organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Meth­­oxy-N′-(4-methyl­benzyl­­idene)benzo­hydrazide

aDepartment of Chemistry, Saranathan College of Engineering, Tiruchirappalli, Tamilnadu, India, bPG and Research Department of Chemistry, Periyar EVR College, Tiruchirappalli, Tamilnadu, India, and cDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai-603 203 Tamil Nadu, India
*Correspondence e-mail: swaroopapranav@gmail.com, phdguna@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 March 2016; accepted 14 March 2016; online 18 March 2016)

In the title compound, C16H16N2O2, the dihedral angle between the meth­oxy­phenyl ring and the methyl­benzyl­idene ring is 60.43 (5)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, reinforced by C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction. Inversion-related chains are linked via C—H⋯π inter­actions, forming ribbons propagating along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazones have attracted inter­est due to their versatile applications in various fields, such as biology (Ibrahim et al., 2016[Ibrahim, H. S., Abou-seri, S. M., Ismail, N. S. M., Elaasser, M. M., Aly, M. H. & Abdel-Aziz, H. A. (2016). Eur. J. Med. Chem. 108, 415-422.]), medicine (Velezheva et al., 2016[Velezheva, V., Brennan, P., Ivanov, P., Kornienko, A., Lyubimov, S., Kazarian, K., Nikonenko, B., Majorov, K. & Apt, A. (2016). Bioorg. Med. Chem. Lett. 26, 978-985.]) and catalysis (Selvamurugan et al., 2016[Selvamurugan, S., Ramachandran, R., Prakash, G., Viswanathamurthi, P., Malecki, J. G. & Endo, A. (2016). J. Organomet. Chem. 803, 119-127.]). Hydrazone derivatives exhibit anti­microbial (Pieczonka et al., 2013[Pieczonka, A. M., Strzelczyk, A., Sadowska, B., Mlostoń, G. & Stączek, P. (2013). Eur. J. Med. Chem. 64, 389-395.]), anti-proliferation (Yadagiri et al., 2014[Yadagiri, B., Holagunda, U. D., Bantu, R., Nagarapu, L., Guguloth, V., Polepally, S. & Jain, N. (2014). Bioorg. Med. Chem. Lett. 24, 5041-5044.]) and anti­platelet (Mashayekhi et al., 2013[Mashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). Chem. Pharm. Bull. 61, 144-150.]) activities.

The geometric parameters of the title mol­ecule (Fig. 1[link]) agree well with those reported for similar structures (Maheswari et al., 2016[Maheswari, R., Manjula, J. & Gunasekaran, B. (2016). IUCrData, 1, x160304.]; Nair et al., 2012[Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.]). The dihedral angle between the meth­oxy­phenyl ring and the methyl­benzyl­idene ring is 60.43 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The crystal packing is controlled by N—H⋯O and C—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]), which result in the formation of chains along [001]. Inversion-related chains are linked via C—H⋯π inter­actions, forming ribbons propagating along [001].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.09 2.9280 (12) 164
C6—H6⋯O2i 0.93 2.58 3.3093 (14) 136
C9—H9⋯O2i 0.93 2.50 3.3051 (15) 145
C1—H1CCg1ii 0.96 2.77 3.6515 (5) 152
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

A few drops of conc. HCl were added to a mixture of 4-meth­oxy­benzohydrazide (1.7 g, 0.01 mol) and p-methyl benzaldehyde (1.2 ml, 0.01 mol) in ethanol (15 ml). The reaction mixture was refluxed for 3 h. The precipitate that formed was filtered and washed with petroleum ether and dried in a vacuum desiccator. The crude solid was recrystallized from DMSO giving colourless block-like crystals (yield 96%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O2
Mr 268.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.7678 (7), 13.0072 (7), 9.9025 (6)
β (°) 112.371 (2)
V3) 1401.66 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.987, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 13430, 3517, 2752
Rint 0.025
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.00
No. of reflections 3517
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.18
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

A few drops of conc. HCl were added to a mixture of 4-methoxybenzohydrazide (1.7 g, 0.01 mol) and p-methyl benzaldehyde (1.2 ml, 0.01 mol) in ethanol (xx ml) how much??. The reaction mixture was refluxed for 3 h. The precipitate that formed was filtered and washed with petroleum ether and dried in a vacuum desiccator. The crude solid was recrystallized from DMSO giving colourless block-like crystals (yield 96%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Hydrazones have attracted interest due to their versatile applications in various fields, such as biology (Ibrahim et al., 2016), medicine (Velezheva et al., 2016) and catalysis (Selvamurugan et al., 2016). Hydrazone derivatives exhibit antimicrobial (Pieczonka et al., 2013), anti-proliferation (Yadagiri et al., 2014) and antiplatelet (Mashayekhi et al., 2013) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for similar structures (Maheswari et al., 2016; Nair et al., 2012). The dihedral angle between the methoxyphenyl ring and the methylbenzylidene ring is 60.43 (5)°.

The crystal packing is controlled by N—H···O and C—H···O hydrogen bonds (Fig. 2 and Table 1), which result in the formation of chains along [001]. Inversion-related chains are linked via C—H···π interactions, forming ribbons propagating along [001].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1).
(E)-4-Methoxy-N'-(4-methylbenzylidene)benzohydrazide top
Crystal data top
C16H16N2O2F(000) = 568
Mr = 268.31Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7678 (7) ÅCell parameters from 3517 reflections
b = 13.0072 (7) Åθ = 1.9–28.4°
c = 9.9025 (6) ŵ = 0.09 mm1
β = 112.371 (2)°T = 296 K
V = 1401.66 (14) Å3Block, colourless
Z = 40.15 × 0.13 × 0.11 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3517 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 28.4°, θmin = 1.9°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.987, Tmax = 0.991l = 1312
13430 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.199P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3517 reflectionsΔρmax = 0.21 e Å3
184 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00
Crystal data top
C16H16N2O2V = 1401.66 (14) Å3
Mr = 268.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7678 (7) ŵ = 0.09 mm1
b = 13.0072 (7) ÅT = 296 K
c = 9.9025 (6) Å0.15 × 0.13 × 0.11 mm
β = 112.371 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2752 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.991Rint = 0.025
13430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3517 reflectionsΔρmin = 0.18 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C160.5536 (2)0.86088 (13)0.1367 (3)0.0842 (6)
H16A0.62520.90310.18050.126*
H16B0.50460.86330.19520.126*
H16C0.50620.88580.04040.126*
O20.76856 (10)0.20548 (7)0.35951 (9)0.0538 (3)
N20.70263 (10)0.37061 (7)0.17516 (11)0.0427 (3)
C80.77468 (11)0.19967 (8)0.23869 (12)0.0385 (3)
C50.82056 (11)0.10506 (8)0.19119 (11)0.0376 (3)
N10.74327 (10)0.27769 (7)0.14161 (10)0.0431 (3)
H10.74850.26970.05800.052*
C60.79284 (11)0.07902 (9)0.04612 (12)0.0401 (3)
H60.74250.12210.02730.048*
O10.96488 (10)0.16261 (7)0.09212 (12)0.0629 (3)
C70.83872 (12)0.00995 (9)0.00857 (13)0.0440 (3)
H70.81830.02670.08920.053*
C20.91488 (12)0.07376 (9)0.11683 (14)0.0451 (3)
C40.89715 (14)0.03958 (10)0.29838 (13)0.0517 (3)
H40.91640.05530.39620.062*
C90.70520 (12)0.44398 (9)0.09164 (13)0.0446 (3)
H90.73390.43080.01790.054*
C100.66494 (11)0.54833 (9)0.10661 (12)0.0423 (3)
C30.94501 (15)0.04806 (10)0.26235 (14)0.0559 (4)
H30.99750.09000.33560.067*
C130.59258 (13)0.75127 (10)0.12739 (16)0.0541 (3)
C110.58724 (12)0.57071 (10)0.17829 (15)0.0482 (3)
H110.55890.51790.22070.058*
C120.55146 (13)0.67065 (11)0.18738 (18)0.0561 (4)
H120.49850.68400.23500.067*
C10.93554 (16)0.19275 (12)0.0552 (2)0.0667 (4)
H1A0.84870.20480.10150.100*
H1B0.97920.25470.05760.100*
H1C0.95890.13920.10620.100*
C150.70586 (16)0.62896 (11)0.04561 (18)0.0595 (4)
H150.75760.61560.00360.071*
C140.67073 (16)0.72906 (11)0.05695 (19)0.0636 (4)
H140.70020.78220.01650.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.0873 (12)0.0478 (9)0.1117 (16)0.0202 (8)0.0314 (11)0.0069 (9)
O20.0900 (7)0.0450 (5)0.0398 (5)0.0012 (4)0.0399 (5)0.0007 (4)
N20.0585 (6)0.0357 (5)0.0368 (5)0.0042 (4)0.0215 (4)0.0034 (4)
C80.0520 (6)0.0355 (6)0.0326 (5)0.0045 (5)0.0213 (5)0.0017 (4)
C50.0510 (6)0.0325 (5)0.0322 (5)0.0032 (4)0.0192 (5)0.0006 (4)
N10.0666 (6)0.0358 (5)0.0329 (5)0.0059 (4)0.0258 (4)0.0008 (4)
C60.0505 (6)0.0366 (6)0.0323 (5)0.0033 (5)0.0145 (5)0.0014 (4)
O10.0764 (7)0.0416 (5)0.0668 (7)0.0149 (5)0.0228 (5)0.0052 (4)
C70.0552 (7)0.0401 (6)0.0354 (6)0.0009 (5)0.0159 (5)0.0056 (4)
C20.0537 (7)0.0322 (6)0.0495 (7)0.0008 (5)0.0197 (5)0.0010 (5)
C40.0775 (9)0.0442 (7)0.0309 (6)0.0032 (6)0.0176 (6)0.0032 (5)
C90.0617 (7)0.0391 (6)0.0381 (6)0.0040 (5)0.0245 (5)0.0016 (5)
C100.0526 (7)0.0369 (6)0.0370 (6)0.0030 (5)0.0165 (5)0.0019 (4)
C30.0772 (9)0.0417 (7)0.0410 (7)0.0117 (6)0.0137 (6)0.0095 (5)
C130.0533 (7)0.0416 (7)0.0604 (8)0.0082 (5)0.0137 (6)0.0043 (6)
C110.0495 (7)0.0439 (7)0.0546 (7)0.0022 (5)0.0235 (6)0.0017 (5)
C120.0500 (7)0.0554 (8)0.0678 (9)0.0057 (6)0.0278 (7)0.0081 (6)
C10.0732 (10)0.0504 (8)0.0802 (11)0.0034 (7)0.0333 (8)0.0223 (7)
C150.0824 (10)0.0452 (7)0.0675 (9)0.0082 (7)0.0470 (8)0.0068 (6)
C140.0824 (10)0.0398 (7)0.0774 (10)0.0039 (7)0.0401 (9)0.0076 (7)
Geometric parameters (Å, º) top
C16—C131.5113 (19)C4—C31.3772 (19)
C16—H16A0.9600C4—H40.9300
C16—H16B0.9600C9—C101.4636 (16)
C16—H16C0.9600C9—H90.9300
O2—C81.2279 (14)C10—C151.3849 (18)
N2—C91.2707 (15)C10—C111.3851 (18)
N2—N11.3860 (13)C3—H30.9300
C8—N11.3491 (14)C13—C141.380 (2)
C8—C51.4901 (15)C13—C121.380 (2)
C5—C61.3886 (15)C11—C121.3799 (18)
C5—C41.3914 (17)C11—H110.9300
N1—H10.8600C12—H120.9300
C6—C71.3864 (16)C1—H1A0.9600
C6—H60.9300C1—H1B0.9600
O1—C21.3606 (15)C1—H1C0.9600
O1—C11.421 (2)C15—C141.384 (2)
C7—C21.3820 (17)C15—H150.9300
C7—H70.9300C14—H140.9300
C2—C31.3875 (19)
C13—C16—H16A109.5N2—C9—H9118.6
C13—C16—H16B109.5C10—C9—H9118.6
H16A—C16—H16B109.5C15—C10—C11118.12 (12)
C13—C16—H16C109.5C15—C10—C9118.58 (12)
H16A—C16—H16C109.5C11—C10—C9123.30 (11)
H16B—C16—H16C109.5C4—C3—C2120.03 (12)
C9—N2—N1113.77 (10)C4—C3—H3120.0
O2—C8—N1123.11 (11)C2—C3—H3120.0
O2—C8—C5121.40 (10)C14—C13—C12117.95 (12)
N1—C8—C5115.48 (9)C14—C13—C16120.30 (15)
C6—C5—C4117.96 (11)C12—C13—C16121.75 (15)
C6—C5—C8123.87 (10)C12—C11—C10120.58 (13)
C4—C5—C8118.17 (10)C12—C11—H11119.7
C8—N1—N2120.74 (9)C10—C11—H11119.7
C8—N1—H1119.6C11—C12—C13121.47 (13)
N2—N1—H1119.6C11—C12—H12119.3
C7—C6—C5121.26 (10)C13—C12—H12119.3
C7—C6—H6119.4O1—C1—H1A109.5
C5—C6—H6119.4O1—C1—H1B109.5
C2—O1—C1117.80 (11)H1A—C1—H1B109.5
C2—C7—C6119.81 (11)O1—C1—H1C109.5
C2—C7—H7120.1H1A—C1—H1C109.5
C6—C7—H7120.1H1B—C1—H1C109.5
O1—C2—C7124.60 (12)C14—C15—C10120.86 (14)
O1—C2—C3115.75 (11)C14—C15—H15119.6
C7—C2—C3119.66 (11)C10—C15—H15119.6
C3—C4—C5121.27 (11)C13—C14—C15121.01 (14)
C3—C4—H4119.4C13—C14—H14119.5
C5—C4—H4119.4C15—C14—H14119.5
N2—C9—C10122.80 (11)
O2—C8—C5—C6157.52 (12)N1—N2—C9—C10179.27 (11)
N1—C8—C5—C623.71 (17)N2—C9—C10—C15159.59 (14)
O2—C8—C5—C423.46 (17)N2—C9—C10—C1120.7 (2)
N1—C8—C5—C4155.32 (12)C5—C4—C3—C21.5 (2)
O2—C8—N1—N20.57 (19)O1—C2—C3—C4178.89 (13)
C5—C8—N1—N2178.18 (10)C7—C2—C3—C41.3 (2)
C9—N2—N1—C8163.64 (12)C15—C10—C11—C120.4 (2)
C4—C5—C6—C70.69 (18)C9—C10—C11—C12179.28 (12)
C8—C5—C6—C7179.72 (11)C10—C11—C12—C130.8 (2)
C5—C6—C7—C20.86 (19)C14—C13—C12—C110.3 (2)
C1—O1—C2—C70.9 (2)C16—C13—C12—C11179.89 (15)
C1—O1—C2—C3179.30 (14)C11—C10—C15—C140.5 (2)
C6—C7—C2—O1179.95 (12)C9—C10—C15—C14179.86 (14)
C6—C7—C2—C30.1 (2)C12—C13—C14—C150.6 (2)
C6—C5—C4—C30.5 (2)C16—C13—C14—C15179.04 (16)
C8—C5—C4—C3178.61 (13)C10—C15—C14—C131.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.9280 (12)164
C6—H6···O2i0.932.583.3093 (14)136
C9—H9···O2i0.932.503.3051 (15)145
C1—H1C···Cg1ii0.962.773.6515 (5)152
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.9280 (12)164
C6—H6···O2i0.932.583.3093 (14)136
C9—H9···O2i0.932.503.3051 (15)145
C1—H1C···Cg1ii0.962.773.6515 (5)152
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O2
Mr268.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7678 (7), 13.0072 (7), 9.9025 (6)
β (°) 112.371 (2)
V3)1401.66 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13430, 3517, 2752
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.00
No. of reflections3517
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the authorities of Saranathan College of Engineering, Tiruchirappalli, for providing laboratory facilities, and the CAS in Crystallography and Biophysics, University of Madras, Chennai, for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIbrahim, H. S., Abou-seri, S. M., Ismail, N. S. M., Elaasser, M. M., Aly, M. H. & Abdel-Aziz, H. A. (2016). Eur. J. Med. Chem. 108, 415–422.  CrossRef CAS PubMed Google Scholar
First citationMaheswari, R., Manjula, J. & Gunasekaran, B. (2016). IUCrData, 1, x160304.  Google Scholar
First citationMashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). Chem. Pharm. Bull. 61, 144–150.  CrossRef CAS PubMed Google Scholar
First citationNair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.  CSD CrossRef IUCr Journals Google Scholar
First citationPieczonka, A. M., Strzelczyk, A., Sadowska, B., Mlostoń, G. & Stączek, P. (2013). Eur. J. Med. Chem. 64, 389–395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSelvamurugan, S., Ramachandran, R., Prakash, G., Viswanathamurthi, P., Malecki, J. G. & Endo, A. (2016). J. Organomet. Chem. 803, 119–127.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelezheva, V., Brennan, P., Ivanov, P., Kornienko, A., Lyubimov, S., Kazarian, K., Nikonenko, B., Majorov, K. & Apt, A. (2016). Bioorg. Med. Chem. Lett. 26, 978–985.  CrossRef CAS PubMed Google Scholar
First citationYadagiri, B., Holagunda, U. D., Bantu, R., Nagarapu, L., Guguloth, V., Polepally, S. & Jain, N. (2014). Bioorg. Med. Chem. Lett. 24, 5041–5044.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds