Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title m-phenyl­ene-bridged bis-oxazoles, C36H24N2O2, (I), and C52H56N2O2, (II), feature different aryl substituents in the 4- and 5-positions of the oxazole units. In the solid state, aside from the different twist of the peripheral aryl rings, the mol­ecules show distinctly different conformations, with anti and syn orientations of the O and N atoms for (I) and (II), respectively. Connected with this property, in the crystal structure of (I), extensive [pi]-stacking is found between the mol­ecules, while the crystal structure of (II) only involves dimer formation as the prominent packing motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110045725/su3052sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110045725/su3052Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110045725/su3052IIsup3.hkl
Contains datablock II

CCDC references: 781692; 781693

Comment top

Owing to the highly fluorescent behaviour emanating from their structure, aryl-substituted oxazoles are an interesting class of compounds (Wiley, 1945). Derived from this property, some 2,5-diaryloxazoles have found commercial application as solutes in liquid scintillators (Bell & Hayes, 1958). A well known representative of this compound type is 1,4-bis(5-phenyloxazol-2-yl)benzene, usually termed POPOP (Hayes et al., 1955). Other arylene- and heteroarylene-bridged bis-oxazoles or bisbenzoxazoles behave as brightening agents (Schinzel et al., 1987) or as efficient ligands for metal-ion complexation (Singh et al., 2008; Drew et al., 2004; Rüttimann et al., 1992). In view of these potential applications, the new title compounds, (I) and (II), featuring m-phenylene-bridged bis-oxazole derivatives with different aryl substituents in the 4- and 5-positions of the oxazole units, have been synthesized and their crystal structures are reported here.

Perspective views of the molecular structures of (I) and (II) are shown in Fig. 1. The conformations of the molecules of (I) and (II) may be described by the relevant interplanar angles between the ring fragments (Table 1; ring definitions in Fig. 1).

The crystal structure of bis-oxazole (I) shows bond distances within the oxazole rings which permit exact distinction between N and O [C1—N1 = 1.303 (2) Å and C1—O1 = 1.337 (2) Å for ring A; C22—N2 = 1.297 (2) Å and C22—O2 = 1.350 (2) Å for ring A'], so that the molecule adopts a conformation with an anti arrangement of identical heteroatoms (Fig. 1a). The central tricyclic part of the molecule is not perfectly planar; the oxazole rings are inclined to the phenylene unit at angles of 2.3 (1)° for A/D and 8.2 (1)° for A'/D'. Except for phenyl ring C, the other peripheral phenyl rings are considerably twisted with reference to the oxazole unit to which they are bound. The dihedral angles formed by the pairs of terminal rings are 50.3 (1)° for B/C and 51.3 (1)° for B'/C'.

The crystal structure of (I) is characterized by a columnar packing of molecules in direction of the a axis. As displayed in Fig. 2, extensive ππ interaction (Dance, 2004; Janiak, 2000) between phenyl ring C and oxazole ring A' occurs along the stacking axis of molecules. The closest distances between the centroids of interacting rings vary from 3.558 (3) Å at (x+1/2, y, -z+1/2) to 3.597 (3) Å at (x-1/2, y, -z+1/2). The molecular stacking following from that seems to be stabilized as well by additional ππ interactions between A and D at (x-1/2, y, -z+1/2), with a centroid–distance of 3.615 (3)Å. Only one of the N atoms participates in hydrogen bonding (H5···N1 = 2.56 Å and C5—H5···N1 = 168°). Further details of the C—H···N. C—H···O and C–H···π interactions are given in Table 2.

In bis-oxazole (II), the presence of the bulky tert-butyl residues markedly changes the molecular conformation and the packing behaviour of the molecules in the crystal structure compared with (I). The m-phenylenebis-oxazole fragment of (II) is approximately planar, with the largest atomic distance from its mean plane being 0.055 (2) Å for atom C23. Without exception, and thus most markedly differing from (I), all the peripheral aryl rings show a distinct twist with reference to the oxazole unit to which they are bound. The dihedral angles formed by the pairs of terminal aryl rings are 54.4 (1) and 54.2 (1)° for B/C and B'/C', respectively. Moreover, unlike in (I), identical heteroatoms of the heterocyclic rings adopt a syn arrangement, so that in the solid state the molecule has pseudo-mirror symmetry (point group Cs), with atoms C18 and C21 lying in the pseudo-symmetry plane.

The steric requirement of the tert-butyl substituents drastically reduces the extent of intermolecular interaction, which is restricted to a few C—Hπ contacts (Nishio, 2004) listed in Table 3. Hence, the crystal structure is stabilized by van der Waals forces rather than directed non-covalent bonding. As shown in the crystal packing diagram (Fig. 3), the crystal structure of (II) is composed of weakly bound dimers centred about an inversion centre.

In summary, the most remarkable distinguishing feature between the crystal structures of (I) and (II) is the different molecular conformations with respect to the orientation of the O and N atoms of the oxazole units: anti in (I) and syn in (II). This might be a result of the long-range π-stacking interaction between the molecules in the structure of (I), whereas the bulky tert-butyl groups of (II) prevent extensive π-stacking but cause the molecules to associate into weakly bound dimers centred about an inversion centre, with the hetero atoms in a syn conformation. Moreover, compared with the almost flat structure of crystalline POPOP (Schindler et al., 2010), which makes efficient conjugation of the π-systems very likely, the molecular conformations of (I) and (II) are much more twisted, in particular with respect to the peripheral aryl–oxazole bonds. This could be one of the reasons contributing to the lack of fluorescence of bis-oxazoles (I) and (II) in the solid state, while POPOP is highly fluorescent.

Experimental top

The starting benzoins (IVa) (Breuer & Zincke, 1879) and (IVb) (Hahn et al., 1981) were synthesized via benzoin condensation from the corresponding benzaldehydes following the described procedures.

The bis(keto esters) (IIIa) and (IIIb) were synthesized as follows. To a refluxing solution of the corresponding benzoin (IVa) or (IVb) (20 mmol) and isophthaloyl dichloride (V) (2.03 g, 10 mmol) in dry toluene (20 ml, dried over sodium and freshly distilled before use), triethylamine (15 ml, 0.11 mol, dried over potassium hydroxide) was slowly added over a period of 3 h. After evaporation of the solvent, ethanol (10 ml) was added to the oily residue and the mixture stirred for 2 h. The solid which formed was collected and crystallized. For (IIIa), benzoin (IVa) (4.24 g, 20 mmol) was reacted; crystallization from 1,4-dioxane yielded a colourless powder (yield 40%; m.p. 440 K). For (IIIb), benzoin (IVb) (6.44 g, 20 mmol) was reacted; crystallization from 1,4-dioxane yielded a colourless powder; (yield 96%; m.p. 421 K).

The title bis-oxazoles (I) and (II) were synthesized as follows. The corresponding bis(keto ester) (IIIa) or (IIIb) (7.5 mmol) and ammonium acetate (3.46 g, 45 mmol) were dissolved in concentrated acetic acid (55.0 ml) and refluxed for 3.5 h. After cooling of the reaction mixture to room temperature, the precipitate which formed was collected, neutralized with aqueous sodium hydrogen carbonate, washed several times with water, dried and crystallized. For (I), compound (IIIa) (4.16 g) was used for the reaction; crystallization from 1,4-dioxane–acetonitrile (1:1, v/v) yielded colourless crystals (yield 88%; m.p. 476. For (II), compound (IIIb) (5.84 g) was used for the reaction; crystallization from 1,4-dioxane yielded a colourless powder (yield 93%; m.p. 585 K). [How were X-ray quality crystals obtained?]

Spectroscopic and other synthetic details for compounds (I) and (II) are available in the archived CIF.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.95 (aromatic) or 0.98 Å (aliphatic), and with Uiso(H) = kUeq(C), where k = 1.2 for aromatic H or k = 1.5 for aliphatic H.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective views of the molecular structures of (a) compound (I) and (b) compound (II), with the atom-numbering schemes and the ring specifications.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the crystallographic b axis. O atoms are displayed as dark-grey and N atoms as light-grey spheres. Dashed lines represent hydrogen bonds and double-dashed lines represent arene stacking interactions.
[Figure 3] Fig. 3. The crystal packing of (II). O atoms are displayed as dark-grey and N atoms as light-grey spherees. H atoms have been omitted for clarity.
(I) 4,4',5,5'-tetraphenyl-2,2'-m-phenylenedi-1,3-oxazole top
Crystal data top
C36H24N2O2F(000) = 2160
Mr = 516.57Dx = 1.300 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7424 reflections
a = 7.1523 (2) Åθ = 2.6–30.8°
b = 20.0145 (5) ŵ = 0.08 mm1
c = 36.8669 (8) ÅT = 153 K
V = 5277.5 (2) Å3Prism, colourless
Z = 80.48 × 0.34 × 0.17 mm
Data collection top
Nonius Kappa APEXII CCD area-detector
diffractometer
10121 independent reflections
Radiation source: fine-focus sealed tube5826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 33.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.962, Tmax = 0.986k = 3030
80848 measured reflectionsl = 5656
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
10121 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C36H24N2O2V = 5277.5 (2) Å3
Mr = 516.57Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1523 (2) ŵ = 0.08 mm1
b = 20.0145 (5) ÅT = 153 K
c = 36.8669 (8) Å0.48 × 0.34 × 0.17 mm
Data collection top
Nonius Kappa APEXII CCD area-detector
diffractometer
10121 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5826 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.986Rint = 0.062
80848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.99Δρmax = 0.41 e Å3
10121 reflectionsΔρmin = 0.31 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All hydrogen atoms were included in the model in calculated positions and were refined as constrained to bonding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34070 (12)0.12975 (5)0.29797 (2)0.0324 (2)
O20.29345 (12)0.06978 (5)0.12887 (2)0.0304 (2)
N10.24955 (14)0.04610 (5)0.26334 (3)0.0267 (2)
N20.34600 (13)0.16563 (5)0.10057 (3)0.0285 (2)
C10.31167 (16)0.10727 (7)0.26429 (3)0.0303 (3)
C20.23881 (16)0.02530 (6)0.29929 (3)0.0284 (3)
C30.29325 (16)0.07742 (6)0.32092 (3)0.0269 (3)
C40.16978 (18)0.04266 (6)0.30701 (4)0.0303 (3)
C50.0115 (2)0.06538 (7)0.28874 (4)0.0400 (3)
H50.04780.03730.27140.048*
C60.0605 (2)0.12849 (8)0.29553 (5)0.0502 (4)
H60.16840.14340.28290.060*
C70.0245 (2)0.16981 (8)0.32072 (5)0.0501 (4)
H70.02600.21270.32570.060*
C80.1828 (2)0.14840 (8)0.33853 (4)0.0459 (4)
H80.24150.17680.35570.055*
C90.2576 (2)0.08535 (7)0.33152 (4)0.0376 (3)
H90.36860.07150.34350.045*
C100.30172 (15)0.09160 (6)0.35982 (3)0.0256 (2)
C110.24179 (16)0.04549 (7)0.38594 (4)0.0299 (3)
H110.19390.00340.37850.036*
C120.25203 (17)0.06099 (7)0.42252 (4)0.0344 (3)
H120.21320.02900.44000.041*
C130.31812 (18)0.12244 (8)0.43388 (4)0.0383 (3)
H130.32370.13300.45900.046*
C140.37598 (19)0.16821 (7)0.40815 (4)0.0391 (3)
H140.42160.21060.41570.047*
C150.36829 (18)0.15319 (7)0.37157 (4)0.0331 (3)
H150.40890.18530.35430.040*
C160.35126 (15)0.14939 (6)0.23308 (3)0.0245 (2)
C170.41817 (17)0.21441 (7)0.23720 (3)0.0292 (3)
H170.43620.23240.26080.035*
C180.45837 (17)0.25270 (6)0.20688 (4)0.0310 (3)
H180.50520.29680.20980.037*
C190.43095 (17)0.22726 (6)0.17239 (3)0.0299 (3)
H190.45870.25380.15170.036*
C200.36241 (15)0.16247 (6)0.16802 (3)0.0252 (2)
C210.32302 (15)0.12367 (6)0.19838 (3)0.0251 (2)
H210.27670.07950.19540.030*
C220.33530 (16)0.13538 (7)0.13163 (3)0.0290 (3)
C230.31078 (15)0.11652 (6)0.07465 (3)0.0276 (3)
C240.27644 (15)0.05765 (7)0.09200 (3)0.0274 (3)
C250.32032 (15)0.13378 (6)0.03597 (3)0.0262 (2)
C260.25072 (17)0.19505 (7)0.02390 (4)0.0315 (3)
H260.19410.22480.04070.038*
C270.2632 (2)0.21307 (7)0.01227 (4)0.0378 (3)
H270.21380.25460.02020.045*
C280.34776 (19)0.17035 (7)0.03688 (4)0.0375 (3)
H280.35700.18280.06170.045*
C290.41888 (17)0.10962 (7)0.02544 (4)0.0336 (3)
H290.47750.08060.04230.040*
C300.40454 (16)0.09117 (7)0.01070 (3)0.0304 (3)
H300.45230.04920.01840.036*
C310.22631 (15)0.01121 (6)0.08223 (3)0.0277 (3)
C320.13254 (16)0.02558 (7)0.04994 (3)0.0297 (3)
H320.10480.00940.03340.036*
C330.07970 (17)0.09039 (7)0.04186 (4)0.0344 (3)
H330.01630.09970.01980.041*
C340.11886 (19)0.14184 (7)0.06584 (4)0.0396 (3)
H340.08090.18620.06040.048*
C350.21382 (19)0.12813 (8)0.09778 (4)0.0406 (3)
H350.24290.16340.11410.049*
C360.26673 (18)0.06315 (7)0.10610 (4)0.0341 (3)
H360.33070.05410.12810.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (4)0.0368 (5)0.0270 (5)0.0004 (4)0.0023 (4)0.0018 (4)
O20.0317 (4)0.0364 (5)0.0231 (5)0.0032 (4)0.0019 (3)0.0047 (4)
N10.0318 (5)0.0264 (5)0.0220 (5)0.0033 (4)0.0055 (4)0.0011 (4)
N20.0277 (4)0.0379 (6)0.0198 (5)0.0030 (4)0.0023 (4)0.0051 (4)
C10.0272 (5)0.0398 (8)0.0240 (6)0.0067 (5)0.0035 (4)0.0029 (6)
C20.0313 (5)0.0290 (6)0.0249 (6)0.0059 (5)0.0040 (5)0.0003 (5)
C30.0262 (5)0.0304 (6)0.0242 (6)0.0033 (4)0.0027 (4)0.0033 (5)
C40.0391 (6)0.0260 (6)0.0259 (6)0.0066 (5)0.0053 (5)0.0031 (5)
C50.0511 (8)0.0317 (7)0.0372 (8)0.0004 (6)0.0044 (6)0.0026 (6)
C60.0611 (9)0.0352 (8)0.0543 (10)0.0064 (7)0.0007 (8)0.0064 (7)
C70.0663 (10)0.0257 (7)0.0583 (11)0.0016 (7)0.0147 (8)0.0028 (7)
C80.0617 (9)0.0311 (7)0.0448 (9)0.0186 (7)0.0127 (7)0.0067 (7)
C90.0435 (7)0.0336 (8)0.0358 (8)0.0127 (6)0.0045 (6)0.0003 (6)
C100.0232 (5)0.0305 (6)0.0231 (6)0.0032 (4)0.0002 (4)0.0000 (5)
C110.0288 (5)0.0325 (7)0.0283 (7)0.0012 (5)0.0032 (5)0.0009 (5)
C120.0320 (6)0.0458 (8)0.0255 (7)0.0047 (6)0.0043 (5)0.0020 (6)
C130.0367 (6)0.0507 (9)0.0275 (7)0.0079 (6)0.0042 (5)0.0083 (6)
C140.0426 (7)0.0359 (8)0.0387 (8)0.0012 (6)0.0064 (6)0.0103 (6)
C150.0352 (6)0.0300 (7)0.0340 (7)0.0003 (5)0.0009 (5)0.0010 (6)
C160.0243 (5)0.0271 (6)0.0222 (6)0.0023 (4)0.0012 (4)0.0008 (5)
C170.0323 (5)0.0317 (7)0.0235 (6)0.0008 (5)0.0002 (5)0.0068 (5)
C180.0363 (6)0.0259 (6)0.0310 (7)0.0036 (5)0.0008 (5)0.0031 (5)
C190.0330 (6)0.0306 (7)0.0261 (7)0.0012 (5)0.0012 (5)0.0033 (5)
C200.0240 (5)0.0299 (6)0.0217 (6)0.0036 (4)0.0010 (4)0.0027 (5)
C210.0253 (5)0.0252 (6)0.0247 (6)0.0006 (4)0.0008 (4)0.0027 (5)
C220.0258 (5)0.0362 (7)0.0250 (6)0.0041 (5)0.0025 (4)0.0061 (5)
C230.0257 (5)0.0349 (7)0.0222 (6)0.0039 (5)0.0025 (4)0.0033 (5)
C240.0256 (5)0.0368 (7)0.0198 (6)0.0047 (5)0.0028 (4)0.0065 (5)
C250.0258 (5)0.0303 (6)0.0225 (6)0.0016 (5)0.0023 (4)0.0023 (5)
C260.0348 (6)0.0270 (6)0.0327 (7)0.0050 (5)0.0012 (5)0.0023 (5)
C270.0450 (7)0.0287 (7)0.0396 (8)0.0066 (6)0.0012 (6)0.0081 (6)
C280.0432 (7)0.0423 (8)0.0270 (7)0.0121 (6)0.0021 (5)0.0063 (6)
C290.0328 (6)0.0424 (8)0.0255 (7)0.0034 (5)0.0019 (5)0.0027 (6)
C300.0294 (5)0.0364 (7)0.0254 (7)0.0026 (5)0.0020 (5)0.0024 (5)
C310.0270 (5)0.0326 (7)0.0235 (6)0.0032 (5)0.0016 (4)0.0020 (5)
C320.0300 (5)0.0322 (7)0.0268 (7)0.0036 (5)0.0008 (5)0.0021 (5)
C330.0321 (6)0.0372 (7)0.0338 (7)0.0001 (5)0.0005 (5)0.0067 (6)
C340.0370 (6)0.0327 (7)0.0491 (9)0.0025 (6)0.0045 (6)0.0048 (7)
C350.0422 (7)0.0372 (8)0.0424 (9)0.0013 (6)0.0024 (6)0.0100 (7)
C360.0352 (6)0.0381 (8)0.0290 (7)0.0001 (5)0.0014 (5)0.0031 (6)
Geometric parameters (Å, º) top
O1—C11.3367 (15)C16—C171.3949 (17)
O1—C31.3887 (15)C17—C181.3854 (18)
O2—C221.3505 (16)C17—H170.9500
O2—C241.3860 (14)C18—C191.3839 (18)
N1—C11.3029 (17)C18—H180.9500
N1—C21.3912 (16)C19—C201.3955 (18)
N2—C221.2974 (16)C19—H190.9500
N2—C231.3940 (16)C20—C211.3910 (17)
C1—C161.4544 (17)C20—C221.4600 (17)
C2—C31.3697 (18)C21—H210.9500
C2—C41.4749 (18)C23—C241.3630 (18)
C3—C101.4632 (17)C23—C251.4688 (17)
C4—C91.3929 (19)C24—C311.4690 (17)
C4—C51.3935 (19)C25—C261.3963 (18)
C5—C61.387 (2)C25—C301.3993 (17)
C5—H50.9500C26—C271.384 (2)
C6—C71.384 (2)C26—H260.9500
C6—H60.9500C27—C281.386 (2)
C7—C81.377 (2)C27—H270.9500
C7—H70.9500C28—C291.384 (2)
C8—C91.395 (2)C28—H280.9500
C8—H80.9500C29—C301.3862 (18)
C9—H90.9500C29—H290.9500
C10—C151.3907 (18)C30—H300.9500
C10—C111.4009 (18)C31—C361.3926 (18)
C11—C121.3857 (19)C31—C321.3963 (17)
C11—H110.9500C32—C331.3834 (18)
C12—C131.383 (2)C32—H320.9500
C12—H120.9500C33—C341.386 (2)
C13—C141.382 (2)C33—H330.9500
C13—H130.9500C34—C351.387 (2)
C14—C151.383 (2)C34—H340.9500
C14—H140.9500C35—C361.389 (2)
C15—H150.9500C35—H350.9500
C16—C211.3937 (16)C36—H360.9500
C1—O1—C3105.91 (10)C19—C18—H18119.7
C22—O2—C24105.27 (10)C17—C18—H18119.7
C1—N1—C2105.93 (10)C18—C19—C20119.85 (12)
C22—N2—C23105.39 (11)C18—C19—H19120.1
N1—C1—O1113.22 (11)C20—C19—H19120.1
N1—C1—C16126.14 (12)C21—C20—C19119.81 (11)
O1—C1—C16120.63 (12)C21—C20—C22120.34 (11)
C3—C2—N1108.13 (11)C19—C20—C22119.85 (11)
C3—C2—C4133.25 (12)C20—C21—C16120.19 (11)
N1—C2—C4118.58 (11)C20—C21—H21119.9
C2—C3—O1106.80 (11)C16—C21—H21119.9
C2—C3—C10136.91 (12)N2—C22—O2113.60 (11)
O1—C3—C10116.17 (11)N2—C22—C20129.04 (13)
C9—C4—C5118.66 (13)O2—C22—C20117.36 (11)
C9—C4—C2122.69 (12)C24—C23—N2108.67 (11)
C5—C4—C2118.65 (12)C24—C23—C25131.87 (12)
C6—C5—C4120.78 (14)N2—C23—C25119.43 (11)
C6—C5—H5119.6C23—C24—O2107.05 (11)
C4—C5—H5119.6C23—C24—C31137.71 (12)
C7—C6—C5120.13 (16)O2—C24—C31115.23 (11)
C7—C6—H6119.9C26—C25—C30118.46 (12)
C5—C6—H6119.9C26—C25—C23119.96 (11)
C8—C7—C6119.68 (15)C30—C25—C23121.53 (11)
C8—C7—H7120.2C27—C26—C25120.85 (13)
C6—C7—H7120.2C27—C26—H26119.6
C7—C8—C9120.56 (15)C25—C26—H26119.6
C7—C8—H8119.7C26—C27—C28119.88 (13)
C9—C8—H8119.7C26—C27—H27120.1
C4—C9—C8120.15 (14)C28—C27—H27120.1
C4—C9—H9119.9C29—C28—C27120.18 (13)
C8—C9—H9119.9C29—C28—H28119.9
C15—C10—C11118.33 (12)C27—C28—H28119.9
C15—C10—C3119.43 (12)C28—C29—C30120.00 (13)
C11—C10—C3122.23 (12)C28—C29—H29120.0
C12—C11—C10120.35 (13)C30—C29—H29120.0
C12—C11—H11119.8C29—C30—C25120.62 (13)
C10—C11—H11119.8C29—C30—H30119.7
C13—C12—C11120.80 (13)C25—C30—H30119.7
C13—C12—H12119.6C36—C31—C32119.00 (12)
C11—C12—H12119.6C36—C31—C24119.65 (11)
C12—C13—C14118.96 (13)C32—C31—C24121.32 (12)
C12—C13—H13120.5C33—C32—C31120.53 (13)
C14—C13—H13120.5C33—C32—H32119.7
C13—C14—C15120.89 (13)C31—C32—H32119.7
C13—C14—H14119.6C32—C33—C34120.28 (13)
C15—C14—H14119.6C32—C33—H33119.9
C14—C15—C10120.67 (13)C34—C33—H33119.9
C14—C15—H15119.7C33—C34—C35119.57 (13)
C10—C15—H15119.7C33—C34—H34120.2
C21—C16—C17119.63 (11)C35—C34—H34120.2
C21—C16—C1118.95 (11)C34—C35—C36120.42 (14)
C17—C16—C1121.42 (11)C34—C35—H35119.8
C18—C17—C16119.95 (12)C36—C35—H35119.8
C18—C17—H17120.0C35—C36—C31120.19 (13)
C16—C17—H17120.0C35—C36—H36119.9
C19—C18—C17120.56 (12)C31—C36—H36119.9
C2—N1—C1—O11.05 (13)C18—C19—C20—C22179.37 (11)
C2—N1—C1—C16178.05 (11)C19—C20—C21—C160.20 (16)
C3—O1—C1—N10.37 (13)C22—C20—C21—C16179.20 (10)
C3—O1—C1—C16178.79 (10)C17—C16—C21—C200.39 (16)
C1—N1—C2—C31.31 (13)C1—C16—C21—C20179.02 (10)
C1—N1—C2—C4179.25 (10)C23—N2—C22—O20.73 (13)
N1—C2—C3—O11.11 (12)C23—N2—C22—C20179.11 (11)
C4—C2—C3—O1178.62 (12)C24—O2—C22—N20.12 (12)
N1—C2—C3—C10174.37 (12)C24—O2—C22—C20179.74 (9)
C4—C2—C3—C103.1 (2)C21—C20—C22—N2172.30 (11)
C1—O1—C3—C20.48 (12)C19—C20—C22—N28.70 (18)
C1—O1—C3—C10176.08 (9)C21—C20—C22—O27.86 (15)
C3—C2—C4—C948.2 (2)C19—C20—C22—O2171.14 (10)
N1—C2—C4—C9134.51 (13)C22—N2—C23—C241.07 (12)
C3—C2—C4—C5132.56 (15)C22—N2—C23—C25177.39 (10)
N1—C2—C4—C544.75 (16)N2—C23—C24—O21.01 (12)
C9—C4—C5—C61.8 (2)C25—C23—C24—O2177.18 (11)
C2—C4—C5—C6178.93 (13)N2—C23—C24—C31177.95 (12)
C4—C5—C6—C70.1 (2)C25—C23—C24—C313.9 (2)
C5—C6—C7—C81.1 (2)C22—O2—C24—C230.56 (11)
C6—C7—C8—C90.3 (2)C22—O2—C24—C31178.66 (9)
C5—C4—C9—C82.6 (2)C24—C23—C25—C26142.41 (13)
C2—C4—C9—C8178.13 (12)N2—C23—C25—C2639.56 (16)
C7—C8—C9—C41.6 (2)C24—C23—C25—C3040.06 (18)
C2—C3—C10—C15179.87 (13)N2—C23—C25—C30137.98 (12)
O1—C3—C10—C154.69 (15)C30—C25—C26—C270.55 (18)
C2—C3—C10—C111.0 (2)C23—C25—C26—C27178.16 (11)
O1—C3—C10—C11174.19 (10)C25—C26—C27—C280.84 (19)
C15—C10—C11—C121.02 (17)C26—C27—C28—C290.3 (2)
C3—C10—C11—C12179.91 (11)C27—C28—C29—C300.4 (2)
C10—C11—C12—C131.17 (18)C28—C29—C30—C250.70 (18)
C11—C12—C13—C140.66 (19)C26—C25—C30—C290.22 (17)
C12—C13—C14—C150.0 (2)C23—C25—C30—C29177.35 (11)
C13—C14—C15—C100.1 (2)C23—C24—C31—C36157.10 (13)
C11—C10—C15—C140.39 (18)O2—C24—C31—C3623.99 (15)
C3—C10—C15—C14179.31 (11)C23—C24—C31—C3225.2 (2)
N1—C1—C16—C210.41 (17)O2—C24—C31—C32153.68 (10)
O1—C1—C16—C21178.63 (10)C36—C31—C32—C330.32 (18)
N1—C1—C16—C17179.82 (11)C24—C31—C32—C33177.36 (11)
O1—C1—C16—C170.78 (17)C31—C32—C33—C340.20 (19)
C21—C16—C17—C180.82 (17)C32—C33—C34—C350.9 (2)
C1—C16—C17—C18178.58 (11)C33—C34—C35—C361.1 (2)
C16—C17—C18—C190.66 (18)C34—C35—C36—C310.6 (2)
C17—C18—C19—C200.07 (18)C32—C31—C36—C350.12 (18)
C18—C19—C20—C210.36 (17)C24—C31—C36—C35177.60 (12)
(II) 4,4',5,5'-tetrakis(4-tert-butylphenyl)-2,2'-m-phenylenedi- 1,3-oxazole top
Crystal data top
C52H56N2O2Z = 2
Mr = 740.99F(000) = 796
Triclinic, P1Dx = 1.150 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3121 (3) ÅCell parameters from 5548 reflections
b = 11.1215 (3) Åθ = 2.2–23.1°
c = 19.8676 (6) ŵ = 0.07 mm1
α = 91.593 (2)°T = 153 K
β = 96.918 (2)°Rod, colourless
γ = 108.463 (2)°0.32 × 0.18 × 0.17 mm
V = 2140.25 (11) Å3
Data collection top
Nonius Kappa APEXII CCD area-detector
diffractometer
9309 independent reflections
Radiation source: fine-focus sealed tube5281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.1°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.978, Tmax = 0.988k = 1214
33601 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.1269P]
where P = (Fo2 + 2Fc2)/3
9309 reflections(Δ/σ)max < 0.001
517 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C52H56N2O2γ = 108.463 (2)°
Mr = 740.99V = 2140.25 (11) Å3
Triclinic, P1Z = 2
a = 10.3121 (3) ÅMo Kα radiation
b = 11.1215 (3) ŵ = 0.07 mm1
c = 19.8676 (6) ÅT = 153 K
α = 91.593 (2)°0.32 × 0.18 × 0.17 mm
β = 96.918 (2)°
Data collection top
Nonius Kappa APEXII CCD area-detector
diffractometer
9309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5281 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.988Rint = 0.044
33601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
9309 reflectionsΔρmin = 0.33 e Å3
517 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. All hydrogen atoms were included in the model in calculated positions and were refined as constrained to bonding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83424 (16)0.85485 (15)0.83529 (7)0.0402 (4)
O21.05893 (16)0.72394 (15)1.04366 (7)0.0399 (4)
N10.62161 (17)0.74679 (17)0.78981 (8)0.0282 (4)
N20.95520 (17)0.55194 (16)1.09409 (8)0.0273 (4)
C10.7218 (2)0.7551 (2)0.83829 (11)0.0358 (5)
C20.6708 (2)0.8511 (2)0.75225 (10)0.0326 (5)
C30.8022 (2)0.9171 (2)0.77938 (10)0.0314 (5)
C40.5756 (2)0.8775 (2)0.69765 (10)0.0308 (5)
C50.5737 (2)1.0004 (2)0.68927 (11)0.0362 (6)
H50.63831.06890.71740.043*
C60.4795 (2)1.0246 (2)0.64081 (11)0.0376 (6)
H60.48161.10990.63580.045*
C70.3810 (2)0.9273 (2)0.59884 (11)0.0345 (5)
C80.3841 (2)0.8046 (2)0.60785 (11)0.0377 (6)
H80.31940.73580.57990.045*
C90.4783 (2)0.7798 (2)0.65609 (11)0.0358 (5)
H90.47660.69460.66100.043*
C100.9090 (2)1.0297 (2)0.76183 (10)0.0300 (5)
C110.9171 (2)1.0597 (2)0.69467 (11)0.0349 (5)
H110.85261.00630.65930.042*
C121.0184 (2)1.1666 (2)0.67884 (11)0.0350 (5)
H121.02051.18570.63260.042*
C131.1169 (2)1.2470 (2)0.72816 (11)0.0318 (5)
C141.1082 (2)1.2146 (2)0.79541 (11)0.0348 (5)
H141.17401.26680.83070.042*
C151.0070 (2)1.1093 (2)0.81203 (11)0.0330 (5)
H151.00411.09070.85830.040*
C160.7180 (2)0.6676 (2)0.89161 (10)0.0304 (5)
C170.6016 (2)0.5617 (2)0.89216 (11)0.0356 (5)
H170.52360.54820.85860.043*
C180.5997 (2)0.4764 (2)0.94143 (11)0.0391 (6)
H180.52010.40410.94160.047*
C190.7122 (2)0.4952 (2)0.99051 (11)0.0371 (6)
H190.71010.43571.02410.045*
C200.8286 (2)0.6010 (2)0.99074 (10)0.0291 (5)
C210.8309 (2)0.6868 (2)0.94161 (10)0.0301 (5)
H210.91020.75950.94190.036*
C220.9465 (2)0.6225 (2)1.04322 (11)0.0339 (5)
C231.0824 (2)0.6134 (2)1.13200 (10)0.0313 (5)
C241.1471 (2)0.7181 (2)1.10085 (10)0.0312 (5)
C251.1193 (2)0.5675 (2)1.19792 (10)0.0298 (5)
C261.1773 (2)0.6547 (2)1.25391 (11)0.0349 (5)
H261.19490.74281.24850.042*
C271.2093 (2)0.6145 (2)1.31696 (11)0.0377 (6)
H271.24940.67601.35410.045*
C281.1846 (2)0.4865 (2)1.32767 (11)0.0349 (5)
C291.1253 (2)0.4004 (2)1.27197 (12)0.0370 (6)
H291.10700.31231.27740.044*
C301.0919 (2)0.4400 (2)1.20809 (11)0.0336 (5)
H301.04980.37861.17110.040*
C311.2817 (2)0.8175 (2)1.11332 (10)0.0309 (5)
C321.2990 (2)0.9367 (2)1.08924 (10)0.0343 (5)
H321.22170.95461.06600.041*
C331.4265 (2)1.0299 (2)1.09846 (11)0.0367 (6)
H331.43521.11031.08090.044*
C341.5423 (2)1.0095 (2)1.13264 (11)0.0333 (5)
C351.5236 (2)0.8901 (2)1.15750 (11)0.0355 (5)
H351.60050.87301.18150.043*
C361.3970 (2)0.7961 (2)1.14828 (11)0.0342 (5)
H361.38830.71581.16590.041*
C370.2715 (3)0.9561 (3)0.54876 (12)0.0452 (6)
C380.3321 (4)1.0767 (3)0.51368 (18)0.0863 (11)
H38A0.40641.06800.48950.130*
H38B0.36911.14890.54770.130*
H38C0.25991.09100.48120.130*
C390.1619 (3)0.9722 (5)0.58915 (18)0.1198 (18)
H39A0.09681.00250.56000.180*
H39B0.20561.03410.62790.180*
H39C0.11240.89030.60570.180*
C400.2093 (5)0.8527 (4)0.49367 (18)0.1103 (16)
H40A0.14310.87630.46150.165*
H40B0.16160.77370.51350.165*
H40C0.28220.84000.46970.165*
C411.2305 (2)1.3656 (2)0.71170 (11)0.0369 (6)
C421.3724 (3)1.3496 (3)0.73211 (14)0.0531 (7)
H42A1.44491.42490.72120.080*
H42B1.37711.27420.70710.080*
H42C1.38561.33950.78100.080*
C431.2240 (3)1.4837 (3)0.75056 (16)0.0612 (8)
H43A1.13551.49670.73590.092*
H43B1.29961.55800.74120.092*
H43C1.23271.47200.79940.092*
C441.2183 (3)1.3883 (3)0.63572 (13)0.0559 (7)
H44A1.12751.39640.62070.084*
H44B1.22891.31640.60990.084*
H44C1.29061.46650.62810.084*
C451.2151 (3)0.4456 (3)1.39873 (12)0.0467 (7)
C461.2037 (4)0.3060 (3)1.39892 (16)0.0840 (11)
H46A1.11010.25371.37960.126*
H46B1.22350.28441.44570.126*
H46C1.27020.28981.37160.126*
C471.3602 (3)0.5257 (4)1.43140 (16)0.0933 (13)
H47A1.42860.51061.40490.140*
H47B1.37680.50191.47800.140*
H47C1.36820.61591.43220.140*
C481.1112 (3)0.4692 (3)1.44168 (13)0.0675 (9)
H48A1.11840.55931.44240.101*
H48B1.13080.44631.48820.101*
H48C1.01760.41731.42200.101*
C491.6858 (2)1.1096 (2)1.14201 (12)0.0413 (6)
C501.6824 (3)1.2354 (3)1.1145 (2)0.0779 (10)
H50A1.64811.22211.06570.117*
H50B1.77581.29711.12160.117*
H50C1.62131.26791.13840.117*
C511.7458 (3)1.1313 (3)1.21720 (14)0.0735 (10)
H51A1.68621.16261.24290.110*
H51B1.83841.19421.22260.110*
H51C1.75141.05111.23440.110*
C521.7798 (3)1.0608 (3)1.10285 (14)0.0592 (8)
H52A1.78180.97881.11900.089*
H52B1.87331.12201.11020.089*
H52C1.74461.05021.05420.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (10)0.0429 (10)0.0336 (9)0.0143 (9)0.0040 (7)0.0095 (7)
O20.0394 (9)0.0456 (10)0.0303 (9)0.0094 (8)0.0000 (7)0.0035 (7)
N10.0306 (10)0.0327 (10)0.0227 (9)0.0119 (8)0.0026 (7)0.0082 (8)
N20.0311 (10)0.0310 (10)0.0191 (9)0.0103 (8)0.0006 (7)0.0020 (7)
C10.0434 (14)0.0341 (13)0.0341 (13)0.0149 (12)0.0129 (11)0.0087 (10)
C20.0370 (13)0.0358 (13)0.0265 (11)0.0138 (11)0.0038 (9)0.0037 (10)
C30.0381 (13)0.0348 (13)0.0251 (11)0.0169 (11)0.0031 (9)0.0070 (10)
C40.0284 (12)0.0355 (13)0.0277 (11)0.0088 (10)0.0043 (9)0.0052 (10)
C50.0330 (13)0.0332 (13)0.0385 (13)0.0084 (11)0.0028 (10)0.0009 (10)
C60.0375 (13)0.0337 (13)0.0416 (14)0.0126 (11)0.0014 (11)0.0057 (11)
C70.0316 (12)0.0424 (14)0.0296 (12)0.0122 (11)0.0037 (9)0.0040 (10)
C80.0348 (13)0.0379 (14)0.0345 (13)0.0063 (11)0.0029 (10)0.0005 (11)
C90.0371 (13)0.0273 (12)0.0401 (13)0.0076 (11)0.0016 (10)0.0037 (10)
C100.0316 (12)0.0310 (12)0.0286 (12)0.0127 (10)0.0011 (9)0.0050 (9)
C110.0352 (13)0.0383 (14)0.0274 (12)0.0091 (11)0.0026 (9)0.0019 (10)
C120.0342 (12)0.0408 (14)0.0281 (12)0.0103 (11)0.0004 (9)0.0078 (10)
C130.0298 (12)0.0359 (13)0.0308 (12)0.0130 (11)0.0013 (9)0.0034 (10)
C140.0348 (13)0.0365 (14)0.0311 (12)0.0120 (11)0.0048 (10)0.0006 (10)
C150.0366 (13)0.0374 (13)0.0261 (11)0.0145 (11)0.0009 (10)0.0054 (10)
C160.0326 (12)0.0311 (12)0.0272 (11)0.0090 (10)0.0054 (9)0.0042 (9)
C170.0300 (12)0.0406 (14)0.0318 (12)0.0072 (11)0.0003 (9)0.0004 (10)
C180.0336 (13)0.0344 (13)0.0402 (14)0.0010 (11)0.0028 (10)0.0050 (11)
C190.0445 (14)0.0339 (13)0.0306 (12)0.0082 (12)0.0065 (10)0.0087 (10)
C200.0284 (11)0.0309 (12)0.0257 (11)0.0070 (10)0.0020 (9)0.0018 (9)
C210.0278 (11)0.0304 (12)0.0270 (11)0.0024 (10)0.0034 (9)0.0027 (9)
C220.0323 (12)0.0380 (14)0.0291 (12)0.0097 (11)0.0008 (9)0.0016 (10)
C230.0344 (12)0.0354 (13)0.0230 (11)0.0111 (11)0.0009 (9)0.0003 (9)
C240.0323 (12)0.0383 (13)0.0217 (11)0.0115 (11)0.0010 (9)0.0003 (9)
C250.0275 (11)0.0337 (13)0.0267 (11)0.0083 (10)0.0023 (9)0.0026 (10)
C260.0403 (13)0.0297 (13)0.0317 (12)0.0077 (11)0.0027 (10)0.0039 (10)
C270.0419 (14)0.0421 (15)0.0252 (12)0.0101 (12)0.0011 (10)0.0002 (10)
C280.0354 (13)0.0412 (14)0.0327 (12)0.0172 (11)0.0071 (10)0.0111 (11)
C290.0404 (13)0.0294 (13)0.0455 (14)0.0145 (11)0.0113 (11)0.0101 (11)
C300.0315 (12)0.0344 (13)0.0337 (12)0.0090 (11)0.0047 (10)0.0014 (10)
C310.0348 (12)0.0343 (13)0.0219 (11)0.0086 (11)0.0044 (9)0.0027 (9)
C320.0361 (13)0.0398 (14)0.0281 (12)0.0132 (11)0.0048 (10)0.0076 (10)
C330.0419 (14)0.0343 (13)0.0357 (13)0.0124 (12)0.0100 (10)0.0107 (10)
C340.0363 (13)0.0354 (13)0.0276 (12)0.0093 (11)0.0075 (9)0.0037 (10)
C350.0342 (13)0.0397 (14)0.0309 (12)0.0109 (11)0.0006 (10)0.0050 (10)
C360.0382 (13)0.0325 (13)0.0305 (12)0.0098 (11)0.0024 (10)0.0061 (10)
C370.0433 (14)0.0576 (17)0.0357 (14)0.0203 (13)0.0024 (11)0.0056 (12)
C380.091 (3)0.081 (2)0.087 (2)0.035 (2)0.0179 (19)0.036 (2)
C390.064 (2)0.253 (6)0.076 (2)0.096 (3)0.0118 (18)0.040 (3)
C400.148 (4)0.092 (3)0.076 (2)0.051 (3)0.073 (2)0.017 (2)
C410.0336 (13)0.0374 (14)0.0389 (13)0.0104 (11)0.0038 (10)0.0070 (11)
C420.0372 (14)0.0580 (18)0.0599 (17)0.0099 (13)0.0036 (12)0.0100 (14)
C430.0595 (18)0.0410 (16)0.082 (2)0.0080 (14)0.0274 (16)0.0038 (15)
C440.0508 (16)0.0583 (18)0.0507 (16)0.0057 (14)0.0052 (13)0.0199 (14)
C450.0538 (16)0.0615 (18)0.0365 (14)0.0323 (14)0.0104 (12)0.0191 (12)
C460.134 (3)0.092 (3)0.060 (2)0.077 (2)0.026 (2)0.0410 (18)
C470.067 (2)0.149 (4)0.060 (2)0.035 (2)0.0140 (17)0.041 (2)
C480.090 (2)0.093 (2)0.0416 (16)0.052 (2)0.0247 (15)0.0299 (16)
C490.0348 (13)0.0436 (15)0.0415 (14)0.0050 (12)0.0089 (11)0.0095 (11)
C500.0430 (17)0.0443 (18)0.138 (3)0.0008 (15)0.0101 (18)0.0296 (19)
C510.0547 (18)0.085 (2)0.0472 (17)0.0239 (17)0.0059 (14)0.0052 (16)
C520.0433 (16)0.081 (2)0.0546 (17)0.0181 (16)0.0149 (13)0.0184 (15)
Geometric parameters (Å, º) top
O1—C11.336 (3)C31—C321.388 (3)
O1—C31.386 (2)C31—C361.394 (3)
O2—C221.337 (3)C32—C331.380 (3)
O2—C241.384 (2)C32—H320.9500
N1—C11.303 (3)C33—C341.387 (3)
N1—C21.388 (3)C33—H330.9500
N2—C221.308 (3)C34—C351.394 (3)
N2—C231.386 (3)C34—C491.530 (3)
C1—C161.454 (3)C35—C361.378 (3)
C2—C41.474 (3)C35—H350.9500
C3—C21.356 (3)C36—H360.9500
C3—C101.465 (3)C37—C401.492 (4)
C4—C51.387 (3)C37—C391.514 (4)
C4—C91.389 (3)C37—C381.517 (4)
C5—C61.377 (3)C38—H38A0.9800
C5—H50.9500C38—H38B0.9800
C6—C71.395 (3)C38—H38C0.9800
C6—H60.9500C39—H39A0.9800
C7—C81.391 (3)C39—H39B0.9800
C7—C371.530 (3)C39—H39C0.9800
C8—C91.378 (3)C40—H40A0.9800
C8—H80.9500C40—H40B0.9800
C9—H90.9500C40—H40C0.9800
C10—C111.390 (3)C41—C431.529 (4)
C10—C151.393 (3)C41—C441.534 (3)
C11—C121.384 (3)C41—C421.537 (3)
C11—H110.9500C42—H42A0.9800
C12—C131.389 (3)C42—H42B0.9800
C12—H120.9500C42—H42C0.9800
C13—C141.399 (3)C43—H43A0.9800
C13—C411.535 (3)C43—H43B0.9800
C14—C151.379 (3)C43—H43C0.9800
C14—H140.9500C44—H44A0.9800
C15—H150.9500C44—H44B0.9800
C16—C171.392 (3)C44—H44C0.9800
C16—C211.393 (3)C45—C461.520 (4)
C17—H170.9500C45—C481.527 (4)
C18—C171.379 (3)C45—C471.531 (4)
C18—H180.9500C46—H46A0.9800
C19—C181.380 (3)C46—H46B0.9800
C19—H190.9500C46—H46C0.9800
C20—C191.389 (3)C47—H47A0.9800
C20—C221.456 (3)C47—H47B0.9800
C21—C201.380 (3)C47—H47C0.9800
C21—H210.9500C48—H48A0.9800
C23—C251.470 (3)C48—H48B0.9800
C24—C231.354 (3)C48—H48C0.9800
C24—C311.462 (3)C49—C501.526 (4)
C25—C301.380 (3)C49—C521.527 (4)
C25—C261.396 (3)C49—C511.528 (3)
C26—C271.379 (3)C50—H50A0.9800
C26—H260.9500C50—H50B0.9800
C27—C281.392 (3)C50—H50C0.9800
C27—H270.9500C51—H51A0.9800
C28—C291.386 (3)C51—H51B0.9800
C28—C451.522 (3)C51—H51C0.9800
C29—C301.395 (3)C52—H52A0.9800
C29—H290.9500C52—H52B0.9800
C30—H300.9500C52—H52C0.9800
C1—O1—C3105.71 (17)C33—C34—C49123.1 (2)
C1—N1—C2105.28 (18)C35—C34—C49120.2 (2)
C2—C3—O1106.79 (19)C36—C35—C34122.0 (2)
C2—C3—C10135.0 (2)C36—C35—H35119.0
O1—C3—C10118.18 (18)C34—C35—H35119.0
C3—C2—N1108.86 (18)C35—C36—C31120.7 (2)
C3—C2—C4132.1 (2)C35—C36—H36119.6
C4—C5—H5119.5C31—C36—H36119.6
C4—C5—H5119.5C40—C37—C39110.4 (3)
C5—C4—C9117.7 (2)C40—C37—C38106.2 (3)
C5—C4—C2120.9 (2)C39—C37—C38109.4 (3)
C9—C4—C2121.3 (2)C40—C37—C7111.9 (2)
C6—C5—C4121.0 (2)C39—C37—C7107.2 (2)
C6—C5—H5119.5C38—C37—C7111.7 (2)
C5—C6—C7121.8 (2)C37—C38—H38A109.5
C5—C6—H6119.1C37—C38—H38B109.5
C7—C6—H6119.1H38A—C38—H38B109.5
C8—C7—C6116.5 (2)C37—C38—H38C109.5
C8—C7—C37122.8 (2)H38A—C38—H38C109.5
C6—C7—C37120.6 (2)H38B—C38—H38C109.5
C9—C8—C7122.0 (2)C37—C39—H39A109.5
C9—C8—H8119.0C37—C39—H39B109.5
C7—C8—H8119.0H39A—C39—H39B109.5
C8—C9—C4120.9 (2)C37—C39—H39C109.5
C8—C9—H9119.5H39A—C39—H39C109.5
C4—C9—H9119.5H39B—C39—H39C109.5
N1—C2—C4118.79 (19)C37—C40—H40A109.5
N1—C1—O1113.34 (19)C37—C40—H40B109.5
N1—C1—C16125.7 (2)H40A—C40—H40B109.5
O1—C1—C16121.0 (2)C37—C40—H40C109.5
C10—C11—H11119.7H40A—C40—H40C109.5
C10—C15—H15119.6H40B—C40—H40C109.5
C11—C10—C15117.9 (2)C43—C41—C44107.8 (2)
C11—C10—C3121.23 (19)C43—C41—C13110.30 (19)
C11—C12—C13122.3 (2)C44—C41—C13112.57 (19)
C11—C12—H12118.8C43—C41—C42109.2 (2)
C12—C11—C10120.6 (2)C44—C41—C42107.4 (2)
C12—C11—H11119.7C13—C41—C42109.4 (2)
C12—C13—C14116.3 (2)C41—C42—H42A109.5
C12—C13—C41123.18 (19)C41—C42—H42B109.5
C13—C14—H14119.0H42A—C42—H42B109.5
C13—C12—H12118.8C41—C42—H42C109.5
C14—C15—C10120.8 (2)H42A—C42—H42C109.5
C14—C15—H15119.6H42B—C42—H42C109.5
C14—C13—C41120.53 (19)C41—C43—H43A109.5
C15—C10—C3120.89 (19)C41—C43—H43B109.5
C15—C14—C13122.0 (2)H43A—C43—H43B109.5
C15—C14—H14119.0C41—C43—H43C109.5
C17—C16—C21119.26 (19)H43A—C43—H43C109.5
C17—C16—C1119.9 (2)H43B—C43—H43C109.5
C21—C16—C1120.8 (2)C41—C44—H44A109.5
C20—C21—C16120.6 (2)C41—C44—H44B109.5
C20—C21—H21119.7H44A—C44—H44B109.5
C16—C21—H21119.7C41—C44—H44C109.5
C21—C20—C19119.6 (2)H44A—C44—H44C109.5
C21—C20—C22120.2 (2)H44B—C44—H44C109.5
C19—C20—C22120.1 (2)C46—C45—C28112.7 (2)
C18—C19—C20120.0 (2)C46—C45—C48108.7 (2)
C18—C19—H19120.0C28—C45—C48108.0 (2)
C20—C19—H19120.0C46—C45—C47108.8 (2)
C17—C18—C19120.6 (2)C28—C45—C47110.2 (2)
C17—C18—H18119.7C48—C45—C47108.3 (3)
C19—C18—H18119.7C45—C46—H46A109.5
C18—C17—C16119.9 (2)C45—C46—H46B109.5
C18—C17—H17120.0H46A—C46—H46B109.5
C16—C17—H17120.0C45—C46—H46C109.5
C22—O2—C24105.53 (17)H46A—C46—H46C109.5
C22—N2—C23105.33 (18)H46B—C46—H46C109.5
N2—C22—O2113.20 (18)C45—C47—H47A109.5
N2—C22—C20126.3 (2)C45—C47—H47B109.5
O2—C22—C20120.44 (19)H47A—C47—H47B109.5
C23—C24—O2107.22 (18)C45—C47—H47C109.5
C23—C24—C31135.4 (2)H47A—C47—H47C109.5
O2—C24—C31117.38 (18)H47B—C47—H47C109.5
C24—C23—N2108.70 (18)C45—C48—H48A109.5
C24—C23—C25131.2 (2)C45—C48—H48B109.5
N2—C23—C25119.76 (19)H48A—C48—H48B109.5
C30—C25—C26117.93 (19)C45—C48—H48C109.5
C30—C25—C23122.7 (2)H48A—C48—H48C109.5
C26—C25—C23119.3 (2)H48B—C48—H48C109.5
C27—C26—C25120.8 (2)C50—C49—C52108.0 (2)
C27—C26—H26119.6C50—C49—C51109.5 (2)
C25—C26—H26119.6C52—C49—C51108.7 (2)
C26—C27—C28121.9 (2)C50—C49—C34111.8 (2)
C26—C27—H27119.1C52—C49—C34108.5 (2)
C28—C27—H27119.1C51—C49—C34110.11 (19)
C29—C28—C27116.9 (2)C49—C50—H50A109.5
C29—C28—C45122.8 (2)C49—C50—H50B109.5
C27—C28—C45120.2 (2)H50A—C50—H50B109.5
C28—C29—C30121.7 (2)C49—C50—H50C109.5
C28—C29—H29119.2H50A—C50—H50C109.5
C30—C29—H29119.2H50B—C50—H50C109.5
C25—C30—C29120.8 (2)C49—C51—H51A109.5
C25—C30—H30119.6C49—C51—H51B109.5
C29—C30—H30119.6H51A—C51—H51B109.5
C32—C31—C36117.6 (2)C49—C51—H51C109.5
C32—C31—C24120.5 (2)H51A—C51—H51C109.5
C36—C31—C24121.9 (2)H51B—C51—H51C109.5
C33—C32—C31121.1 (2)C49—C52—H52A109.5
C33—C32—H32119.5C49—C52—H52B109.5
C31—C32—H32119.5H52A—C52—H52B109.5
C32—C33—C34121.9 (2)C49—C52—H52C109.5
C32—C33—H33119.1H52A—C52—H52C109.5
C34—C33—H33119.1H52B—C52—H52C109.5
C33—C34—C35116.6 (2)
C1—O1—C3—C20.5 (2)C22—C20—C19—C18178.8 (2)
C1—O1—C3—C10178.09 (19)C20—C19—C18—C170.3 (4)
O1—C3—C2—N11.2 (2)C19—C18—C17—C160.1 (4)
C10—C3—C2—N1177.0 (2)C21—C16—C17—C180.7 (3)
O1—C3—C2—C4172.4 (2)C1—C16—C17—C18177.9 (2)
C10—C3—C2—C49.3 (4)C23—N2—C22—O21.4 (2)
C1—N1—C2—C31.5 (2)C23—N2—C22—C20176.8 (2)
C1—N1—C2—C4173.15 (19)C24—O2—C22—N20.7 (2)
C2—N1—C1—O11.2 (2)C24—O2—C22—C20177.62 (19)
C2—N1—C1—C16179.0 (2)C21—C20—C22—N2176.9 (2)
C3—O1—C1—N10.4 (3)C19—C20—C22—N22.0 (3)
C3—O1—C1—C16179.7 (2)C21—C20—C22—O21.2 (3)
C2—C3—C10—C1130.7 (4)C19—C20—C22—O2179.8 (2)
O1—C3—C10—C11147.5 (2)C22—O2—C24—C230.3 (2)
C2—C3—C10—C15150.2 (3)C22—O2—C24—C31178.63 (19)
O1—C3—C10—C1531.7 (3)O2—C24—C23—N21.1 (2)
C15—C10—C11—C121.0 (3)C31—C24—C23—N2177.5 (2)
C3—C10—C11—C12179.8 (2)O2—C24—C23—C25172.3 (2)
C10—C11—C12—C131.1 (4)C31—C24—C23—C259.0 (5)
C11—C12—C13—C140.4 (3)C22—N2—C23—C241.6 (2)
C11—C12—C13—C41179.7 (2)C22—N2—C23—C25172.8 (2)
C12—C13—C14—C150.4 (3)C23—C24—C31—C32154.4 (3)
C41—C13—C14—C15179.6 (2)O2—C24—C31—C3227.1 (3)
C13—C14—C15—C100.4 (3)C23—C24—C31—C3626.8 (4)
C11—C10—C15—C140.3 (3)O2—C24—C31—C36151.7 (2)
C3—C10—C15—C14179.4 (2)C36—C31—C32—C331.2 (3)
C12—C13—C41—C43123.3 (2)C24—C31—C32—C33177.6 (2)
C14—C13—C41—C4356.7 (3)C31—C32—C33—C340.7 (3)
C12—C13—C41—C442.8 (3)C32—C33—C34—C350.2 (3)
C14—C13—C41—C44177.2 (2)C32—C33—C34—C49178.3 (2)
C12—C13—C41—C42116.5 (2)C33—C34—C35—C360.6 (3)
C14—C13—C41—C4263.5 (3)C49—C34—C35—C36177.9 (2)
C3—C2—C4—C536.5 (4)C34—C35—C36—C310.1 (3)
N1—C2—C4—C5136.6 (2)C32—C31—C36—C350.9 (3)
C3—C2—C4—C9148.2 (2)C24—C31—C36—C35177.9 (2)
N1—C2—C4—C938.7 (3)C33—C34—C49—C504.5 (3)
C9—C4—C5—C60.8 (3)C35—C34—C49—C50177.0 (2)
C2—C4—C5—C6176.2 (2)C33—C34—C49—C52114.5 (2)
C4—C5—C6—C71.0 (4)C35—C34—C49—C5263.9 (3)
C5—C6—C7—C80.9 (3)C33—C34—C49—C51126.6 (3)
C5—C6—C7—C37175.9 (2)C35—C34—C49—C5155.0 (3)
C6—C7—C8—C90.7 (3)C24—C23—C25—C30144.6 (2)
C37—C7—C8—C9176.0 (2)N2—C23—C25—C3042.5 (3)
C7—C8—C9—C40.6 (4)C24—C23—C25—C2639.2 (4)
C5—C4—C9—C80.6 (3)N2—C23—C25—C26133.7 (2)
C2—C4—C9—C8176.1 (2)C30—C25—C26—C271.6 (3)
C8—C7—C37—C4023.1 (4)C23—C25—C26—C27178.0 (2)
C6—C7—C37—C40160.4 (3)C25—C26—C27—C280.5 (4)
C8—C7—C37—C3998.1 (3)C26—C27—C28—C290.4 (3)
C6—C7—C37—C3978.4 (3)C26—C27—C28—C45177.1 (2)
C8—C7—C37—C38142.1 (3)C27—C28—C29—C300.0 (3)
C6—C7—C37—C3841.4 (3)C45—C28—C29—C30176.7 (2)
N1—C1—C16—C172.3 (3)C26—C25—C30—C292.0 (3)
O1—C1—C16—C17177.5 (2)C23—C25—C30—C29178.2 (2)
N1—C1—C16—C21179.1 (2)C28—C29—C30—C251.2 (3)
O1—C1—C16—C211.0 (3)C29—C28—C45—C4612.6 (3)
C17—C16—C21—C200.8 (3)C27—C28—C45—C46170.8 (2)
C1—C16—C21—C20177.7 (2)C29—C28—C45—C48107.5 (3)
C16—C21—C20—C190.4 (3)C27—C28—C45—C4869.0 (3)
C16—C21—C20—C22179.4 (2)C29—C28—C45—C47134.4 (3)
C21—C20—C19—C180.2 (3)C27—C28—C45—C4749.1 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC36H24N2O2C52H56N2O2
Mr516.57740.99
Crystal system, space groupOrthorhombic, PbcaTriclinic, P1
Temperature (K)153153
a, b, c (Å)7.1523 (2), 20.0145 (5), 36.8669 (8)10.3121 (3), 11.1215 (3), 19.8676 (6)
α, β, γ (°)90, 90, 9091.593 (2), 96.918 (2), 108.463 (2)
V3)5277.5 (2)2140.25 (11)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.080.07
Crystal size (mm)0.48 × 0.34 × 0.170.32 × 0.18 × 0.17
Data collection
DiffractometerNonius Kappa APEXII CCD area-detector
diffractometer
Nonius Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.9860.978, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
80848, 10121, 5826 33601, 9309, 5281
Rint0.0620.044
(sin θ/λ)max1)0.7720.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.156, 0.99 0.057, 0.180, 1.02
No. of reflections101219309
No. of parameters361517
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.310.36, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Interplanar angles (°) in (I) and (II) top
Planes(I)(II)
A/B46.1 (1)39.6 (1)
A'/B'40.5 (1)42.6 (1)
A/C5.5 (1)31.3 (1)
A'/C'25.1 (1)27.1 (1)
A/D2.3 (1)2.3 (2)
A'/D'8.2 (1)3.5 (2)
B/C50.3 (1)54.4 (1)
B'/C'51.3 (1)54.2 (1)
C—H···X and C—H···π interactions for (I) top
SymmetryH···AD···AD-H···A
C5—H5···N1-1/2+x, y, 1/2-z2.5563.489 (1)167.5
C15—H15···O1x, y, z2.4052.761 (1)101.8
C29—H29···centroid(C')1-x, -y, -z2.7593.486 (1)134.0
C33—H33···centroid(B')-x, -y, -z2.8083.550 (1)135.6
C—-H···π interactions for (II) top
SymmetryH···AD···AD-H···A
C51—H51A···centroid(B)2-x, 2-y, 2-z2.883.691 (2)141.2
C26—H26···centroid(C)2-x, 2-y, 2-z2.873.470 (2)122.3
C43—H43A···centroid(B)2-x, 2-y, 2-z2.893.810 (2)157.2
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds