organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Iodo-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 February 2016; accepted 3 February 2016; online 10 February 2016)

The title compound, C8H4INO2, is an almost planar mol­ecule having an r.m.s. deviation of 0.03 Å for all non-H atoms. In the crystal, mol­ecules dimerize through pairs of N—H⋯O hydrogen bonds. These inversion dimers are linked through pairs of weak I⋯O inter­actions [3.184 (4) Å] to form zigzag chains along [010]. The chains are linked in the c-axis direction by parallel-slipped ππ inter­actions [inter­centroid distance = 3.623 (3) Å, inter­planar distance = 3.423 (2) Å and slippage = 1.667 (5) Å], forming corrugated sheets parallel to (011).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin mol­ecules have found widespread use in organic synthesis and in pharmaceutical applications. We have an ongoing study of the solid state structure of halogenated isatins, and report herein on the crystal structure of 4-iodo­isatin. The title compound, Fig. 1[link], exhibits a near planar mol­ecule with the non-H atoms possessing a mean deviation from planarity of 0.03 Å. The observed bond lengths and angles are consistent with the parent isatin (Goldschmidt et al., 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers (Table 1[link] and Fig. 2[link]). The dimers are further linked into zigzag chains along [010] by pairs of weak I⋯O inter­actions [I1⋯O2i = 3.184 (4) Å; symmetry code (i): −x + 2, −y + 1, −z + 1]. Similar I⋯O inter­actions have been observed in 5-iodo­isatin and its derivatives (Abid et al., 2008[Abid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223.]; Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]; Wang et al., 2014[Wang, L., Shen, Y.-X., Dong, J.-T., Zhang, M. & Fang, Q. (2014). Acta Cryst. E70, o67.]). The closely related 4-bromo­isatin also exhibits a weak halogen–oxygen inter­action in the solid state (Huang et al., 2016[Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.]). The chains stack along [001] and are linked via parallel slipped ππ inter­actions [Cg2⋯Cg2ii = 3.699 (3) Å, where Cg2 is the centroid of ring C3–C8, inter-planar distance = 3.428 (2) Å, slippage = 1.383 Å, symmetry code (ii): x, −y + [{3\over 2}], z + [{1\over 2}]], leading to the formation of undulating sheets lying parallel to (011).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.05 (2) 2.910 (6) 173 (7)
Symmetry code: (i) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c-axis direction. The N—H⋯O hydrogen bonds (see Table 1[link]) and I⋯O inter­actions are shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4-iodo-1H-indole-2,3-dione was used for crystallization. Orange rod-like crystals, suitable for X-ray diffraction analysis, were grown by slow evaporation of a solution in acetone.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was refined with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C8H4INO2
Mr 273.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 7.6138 (9), 13.9658 (17), 7.3866 (10)
β (°) 91.249 (5)
V3) 785.25 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.03
Crystal size (mm) 0.25 × 0.1 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.182, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 16058, 1491, 1268
Rint 0.050
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.19
No. of reflections 1491
No. of parameters 112
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.83
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

4-Iodo-1H-indole-2,3-dione top
Crystal data top
C8H4INO2F(000) = 512
Mr = 273.02Dx = 2.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6138 (9) ÅCell parameters from 7683 reflections
b = 13.9658 (17) Åθ = 2.9–25.7°
c = 7.3866 (10) ŵ = 4.03 mm1
β = 91.249 (5)°T = 298 K
V = 785.25 (17) Å3Rod, orange
Z = 40.25 × 0.1 × 0.08 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1268 reflections with I > 2σ(I)
Radiation source: MoRint = 0.050
φ and ω scansθmax = 25.7°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.182, Tmax = 0.259k = 1717
16058 measured reflectionsl = 99
1491 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.026P)2 + 3.7223P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
1491 reflectionsΔρmax = 0.95 e Å3
112 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.76809 (5)0.52256 (3)0.58699 (6)0.03698 (15)
O11.1415 (6)0.8920 (3)0.4389 (7)0.0440 (11)
O21.0723 (6)0.6869 (3)0.4540 (7)0.0438 (11)
N10.8656 (7)0.8997 (3)0.5598 (7)0.0349 (11)
H10.854 (9)0.9613 (16)0.561 (9)0.042*
C11.0079 (8)0.8563 (4)0.4961 (8)0.0334 (13)
C20.9695 (7)0.7460 (4)0.5078 (7)0.0284 (12)
C30.7944 (7)0.7395 (4)0.5841 (7)0.0242 (11)
C40.6850 (7)0.6629 (4)0.6254 (7)0.0265 (11)
C50.5197 (7)0.6816 (4)0.6915 (8)0.0320 (13)
H50.44510.63150.72110.038*
C60.4664 (8)0.7758 (5)0.7130 (8)0.0369 (14)
H60.35490.78730.75710.044*
C70.5710 (8)0.8532 (4)0.6722 (8)0.0350 (13)
H70.53160.91570.68590.042*
C80.7365 (7)0.8335 (4)0.6102 (7)0.0268 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0378 (2)0.0255 (2)0.0478 (3)0.00292 (17)0.00400 (16)0.00133 (19)
O10.039 (2)0.029 (2)0.064 (3)0.0036 (19)0.013 (2)0.003 (2)
O20.037 (2)0.028 (2)0.067 (3)0.0010 (18)0.015 (2)0.000 (2)
N10.041 (3)0.021 (2)0.043 (3)0.002 (2)0.006 (2)0.001 (2)
C10.037 (3)0.029 (3)0.035 (3)0.001 (2)0.003 (2)0.001 (2)
C20.026 (3)0.028 (3)0.031 (3)0.000 (2)0.003 (2)0.001 (2)
C30.025 (3)0.026 (3)0.022 (3)0.001 (2)0.001 (2)0.000 (2)
C40.034 (3)0.026 (3)0.019 (3)0.001 (2)0.003 (2)0.000 (2)
C50.027 (3)0.041 (3)0.028 (3)0.003 (2)0.003 (2)0.003 (3)
C60.032 (3)0.053 (4)0.026 (3)0.008 (3)0.004 (2)0.006 (3)
C70.035 (3)0.035 (3)0.034 (3)0.010 (3)0.001 (3)0.006 (3)
C80.032 (3)0.028 (3)0.021 (3)0.002 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
I1—C42.081 (5)C3—C81.399 (8)
O1—C11.216 (7)C4—C51.385 (8)
O2—C21.211 (7)C5—H50.9300
N1—H10.87 (2)C5—C61.386 (9)
N1—C11.336 (8)C6—H60.9300
N1—C81.406 (7)C6—C71.380 (9)
C1—C21.571 (8)C7—H70.9300
C2—C31.462 (7)C7—C81.378 (8)
C3—C41.393 (8)
C1—N1—H1123 (5)C5—C4—C3119.0 (5)
C1—N1—C8111.8 (5)C4—C5—H5120.3
C8—N1—H1125 (5)C4—C5—C6119.3 (5)
O1—C1—N1128.8 (6)C6—C5—H5120.3
O1—C1—C2125.4 (5)C5—C6—H6118.4
N1—C1—C2105.8 (5)C7—C6—C5123.1 (6)
O2—C2—C1121.9 (5)C7—C6—H6118.4
O2—C2—C3133.3 (5)C6—C7—H7121.6
C3—C2—C1104.8 (4)C8—C7—C6116.9 (5)
C4—C3—C2133.4 (5)C8—C7—H7121.6
C4—C3—C8119.9 (5)C3—C8—N1110.9 (5)
C8—C3—C2106.7 (5)C7—C8—N1127.3 (5)
C3—C4—I1120.5 (4)C7—C8—C3121.8 (5)
C5—C4—I1120.5 (4)
I1—C4—C5—C6179.0 (4)C2—C3—C8—N11.5 (6)
O1—C1—C2—O22.2 (10)C2—C3—C8—C7176.6 (5)
O1—C1—C2—C3179.8 (6)C3—C4—C5—C60.7 (8)
O2—C2—C3—C41.6 (11)C4—C3—C8—N1179.7 (5)
O2—C2—C3—C8176.3 (7)C4—C3—C8—C71.6 (8)
N1—C1—C2—O2177.5 (6)C4—C5—C6—C70.2 (9)
N1—C1—C2—C30.1 (6)C5—C6—C7—C81.1 (9)
C1—N1—C8—C31.5 (7)C6—C7—C8—N1179.8 (6)
C1—N1—C8—C7176.5 (6)C6—C7—C8—C32.0 (8)
C1—C2—C3—C4178.8 (6)C8—N1—C1—O1178.9 (6)
C1—C2—C3—C81.0 (6)C8—N1—C1—C20.8 (7)
C2—C3—C4—I12.2 (8)C8—C3—C4—I1179.8 (4)
C2—C3—C4—C5177.4 (6)C8—C3—C4—C50.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.05 (2)2.910 (6)173 (7)
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationAbid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHuang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, L., Shen, Y.-X., Dong, J.-T., Zhang, M. & Fang, Q. (2014). Acta Cryst. E70, o67.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds