organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ammonium hydrogen bis­­[4-(2-phenyl-2H-tetra­zol-5-yl)benzoate]

CROSSMARK_Color_square_no_text.svg

aSt. Catherine University, Dept. of Chemistry and Biochemistry, 2004 Randolph Avenue, St. Paul, MN 55105, USA
*Correspondence e-mail: dejanzen@stkate.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 September 2016; accepted 5 October 2016; online 14 October 2016)

The title salt, NH4+·H+·2C14H9N4O2, is composed of an ammonium cation with a strong inter­molecular negatively charge-assisted hydrogen-bonded acid/conjugate base-pair monoanion. The carb­oxy­lic acid H atom is located on an inversion center, while the N atom of the ammonium cation is located on a twofold rotation axis. In the crystal, the N—H bonds of each ammonium cation act as donors with carboxyl­ate O-atom acceptors to form chains along the a-axis direction. The chains are linked by offset ππ inter­actions [inter­centroid distances = 3.588 (2) and 3.686 (2) Å], forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tetra­zoles are an inter­esting class of compounds that are utilized in a bioorthogonal reaction called photoclick chemistry (Ramil & Lin, 2014[Ramil, C. P. & Lin, Q. (2014). Curr. Opin. Chem. Biol. 21, 89-95.]). When tetra­zoles are irradiated with UV light, a nitrile imine is formed which can subsequently complete a cyclo­addition with olefins present in situ (Zheng et al., 2009[Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. J. (2009). J. Am. Chem. Soc. 131, 18036-18037.]). After cyclo­addition, a fluorescent pyrazoline is produced that can be used as a tag to monitor product formation. This technology has been successfully used to impart fluorescent properties onto alkene-containing proteins (Song et al., 2008[Song, W., Wang, Y., Qu, J. & Lin, Q. (2008). J. Am. Chem. Soc. 130, 9654-9655.]; Lim & Lin, 2011[Lim, R. K. & Lin, Q. (2011). Acc. Chem. Res. 44, 828-839.]). Upon synthesizing 4-(2-phenyl-2H-tetra­zol-5-yl)benzoic acid for this purpose, X-ray diffraction quality ammonium salt crystals of the title compound were produced and we report herein on its crystal structure.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The ammonium cation (N5) is located on a twofold rotation axis, and the carb­oxy­lic acid H atom (H1A), located on an inversion center, inter­acts with two inversion-related 4-(2-phenyl-2H-tetra­zol-5-yl)benzoate ions (Fig. 1[link] and Table 1[link]). The conjugate acid/base O1⋯O1(−x + 1, −y − 2, −z + 1) distance of 2.561 (3) Å is short, consistent with a strong negatively charge-assisted hydrogen bond (Gilli et al., 2009[Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 42, 33-44.]). The narrow range of bond lengths [1.312 (3)–1.359 (3) Å] in the tetra­zole moiety suggests significant conjugation in this ring. The 4-(2-phenyl-2H-tetra­zol-5-yl)benzoate moiety is relatively planar. The phenyl (atoms C1–C6) and benzoate rings (atoms C8–C13) are inclined to the plane of the tetra­zole ring (atoms N1–N4/C7) by 2.54 (15) and 6.10 (14)°, respectively, and by 3.84 (13)° to each another. The acetate group (C11/C14/O1/O2) is inclined to the benzene ring (C8–C13) to which it is attached by 10.44 (14)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 1.28 1.28 2.561 (3) 180
N5—H5A⋯O2ii 0.80 (8) 2.09 (8) 2.815 (4) 151 (7)
N5—H5B⋯O1iii 0.84 (11) 2.15 (10) 2.8513 (18) 140 (9)
Symmetry codes: (i) -x+1, -y-2, -z+1; (ii) [x+{\script{1\over 2}}, -y-1, z]; (iii) [-x+{\script{3\over 2}}, y+1, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. The acidic H atom, H1A, is located on in inversion center, and unlabeled atoms of the anion are related to the labelled atoms by the inversion symmetry code (−x + 1, −y − 2, −z + 1).

In the crystal, inter­molecular hydrogen bonding is present between the ammonium donor and four O-atom acceptors from two conjugate acid/base pairs. The hydrogen-bonding motif [R22(8)] occurs as a chain of rings (joined at N5) along the a-axis direction plane (Table 1[link] and Fig. 2[link]). This pattern of hydrogen bonding is unique to the small group of existing reported ammonium hydrogen bis­(carboxyl­ate) structures, which all exhibit hydrogen bonding of ammonium cations with carboxyl­ate O atoms from four unique conjugate acid/base pairs (Chowdhury & Kariuki, 2006[Chowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth Des. 6, 774-780.]; Golic & Laza­rini, 1975[Golic, L. & Lazarini, F. (1975). Cryst. Struct. Commun. 4, 487-490.]; Ichikawa, 1972[Ichikawa, M. (1972). Acta Cryst. B28, 755-760.]; Nahringbauer, 1969[Nahringbauer, I. (1969). Acta Chem. Scand. 23, 1653-1666.]; Perumalla & Sun, 2013[Perumalla, S. R. & Sun, C. C. (2013). CrystEngComm, 15, 5756-1559.]). Adjacent chains are linked via offset ππ inter­actions, forming layers parallel to the ab plane; see Fig. 3[link] [Cg1⋯Cg3i = 3.588 (2) Å, inter­planar distance = 3.480 (1) Å, slippage = 1.121 Å; Cg1⋯Cg2ii = 3.686 (2) Å, inter­planar distance = 3.352 (1) Å, slippage = 1.384 Å; Cg1, Cg2, and Cg3 are the centroids of the N1–N4/C7, C1–C6 and C8–C13 rings, respectively; symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z].

[Figure 2]
Figure 2
A view of the hydrogen bonding involving the ammonium cation. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, the C-bound H atoms have been omitted.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, the C-bound H atoms have been omitted.

Synthesis and crystallization

The title compound was synthesized using procedures adopted from multiple literature reports (Song et al., 2008[Song, W., Wang, Y., Qu, J. & Lin, Q. (2008). J. Am. Chem. Soc. 130, 9654-9655.]; Ito et al., 1976[Ito, S., Tanaka, Y., Kakehi, A. & Kondo, K. (1976). Bull. Chem. Soc. Jpn, 49, 1920-1923.]). To a solution of 4-formyl­benzoic acid (0.75 g, 5.0 mmol) in ethanol (50 ml) was added benzene­sulfono­hydrazide (0.86 g, 25 mmol) and the solution was stirred for 35 min. Water (200 ml) was then added and the beaker containing the reaction was placed in an ice bath to produce a precipitate, which was subsequently filtered off and dissolved in pyridine (30 ml). This was labeled solution A. In another flask aniline (0.47 g, 5.0 mmol) was dissolved in a solution consisting of water (4 ml), ethanol (4 ml), and concentrated HCl (1.3 ml). This solution was placed in an ice bath while a cooled solution of NaNO2 (0.35 g, 5.0 mmol) in 2 ml water was added dropwise. This was labeled solution B. Solution A was then placed in an ice salt bath while solution B was added dropwise over 10 min under magnetic stirring. This solution was allowed to sit for 20 min, after which time it was extracted with ethyl acetate (3 × 30 ml). Then 3 M HCl (250 ml) was added to the combined organic extracts and the mixture was stirred for 15 min. The organic layer was then collected, concentrated, and recrystallized from hot ethyl acetate to produce 0.235 g of light-pink crystals of 4-(2-phenyl-2H-tetra­zol-5-yl)benzoic acid (17.7% yield). 1H NMR (400 MHz, DMSO-d6): δ 13.31 (br s, 1H), 8.27 (d, J = 8.7 Hz, 2H), 8.14 (d, J = 7.8, 2H), 8.12 (d, J = 8.3 Hz, 2H), 7.68 (dd, J = 7.8, 8.7 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 166.6, 163.6, 136.0, 132.6 130.3, 130.2, 130.1, 126.7, 119.1.

Crystals of the title compound were prepared by dissolving 4-(2-phenyl-2H-tetra­zol-5-yl)benzoic acid (30 mg) in 6 ml of a 2:1 solution of methanol–H2O. This gave a cloudy solution which became clear on the addition of 6 drops of 6 M NH4OH. The solution was allowed to sit in an open vial at room temperature, and yielded colourless prismatic crystals of the title compound after ca 10 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula NH4+·H+·2C14H9N4O2
Mr 549.55
Crystal system, space group Monoclinic, I2/a
Temperature (K) 173
a, b, c (Å) 12.350 (3), 4.8107 (13), 42.812 (11)
β (°) 97.569 (9)
V3) 2521.4 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.43 × 0.43 × 0.08
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.679, 0.992
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 4744, 2206, 1788
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.128, 1.19
No. of reflections 2206
No. of parameters 195
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Ammonium hydrogen bis[4-(2-phenyl-2H-tetrazol-5-yl)benzoate] top
Crystal data top
NH4+·H+·2C14H9N4O2F(000) = 1144.00
Mr = 549.55Dx = 1.448 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71075 Å
a = 12.350 (3) ÅCell parameters from 4069 reflections
b = 4.8107 (13) Åθ = 3.3–25.1°
c = 42.812 (11) ŵ = 0.10 mm1
β = 97.569 (9)°T = 173 K
V = 2521.4 (12) Å3Prism, colourless
Z = 40.43 × 0.43 × 0.08 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2206 independent reflections
Radiation source: sealed X-ray tube1788 reflections with F2 > 2.0σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.031
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1412
Tmin = 0.679, Tmax = 0.992k = 55
4744 measured reflectionsl = 5050
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0357P)2 + 4.8932P]
where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52029 (14)0.8059 (4)0.48115 (4)0.0259 (4)
O20.34227 (14)0.6986 (4)0.47209 (5)0.0359 (5)
N10.45919 (17)0.2934 (5)0.35894 (5)0.0260 (5)
N20.51882 (16)0.4507 (5)0.34221 (5)0.0248 (5)
N30.62631 (17)0.4060 (5)0.34874 (6)0.0326 (6)
N40.63802 (18)0.2133 (5)0.37061 (6)0.0321 (6)
N50.75000.1560 (9)0.50000.0551 (14)
C10.4723 (2)0.6455 (5)0.31930 (6)0.0242 (6)
C20.3595 (2)0.6681 (6)0.31350 (7)0.0318 (7)
H20.31370.55760.32470.038*
C30.3158 (2)0.8570 (6)0.29087 (7)0.0366 (7)
H30.23870.87470.28630.044*
C40.3818 (2)1.0198 (6)0.27481 (7)0.0358 (7)
H40.35031.14800.25930.043*
C50.4942 (2)0.9957 (6)0.28133 (7)0.0354 (7)
H50.53991.10840.27040.043*
C60.5402 (2)0.8083 (6)0.30370 (6)0.0304 (7)
H60.61730.79170.30830.037*
C70.5358 (2)0.1465 (6)0.37659 (6)0.0238 (6)
C80.5118 (2)0.0604 (6)0.39962 (6)0.0245 (6)
C90.4036 (2)0.1329 (6)0.40206 (6)0.0265 (6)
H90.34550.04790.38870.032*
C100.3813 (2)0.3281 (6)0.42394 (6)0.0254 (6)
H100.30760.37690.42540.030*
C110.4652 (2)0.4553 (6)0.44397 (6)0.0236 (6)
C120.5730 (2)0.3826 (6)0.44126 (6)0.0277 (6)
H120.63100.46870.45460.033*
C130.5963 (2)0.1879 (6)0.41957 (6)0.0279 (6)
H130.67010.13980.41810.034*
C140.4385 (2)0.6670 (6)0.46713 (6)0.0249 (6)
H1A0.50001.00000.50000.11 (2)*
H5A0.770 (8)0.061 (16)0.4864 (18)0.19 (4)*
H5B0.806 (8)0.25 (2)0.507 (3)0.31 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (9)0.0254 (10)0.0312 (10)0.0015 (8)0.0033 (8)0.0051 (8)
O20.0192 (10)0.0465 (13)0.0433 (12)0.0006 (9)0.0088 (8)0.0150 (10)
N10.0245 (12)0.0269 (12)0.0278 (12)0.0017 (10)0.0084 (10)0.0009 (10)
N20.0194 (11)0.0284 (13)0.0277 (12)0.0011 (10)0.0067 (9)0.0024 (10)
N30.0188 (11)0.0408 (15)0.0387 (14)0.0015 (11)0.0062 (10)0.0105 (12)
N40.0219 (12)0.0390 (15)0.0361 (14)0.0018 (10)0.0060 (10)0.0125 (12)
N50.0184 (19)0.022 (2)0.126 (5)0.0000.014 (2)0.000
C10.0252 (13)0.0231 (14)0.0244 (13)0.0010 (11)0.0036 (11)0.0015 (12)
C20.0247 (14)0.0338 (16)0.0383 (16)0.0012 (13)0.0090 (12)0.0009 (14)
C30.0250 (15)0.0414 (18)0.0426 (18)0.0058 (13)0.0015 (13)0.0008 (15)
C40.0412 (17)0.0316 (17)0.0334 (16)0.0078 (14)0.0002 (13)0.0039 (14)
C50.0366 (16)0.0335 (17)0.0378 (16)0.0003 (14)0.0107 (13)0.0049 (14)
C60.0255 (14)0.0355 (16)0.0309 (15)0.0001 (13)0.0058 (12)0.0035 (14)
C70.0207 (13)0.0265 (15)0.0243 (13)0.0016 (11)0.0033 (11)0.0022 (12)
C80.0230 (13)0.0262 (15)0.0250 (14)0.0007 (12)0.0058 (11)0.0034 (12)
C90.0204 (13)0.0301 (16)0.0288 (14)0.0017 (11)0.0029 (11)0.0022 (13)
C100.0176 (13)0.0298 (15)0.0291 (14)0.0001 (11)0.0047 (11)0.0010 (13)
C110.0217 (13)0.0242 (14)0.0260 (14)0.0001 (11)0.0067 (11)0.0043 (12)
C120.0189 (13)0.0304 (15)0.0332 (15)0.0020 (11)0.0013 (11)0.0030 (13)
C130.0194 (13)0.0317 (15)0.0333 (15)0.0025 (12)0.0052 (11)0.0009 (13)
C140.0232 (14)0.0243 (14)0.0275 (14)0.0016 (11)0.0047 (11)0.0019 (12)
Geometric parameters (Å, º) top
O1—C141.291 (3)C4—H40.9500
O2—C141.244 (3)C5—C61.382 (4)
N1—N21.329 (3)C5—H50.9500
N1—C71.333 (3)C6—H60.9500
N2—N31.337 (3)C7—C81.458 (4)
N2—C11.422 (3)C8—C91.399 (3)
N3—N41.312 (3)C8—C131.400 (4)
N4—C71.359 (3)C9—C101.379 (4)
N5—H5A0.80 (8)C9—H90.9500
N5—H5B0.84 (11)C10—C111.396 (4)
C1—C61.382 (4)C10—H100.9500
C1—C21.387 (4)C11—C121.396 (3)
C2—C31.385 (4)C11—C141.489 (4)
C2—H20.9500C12—C131.376 (4)
C3—C41.378 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.384 (4)
N2—N1—C7101.8 (2)N1—C7—N4112.0 (2)
N1—N2—N3113.7 (2)N1—C7—C8123.5 (2)
N1—N2—C1123.0 (2)N4—C7—C8124.4 (2)
N3—N2—C1123.3 (2)C9—C8—C13119.2 (2)
N4—N3—N2106.0 (2)C9—C8—C7120.2 (2)
N3—N4—C7106.5 (2)C13—C8—C7120.6 (2)
H5A—N5—H5B103 (8)C10—C9—C8119.9 (2)
C6—C1—C2121.9 (3)C10—C9—H9120.1
C6—C1—N2119.4 (2)C8—C9—H9120.1
C2—C1—N2118.7 (2)C9—C10—C11121.2 (2)
C3—C2—C1117.8 (3)C9—C10—H10119.4
C3—C2—H2121.1C11—C10—H10119.4
C1—C2—H2121.1C12—C11—C10118.5 (2)
C4—C3—C2121.4 (3)C12—C11—C14121.6 (2)
C4—C3—H3119.3C10—C11—C14119.8 (2)
C2—C3—H3119.3C13—C12—C11120.9 (2)
C3—C4—C5119.7 (3)C13—C12—H12119.6
C3—C4—H4120.2C11—C12—H12119.6
C5—C4—H4120.2C12—C13—C8120.3 (2)
C6—C5—C4120.3 (3)C12—C13—H13119.9
C6—C5—H5119.8C8—C13—H13119.9
C4—C5—H5119.9O2—C14—O1124.3 (2)
C5—C6—C1119.0 (3)O2—C14—C11119.9 (2)
C5—C6—H6120.5O1—C14—C11115.8 (2)
C1—C6—H6120.5
C7—N1—N2—N30.2 (3)N3—N4—C7—C8179.8 (3)
C7—N1—N2—C1179.5 (2)N1—C7—C8—C96.1 (4)
N1—N2—N3—N40.2 (3)N4—C7—C8—C9174.2 (3)
C1—N2—N3—N4179.5 (2)N1—C7—C8—C13173.7 (3)
N2—N3—N4—C70.1 (3)N4—C7—C8—C136.1 (4)
N1—N2—C1—C6177.7 (3)C13—C8—C9—C100.0 (4)
N3—N2—C1—C63.1 (4)C7—C8—C9—C10179.8 (3)
N1—N2—C1—C21.7 (4)C8—C9—C10—C110.3 (4)
N3—N2—C1—C2177.6 (3)C9—C10—C11—C120.6 (4)
C6—C1—C2—C31.3 (4)C9—C10—C11—C14179.5 (2)
N2—C1—C2—C3179.4 (3)C10—C11—C12—C130.6 (4)
C1—C2—C3—C40.7 (4)C14—C11—C12—C13179.5 (3)
C2—C3—C4—C50.1 (5)C11—C12—C13—C80.4 (4)
C3—C4—C5—C60.4 (5)C9—C8—C13—C120.1 (4)
C4—C5—C6—C10.2 (4)C7—C8—C13—C12179.9 (3)
C2—C1—C6—C51.1 (4)C12—C11—C14—O2169.8 (3)
N2—C1—C6—C5179.6 (3)C10—C11—C14—O211.3 (4)
N2—N1—C7—N40.1 (3)C12—C11—C14—O19.5 (4)
N2—N1—C7—C8179.7 (2)C10—C11—C14—O1169.3 (2)
N3—N4—C7—N10.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i1.281.282.561 (3)180
N5—H5A···O2ii0.80 (8)2.09 (8)2.815 (4)151 (7)
N5—H5B···O1iii0.84 (11)2.15 (10)2.8513 (18)140 (9)
Symmetry codes: (i) x+1, y2, z+1; (ii) x+1/2, y1, z; (iii) x+3/2, y+1, z+1.
 

Acknowledgements

The authors acknowledge St. Catherine University and NSF-MRI award No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility', as well as an NSF–CHE award No. 1308655 `Qu­anti­fication and Visualization of the Prenylome'.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth Des. 6, 774–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 42, 33–44.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGolic, L. & Lazarini, F. (1975). Cryst. Struct. Commun. 4, 487–490.  CAS Google Scholar
First citationIchikawa, M. (1972). Acta Cryst. B28, 755–760.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationIto, S., Tanaka, Y., Kakehi, A. & Kondo, K. (1976). Bull. Chem. Soc. Jpn, 49, 1920–1923.  CrossRef CAS Web of Science Google Scholar
First citationLim, R. K. & Lin, Q. (2011). Acc. Chem. Res. 44, 828–839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNahringbauer, I. (1969). Acta Chem. Scand. 23, 1653–1666.  CrossRef CAS Web of Science Google Scholar
First citationPerumalla, S. R. & Sun, C. C. (2013). CrystEngComm, 15, 5756–1559.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamil, C. P. & Lin, Q. (2014). Curr. Opin. Chem. Biol. 21, 89–95.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W., Wang, Y., Qu, J. & Lin, Q. (2008). J. Am. Chem. Soc. 130, 9654–9655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. J. (2009). J. Am. Chem. Soc. 131, 18036–18037.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds