organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Meth­­oxy-4-[3-(3-nitro­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]phenol

aDepartment Phamacetical Chemistry, JSS College of Pharmacy, JSS University, Mysuru 570 015, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, B. G. Nagara, Mandya District 571 448, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 February 2016; accepted 17 March 2016; online 22 March 2016)

In the title compound, C16H15N3O4, the pyrazole ring has an envelope conformation, with the C atom substituted by the 2-meth­oxy­phenol ring as the flap. Its mean plane makes dihedral angles of 56.78 (9) and 9.7 (1)° with the 2-meth­oxy­phenol and 3-nitro­phenyl rings, respectively. The benzene rings are inclined to one another by 49.37 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R22(16) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane. There are slipped parallel ππ inter­actions present within the slabs, involving inversion-related 2-meth­oxy­phenol rings [inter­centroid distance = 3.729 (1) Å] and inversion-related 3-nitro­phenyl rings [inter­centroid distance = 3.831 (1) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles and their derivatives have significant importance as biological agents and play a vital role in drug discovery. Pyrazoles have been widely exploited for their anti­tumor (Sankappa Rai et al., 2015[Sankappa Rai, U., Isloor, A. M., Shetty, P., Pai, K. S. R. & Fun, H. K. (2015). Arab. J. Chem. 8, 317-321.]), anti­bacterial and anti­fungal, anti­viral, anti­parasitic, anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties and their anti-tubercular (Gupta & Kaskhedikar, 2013[Gupta, R. A. & Kaskhedikar, S. G. (2013). Med. Chem. Res. 22, 3863-3880.]) and insecticidal activities (Hamada & Abdo, 2015[Hamada, N. M. M. & Abdo, N. Y. M. (2015). Molecules, 20, 10468-10486.]). Chalcones have played a crucial role in the development of heterocyclic compounds, and they form the skeleton for pyrazole synthesis. A classical synthesis of pyrazole involves nucleophilic addition of ketones and aldehydes in presence of a base-like KOH to follow aldol condensation (Hamada & Abdo, 2015[Hamada, N. M. M. & Abdo, N. Y. M. (2015). Molecules, 20, 10468-10486.]) and yield α,β-unsaturated ketones (chalcones), which undergo a subsequent cyclization reaction with hydrazine hydrate to afford pyrazoles. In an effort to evaluate the anti­tubercular activity of vanillin-based pyrazoles, we report herein on the synthesis and crystal structural of the title pyrazole derivative.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pyrazole ring (N6/N6/C15–C17) has an envelope conformation with atom C15 as the flap. The benzene rings (C19–C14) and (C18–C23) are inclined to the mean plane of the pyrazole ring by 56.78 (9) and 9.7 (1)°, respectively, and to each other by 49.37 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R22(16) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked via C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane (Table 1[link] and Fig. 3[link]). Within the slabs, there are slipped parallel ππ inter­actions present involving inversion-related 2-meth­oxy­phenol rings [Cg2⋯Cg2i = 3.729 (1) Å, Cg2 is the centroid of ring C9–C14, inter­planar distance = 3.377 (1) Å, slippage = 1.583 Å, symmetry code: (i) −x, −y + 1, −z], and inversion-related 3-nitro­phenyl rings [Cg3⋯Cg3ii = 3.831 (1) Å, Cg3 is the centroid of ring C18–C23, inter­planar distance = 3.356 (1) Å, slippage = 1.404 Å, symmetry code: (ii) −x + 1, − y + 1, − z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N7i 0.82 2.31 2.863 (2) 126
C19—H19⋯O1ii 0.95 (2) 2.57 (2) 3.510 (2) 168.0 (16)
C21—H21⋯O3iii 0.91 (2) 2.60 (2) 3.330 (2) 137.8 (19)
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y, z-1; (iii) x+1, y, z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in these inter­actions are omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and H atoms not involved in these inter­actions are omitted for clarity.

Synthesis and crystallization

To a solution of vanillin (1 mmol) and 3-nitro­aceto­phenone (1 mmol) in absolute alcohol (25 ml) an ethanol solution of KOH (0.282 g, 10.088 mmol) was added at 298–300 K. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC, using hexa­ne:ethyl acetate (8:2). After the completion of reaction (24 h), the reaction mixture was poured into ice cold water (100 ml) and neutralized with dilute HCL. The precipitate obtained was recrystallized in ethanol. The chalcone product (1 mmol) and hydrazine hydrate (4 mmol) were dissolved in absolute alcohol (20 ml) and refluxed for 9–10 h. The reaction mixture was poured into crushed ice and stirred, the solid thus obtained was filtered off and washed with cold water, dried and recrystallized in ethanol giving colourless prismatic crystal (yield 65%). Spectroscopic data: IR (KBr disk, cm−1) 3364 (OH), 3310 (NH), 2965 (C–H), 1592 (Ar–C=C), 1513 (asym, Ar–NO2), 1340 (sym, Ar–NO2), 1260 (–OCH3); 1H NMR (CDCl3, δ p.p.m.): 8.92 (s, 1H, NH), 9.92 (s, 1H, OH), 6.96–7.64 (m, 7H, Ar–H), 6.8 (t, 1H, CH–C5), 4.72 (d, 2H, CH2), 3.84 (s, 3H, OCH3); 13C NMR (CDCl3, δ p.p.m.): 148–119 (12C, Ar—C), 110.67 (1C, C), 62.4 (1C, CH), 59.56 (1C, CH2), 48.86 (1C, OCH3); LC–MS m/z: 314.1 (M+1 100%), Elemental analysis for C16H15N3O4: found C, 61.34; H, 4.83; N, 13.41; O, 20.43%. calc. C, 61.31; H, 4.76; N, 13.44; O, 20.42%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H15N3O4
Mr 313.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.1432 (11), 13.6130 (12), 8.3381 (7)
β (°) 98.495 (4)
V3) 1475.5 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12553, 2436, 2094
Rint 0.041
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.00
No. of reflections 2436
No. of parameters 264
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To a solution of vanillin (1 mmol) and 3-nitroacetophenone (1 mmol) in absolute alcohol (25 ml) an ethanol solution of KOH (0.282 g, 10.088 mmol) was added at 298–300 K. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC, using hexane:ethyl acetate (8:2). After the completion of reaction (24 h), the reaction mixture was poured into ice cold water (100 ml) and neutralized with dilute HCL. The precipitate obtained was recrystallized in ethanol. The chalcone product (1 mmol) and hydrazine hydrate (4 mmol) were dissolved in absolute alcohol (20 ml) and refluxed for 9–10 h. The reaction mixture was poured into crushed ice and stirred, the solid thus obtained was filtered off and washed with cold water, dried and recrystallized in ethanol giving colourless prismatic crystal (yield 65%). Spectroscopic data: IR (KBr disk, cm−1) 3364 (OH), 3310 (NH), 2965 (C–H), 1592 (Ar–C=C), 1513 (asym, Ar–NO2), 1340 (sym, Ar–NO2), 1260 (–OCH3); 1H NMR (CDCl3, δ p.p.m.): 8.92 (s, 1H, NH), 9.92 (s, 1H, OH), 6.96–7.64 (m, 7H, Ar—H), 6.8 (t, 1H, CH—C5), 4.72 (d, 2H, CH2), 3.84 (s, 3H, OCH3); 13C NMR (CDCl3, δ p.p.m.): 148–119 (12 C, Ar—C), 110.67 (1 C, C), 62.4 (1 C, CH), 59.56 (1 C, CH2), 48.86 (1 C, OCH3); LC–MS m/z: 314.1 (M+1 100%), Elemental analysis for C16H15N3O4: found C, 61.34; H, 4.83; N, 13.41; O, 20.43%. calc. C, 61.31; H, 4.76; N, 13.44; O, 20.42%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyrazoles and their derivatives have significant importance as biological agents and play a vital role in drug discovery. Pyrazoles have been widely exploited for their antitumor (Sankappa Rai et al., 2015), antibacterial and antifungal, antiviral, antiparasitic, anti-inflammatory, anti-diabetic, anaesthetic and analgesic properties and their anti-tubercular (Gupta & Kaskhedikar, 2013) and insecticidal activities (Hamada & Abdo, 2015). Chalcones have played a crucial role in the development of heterocyclic compounds, and they form the skeleton for pyrazole synthesis. A classical synthesis of pyrazole involves nucleophilic addition of ketones and aldehydes in presence of a base-like KOH to follow aldol condensation (Hamada & Abdo, 2015) and yield α,β-unsaturated ketones (chalcones), which undergo a subsequent cyclization reaction with hydrazine hydrate to afford pyrazoles. In an effort to evaluate the antitubercular activity of vanillin-based pyrazoles, we report herein on the synthesis and crystal structural of the title pyrazole derivative.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole ring (N6/N6/C15–C17) has an envelope conformation with atom C15 as the flap. The benzene rings (C19–C14) and (C18–C23) are inclined to the mean plane of the pyrazole ring by 56.78 (9) and 9.7 (1)°, respectively, and to each other by 49.37 (8)°.

In the crystal, molecules are linked via pairs of O—H···N hydrogen bonds, forming inversion dimers with an R22(16) ring motif (Table 1 and Fig. 2). The dimers are linked via C—H···O hydrogen bonds, forming slabs parallel to the ac plane (Table 1 and Fig. 3). Within the slabs, there are slipped parallel ππ interactions present involving inversion-related 4-methoxyphenol rings [Cg2···Cg2i = 3.729 (1) Å, Cg2 is the centroid of ring C9–C14, interplanar distance = 3.377 (1) Å, slippage = 1.583 Å, symmetry code: (i) −x, −y + 1, −z], and inversion-related 3-nitrophenyl rings [Cg3···Cg3ii = 3.831 (1) Å, Cg3 is the centroid of ring C18–C23, interplanar distance = 3.356 (1) Å, slippage = 1.404 Å, symmetry code: (ii) −x + 1, − y + 1, − z + 1].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1) and H atoms not involved in these interactions are omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1) and H atoms not involved in these interactions are omitted for clarity.
2-Methoxy-4-[3-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol top
Crystal data top
C16H15N3O4Dx = 1.410 Mg m3
Mr = 313.31Melting point: 300 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.1432 (11) ÅCell parameters from 2436 reflections
b = 13.6130 (12) Åθ = 4.7–64.5°
c = 8.3381 (7) ŵ = 0.86 mm1
β = 98.495 (4)°T = 296 K
V = 1475.5 (2) Å3Prism, colourless
Z = 40.24 × 0.20 × 0.12 mm
F(000) = 656
Data collection top
Bruker SMART CCD area-detector
diffractometer
2436 independent reflections
Radiation source: fine-focus sealed tube2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 64.5°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.770, Tmax = 1.000k = 1515
12553 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.3151P]
where P = (Fo2 + 2Fc2)/3
2436 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H15N3O4V = 1475.5 (2) Å3
Mr = 313.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.1432 (11) ŵ = 0.86 mm1
b = 13.6130 (12) ÅT = 296 K
c = 8.3381 (7) Å0.24 × 0.20 × 0.12 mm
β = 98.495 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2436 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2094 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.041
12553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
2436 reflectionsΔρmin = 0.22 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47950 (12)0.38474 (13)1.00496 (16)0.0866 (5)
O20.64242 (13)0.39816 (17)1.0087 (2)0.1116 (6)
O30.12236 (9)0.41880 (10)0.30456 (14)0.0649 (4)
H30.10270.46220.36090.097*
O40.06043 (9)0.50817 (9)0.28614 (13)0.0600 (3)
N50.55509 (13)0.38872 (12)0.93716 (19)0.0696 (4)
N60.24426 (10)0.37549 (11)0.49118 (16)0.0555 (4)
N70.15583 (11)0.37666 (12)0.37290 (16)0.0574 (4)
C80.15531 (15)0.55902 (15)0.2786 (2)0.0599 (5)
C90.05066 (11)0.44201 (11)0.16650 (17)0.0457 (4)
C100.12593 (12)0.41954 (12)0.03695 (18)0.0481 (4)
C110.10725 (12)0.34898 (11)0.07692 (18)0.0484 (4)
C120.01357 (13)0.30044 (13)0.0551 (2)0.0548 (4)
C130.06238 (13)0.32419 (13)0.0724 (2)0.0550 (4)
C140.04530 (12)0.39581 (12)0.18145 (18)0.0491 (4)
C150.18282 (13)0.32519 (13)0.22660 (18)0.0527 (4)
C160.29462 (13)0.35523 (15)0.23767 (19)0.0528 (4)
C170.32268 (12)0.36558 (11)0.41811 (18)0.0467 (4)
C180.42759 (12)0.36985 (11)0.50882 (19)0.0469 (4)
C190.51340 (14)0.36513 (13)0.4293 (2)0.0578 (4)
C200.61173 (15)0.36814 (15)0.5153 (3)0.0682 (5)
C210.62715 (15)0.37541 (14)0.6818 (3)0.0640 (5)
C220.54125 (13)0.38058 (12)0.7590 (2)0.0537 (4)
C230.44264 (13)0.37823 (12)0.6769 (2)0.0492 (4)
H8A0.1453 (15)0.6004 (15)0.375 (3)0.075 (6)*
H8B0.1670 (15)0.6010 (15)0.177 (3)0.069 (5)*
H8C0.2140 (16)0.5119 (15)0.281 (2)0.074 (6)*
H100.1931 (13)0.4536 (13)0.027 (2)0.055 (4)*
H120.0020 (14)0.2500 (14)0.131 (2)0.065 (5)*
H130.1337 (14)0.2891 (13)0.083 (2)0.062 (5)*
H150.1804 (14)0.2515 (15)0.249 (2)0.067 (5)*
H16A0.3339 (15)0.3090 (15)0.188 (2)0.069 (5)*
H16B0.3027 (14)0.4186 (16)0.188 (2)0.067 (5)*
H190.5030 (15)0.3598 (14)0.314 (3)0.072 (6)*
H200.6710 (17)0.3609 (15)0.457 (3)0.080 (6)*
H210.6912 (18)0.3768 (15)0.741 (3)0.081 (7)*
H230.3874 (15)0.3834 (13)0.729 (2)0.063 (5)*
H70.1015 (17)0.3524 (15)0.413 (3)0.076 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0900 (11)0.1241 (13)0.0460 (7)0.0160 (9)0.0117 (7)0.0019 (7)
O20.0804 (10)0.1741 (18)0.0700 (10)0.0177 (10)0.0230 (8)0.0032 (10)
O30.0575 (7)0.0804 (8)0.0524 (7)0.0051 (6)0.0067 (5)0.0029 (6)
O40.0588 (7)0.0743 (8)0.0453 (6)0.0031 (5)0.0028 (5)0.0145 (5)
N50.0723 (10)0.0803 (11)0.0516 (9)0.0099 (8)0.0066 (8)0.0043 (7)
N60.0522 (8)0.0750 (9)0.0393 (7)0.0001 (6)0.0061 (6)0.0035 (6)
N70.0499 (8)0.0837 (10)0.0383 (7)0.0016 (7)0.0061 (6)0.0030 (7)
C80.0628 (11)0.0688 (12)0.0501 (10)0.0031 (9)0.0152 (8)0.0092 (9)
C90.0539 (8)0.0501 (9)0.0338 (8)0.0037 (7)0.0088 (6)0.0002 (6)
C100.0503 (8)0.0539 (9)0.0404 (8)0.0007 (7)0.0071 (7)0.0013 (7)
C110.0577 (9)0.0504 (9)0.0372 (8)0.0039 (7)0.0071 (7)0.0003 (6)
C120.0647 (10)0.0526 (9)0.0484 (9)0.0046 (8)0.0128 (8)0.0044 (7)
C130.0570 (9)0.0573 (10)0.0508 (9)0.0061 (8)0.0080 (8)0.0044 (8)
C140.0534 (9)0.0543 (9)0.0390 (8)0.0016 (7)0.0041 (7)0.0081 (7)
C150.0649 (10)0.0511 (9)0.0412 (8)0.0012 (8)0.0049 (7)0.0046 (7)
C160.0562 (9)0.0622 (11)0.0399 (9)0.0087 (8)0.0070 (7)0.0004 (8)
C170.0540 (9)0.0477 (8)0.0387 (8)0.0022 (6)0.0081 (7)0.0047 (6)
C180.0528 (9)0.0451 (8)0.0430 (8)0.0010 (6)0.0085 (7)0.0044 (6)
C190.0612 (10)0.0660 (11)0.0485 (10)0.0005 (8)0.0158 (8)0.0066 (8)
C200.0551 (10)0.0825 (13)0.0710 (13)0.0003 (9)0.0225 (9)0.0084 (10)
C210.0501 (10)0.0712 (12)0.0691 (12)0.0045 (8)0.0034 (9)0.0087 (9)
C220.0570 (9)0.0562 (9)0.0462 (9)0.0052 (7)0.0022 (7)0.0063 (7)
C230.0512 (9)0.0532 (9)0.0437 (9)0.0022 (7)0.0091 (7)0.0045 (7)
Geometric parameters (Å, º) top
O1—N51.215 (2)C12—C131.384 (2)
O2—N51.219 (2)C12—H120.96 (2)
O3—C141.3676 (19)C13—C141.374 (2)
O3—H30.8200C13—H131.045 (18)
O4—C91.3640 (18)C15—C161.515 (2)
O4—C81.419 (2)C15—H151.02 (2)
N5—C221.474 (2)C16—C171.502 (2)
N6—C171.280 (2)C16—H16A0.95 (2)
N6—N71.409 (2)C16—H16B0.97 (2)
N7—C151.494 (2)C17—C181.473 (2)
N7—H70.89 (2)C18—C231.390 (2)
C8—H8A0.98 (2)C18—C191.392 (2)
C8—H8B1.02 (2)C19—C201.383 (3)
C8—H8C1.01 (2)C19—H190.95 (2)
C9—C101.387 (2)C20—C211.377 (3)
C9—C141.398 (2)C20—H200.98 (2)
C10—C111.398 (2)C21—C221.381 (3)
C10—H100.990 (17)C21—H210.91 (2)
C11—C121.385 (2)C22—C231.374 (2)
C11—C151.511 (2)C23—H230.902 (19)
C14—O3—H3109.5N7—C15—C11111.56 (13)
C9—O4—C8117.81 (13)N7—C15—C1699.72 (13)
O1—N5—O2123.54 (17)C11—C15—C16120.38 (14)
O1—N5—C22118.55 (15)N7—C15—H15107.2 (10)
O2—N5—C22117.90 (18)C11—C15—H15109.0 (11)
C17—N6—N7107.88 (13)C16—C15—H15108.1 (10)
N6—N7—C15107.18 (12)C17—C16—C15100.30 (13)
N6—N7—H7110.9 (13)C17—C16—H16A115.4 (12)
C15—N7—H7115.4 (14)C15—C16—H16A112.4 (11)
O4—C8—H8A103.6 (12)C17—C16—H16B108.5 (11)
O4—C8—H8B109.6 (11)C15—C16—H16B112.4 (11)
H8A—C8—H8B110.5 (16)H16A—C16—H16B107.8 (16)
O4—C8—H8C111.0 (11)N6—C17—C18120.68 (14)
H8A—C8—H8C111.3 (16)N6—C17—C16113.02 (14)
H8B—C8—H8C110.7 (16)C18—C17—C16126.23 (14)
O4—C9—C10125.58 (14)C23—C18—C19118.64 (16)
O4—C9—C14114.39 (13)C23—C18—C17120.26 (14)
C10—C9—C14120.03 (14)C19—C18—C17121.10 (15)
C9—C10—C11120.27 (15)C20—C19—C18120.82 (17)
C9—C10—H10119.1 (10)C20—C19—H19120.6 (12)
C11—C10—H10120.6 (10)C18—C19—H19118.6 (12)
C12—C11—C10118.71 (15)C21—C20—C19120.82 (18)
C12—C11—C15117.99 (14)C21—C20—H20119.7 (13)
C10—C11—C15123.26 (15)C19—C20—H20119.3 (13)
C11—C12—C13121.03 (16)C20—C21—C22117.69 (18)
C11—C12—H12118.5 (11)C20—C21—H21122.3 (14)
C13—C12—H12120.4 (11)C22—C21—H21120.0 (14)
C14—C13—C12120.26 (16)C23—C22—C21122.83 (17)
C14—C13—H13120.1 (10)C23—C22—N5118.12 (16)
C12—C13—H13119.6 (10)C21—C22—N5119.05 (16)
O3—C14—C13118.94 (14)C22—C23—C18119.19 (15)
O3—C14—C9121.48 (14)C22—C23—H23121.6 (12)
C13—C14—C9119.56 (14)C18—C23—H23119.2 (12)
C17—N6—N7—C1523.48 (17)C11—C15—C16—C17152.25 (15)
C8—O4—C9—C100.2 (2)N7—N6—C17—C18175.02 (13)
C8—O4—C9—C14179.31 (15)N7—N6—C17—C162.02 (19)
O4—C9—C10—C11178.96 (14)C15—C16—C17—N619.28 (19)
C14—C9—C10—C111.6 (2)C15—C16—C17—C18163.88 (14)
C9—C10—C11—C121.7 (2)N6—C17—C18—C234.3 (2)
C9—C10—C11—C15176.05 (14)C16—C17—C18—C23179.11 (16)
C10—C11—C12—C133.1 (2)N6—C17—C18—C19176.06 (15)
C15—C11—C12—C13174.84 (15)C16—C17—C18—C190.6 (2)
C11—C12—C13—C141.0 (3)C23—C18—C19—C200.4 (2)
C12—C13—C14—O3178.94 (14)C17—C18—C19—C20179.32 (16)
C12—C13—C14—C92.4 (2)C18—C19—C20—C210.3 (3)
O4—C9—C14—O31.8 (2)C19—C20—C21—C220.7 (3)
C10—C9—C14—O3177.69 (14)C20—C21—C22—C230.4 (3)
O4—C9—C14—C13176.82 (14)C20—C21—C22—N5179.81 (17)
C10—C9—C14—C133.7 (2)O1—N5—C22—C236.1 (2)
N6—N7—C15—C11162.14 (14)O2—N5—C22—C23174.65 (18)
N6—N7—C15—C1633.87 (16)O1—N5—C22—C21173.77 (18)
C12—C11—C15—N779.11 (19)O2—N5—C22—C215.5 (3)
C10—C11—C15—N798.68 (18)C21—C22—C23—C180.3 (3)
C12—C11—C15—C16164.65 (16)N5—C22—C23—C18179.53 (14)
C10—C11—C15—C1617.5 (2)C19—C18—C23—C220.6 (2)
N7—C15—C16—C1730.07 (15)C17—C18—C23—C22179.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N7i0.822.312.863 (2)126
C19—H19···O1ii0.95 (2)2.57 (2)3.510 (2)168.0 (16)
C21—H21···O3iii0.91 (2)2.60 (2)3.330 (2)137.8 (19)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N7i0.822.312.863 (2)126
C19—H19···O1ii0.95 (2)2.57 (2)3.510 (2)168.0 (16)
C21—H21···O3iii0.91 (2)2.60 (2)3.330 (2)137.8 (19)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H15N3O4
Mr313.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1432 (11), 13.6130 (12), 8.3381 (7)
β (°) 98.495 (4)
V3)1475.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12553, 2436, 2094
Rint0.041
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.00
No. of reflections2436
No. of parameters264
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the XRD Facility, IOE, University of Mysore, Mysore, India, for the X-ray data collection.

References

First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, R. A. & Kaskhedikar, S. G. (2013). Med. Chem. Res. 22, 3863–3880.  CrossRef CAS Google Scholar
First citationHamada, N. M. M. & Abdo, N. Y. M. (2015). Molecules, 20, 10468–10486.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSankappa Rai, U., Isloor, A. M., Shetty, P., Pai, K. S. R. & Fun, H. K. (2015). Arab. J. Chem. 8, 317–321.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds