77030.68480.078*
C30.93005 (11)0.5291 (5)0.8056 (3)0.0882 (7)
H30.97980.57810.80500.106*
C40.91779 (13)0.3425 (5)0.8789 (3)0.0896 (7)
H40.95940.27060.92640.108*
C50.84527 (11)0.2607 (3)0.8830 (2)0.0702 (5)
H50.83740.13570.93270.084*
C60.78427 (8)0.3732 (2)0.80974 (15)0.0456 (3)
C70.67468 (7)0.49009 (16)0.71854 (12)0.0353 (2)
C80.56819 (8)0.7590 (2)0.57928 (13)0.0430 (3)
H8A0.56870.73360.47160.052*
H8B0.51920.82120.59480.052*
C90.63086 (8)0.91282 (18)0.62946 (12)0.0396 (2)
H90.62121.04240.57180.048*
C100.70875 (8)0.82999 (19)0.59837 (13)0.0415 (3)
H10A0.70940.80630.49050.050*
H10B0.74760.93320.62940.050*
N10.70658 (7)0.33100 (15)0.79621 (12)0.0437 (2)
N20.72630 (6)0.63499 (15)0.67993 (11)0.0360 (2)
O10.62792 (7)0.95827 (14)0.78494 (9)0.0477 (2)
H10.66191.04150.81290.071*
S10.57672 (2)0.51091 (5)0.67849 (4)0.04656 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (6)0.0453 (6)0.0404 (6)0.0054 (5)0.0084 (5)0.0050 (5)
C20.0463 (7)0.0770 (11)0.0726 (10)0.0131 (7)0.0112 (7)0.0040 (9)
C30.0460 (9)0.120 (2)0.0986 (17)0.0010 (10)0.0054 (10)0.0048 (14)
C40.0630 (11)0.1130 (19)0.0899 (15)0.0269 (12)0.0080 (10)0.0015 (14)
C50.0777 (11)0.0656 (10)0.0657 (10)0.0219 (9)0.0009 (8)0.0036 (8)
C60.0559 (7)0.0396 (6)0.0414 (6)0.0029 (5)0.0054 (5)0.0042 (5)
C70.0461 (6)0.0282 (4)0.0321 (5)0.0113 (4)0.0070 (4)0.0048 (3)
C80.0490 (6)0.0455 (6)0.0342 (5)0.0025 (5)0.0023 (5)0.0068 (4)
C90.0614 (7)0.0310 (5)0.0274 (4)0.0030 (5)0.0091 (4)0.0008 (4)
C100.0547 (7)0.0354 (5)0.0359 (5)0.0100 (5)0.0116 (5)0.0064 (4)
N10.0601 (6)0.0284 (4)0.0428 (5)0.0071 (4)0.0065 (4)0.0005 (4)
N20.0423 (5)0.0311 (4)0.0351 (4)0.0094 (3)0.0074 (4)0.0003 (3)
O10.0801 (7)0.0337 (4)0.0312 (4)0.0166 (4)0.0157 (4)0.0064 (3)
S10.04469 (19)0.04324 (18)0.0517 (2)0.01646 (12)0.00467 (13)0.00391 (12)
Geometric parameters (Å, º) top
C1—N21.3847 (17)C7—N21.3641 (13)
C1—C21.393 (2)C7—S11.7280 (13)
C1—C61.3992 (19)C8—C91.5108 (18)
C2—C31.385 (3)C8—S11.8145 (14)
C2—H20.9300C8—H8A0.9700
C3—C41.386 (4)C8—H8B0.9700
C3—H30.9300C9—O11.4152 (13)
C4—C51.381 (3)C9—C101.5179 (19)
C4—H40.9300C9—H90.9800
C5—C61.397 (2)C10—N21.4601 (15)
C5—H50.9300C10—H10A0.9700
C6—N11.3852 (18)C10—H10B0.9700
C7—N11.3225 (15)O1—H10.8200
N2—C1—C2131.71 (14)S1—C8—H8A108.8
N2—C1—C6105.92 (11)C9—C8—H8B108.8
C2—C1—C6122.37 (15)S1—C8—H8B108.8
C3—C2—C1116.11 (19)H8A—C8—H8B107.7
C3—C2—H2121.9O1—C9—C8109.00 (10)
C1—C2—H2121.9O1—C9—C10111.64 (11)
C2—C3—C4122.2 (2)C8—C9—C10111.29 (10)
C2—C3—H3118.9O1—C9—H9108.3
C4—C3—H3118.9C8—C9—H9108.3
C5—C4—C3121.69 (19)C10—C9—H9108.3
C5—C4—H4119.2N2—C10—C9111.02 (9)
C3—C4—H4119.2N2—C10—H10A109.4
C4—C5—C6117.34 (19)C9—C10—H10A109.4
C4—C5—H5121.3N2—C10—H10B109.4
C6—C5—H5121.3C9—C10—H10B109.4
N1—C6—C5130.08 (15)H10A—C10—H10B108.0
N1—C6—C1109.63 (11)C7—N1—C6104.98 (10)
C5—C6—C1120.27 (15)C7—N2—C1106.15 (10)
N1—C7—N2113.32 (11)C7—N2—C10126.31 (11)
N1—C7—S1121.93 (9)C1—N2—C10127.51 (10)
N2—C7—S1124.71 (9)C9—O1—H1109.5
C9—C8—S1113.84 (9)C7—S1—C8101.55 (6)
C9—C8—H8A108.8
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1/C6/C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.022.7536 (14)148
C8—H8A···O1ii0.972.383.2231 (15)145
C10—H10A···Cg1ii0.972.623.422 (14)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAnandarajagopal, K., Tiwari, R. N., Bothara, K. G., Anbu Jeba Sunilson, J., Dineshkumar, C. & Promwichit, P. (2010). Adv. Appl. Sci. Res. 1, 132–138.  CAS Google Scholar
First citationBansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208–6236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnumula, S., Pangal, A., Gazge, M., Shaikh, J. A. & Ahmed, K. (2014). Res. J. Chem. Sci. 4, 78–88.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMavrova, A. Ts., Yancheva, D., Anastassova, N., Anichina, K., Zvezdanovic, J., Djordjevic, A., Markovic, D. & Smelcerovic, A. (2015). Bioorg. Med. Chem. 23, 6317–6326.  CrossRef CAS PubMed Google Scholar
First citationPérez-Villanueva, J., Hernández-Campos, A., Yépez-Mulia, L., Méndez-Cuesta, C., Méndez-Lucio, O., Hernández-Luis, F. & Castillo, R. (2013). Bioorg. Med. Chem. Lett. 23, 4221–4224.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalia, R., Hedaitullah, Md., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2013). Int. J. Res. Pharm. Chem. 1, 565–574.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaseen, G. & Sudhakar, J. (2010). Int. J. Pharm. Bio Sci. 1, 281–286.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds