Download citation
Download citation
link to html
The bitopic ligand 1,2-bis­(1,2,4-triazol-4-yl)ethane (tr2eth) provides an unprecedented short-distance N1:N2-triazole bridging of CuI and VIV ions in poly[bis­[[mu]4-1,2-bis­(1,2,4-triazol-4-yl)ethane]di-[mu]2-fluorido-tetra­fluoridodi-[mu]2-oxido-dicopper(I)divanadium(IV)], [Cu2V2F6O2(C6H8N6)2]n. The CuI ions and tr2eth linkers afford a two-dimensional square-grid topology involving centrosymmetric (tr)Cu([mu]-tr)2Cu(tr) [tr is triazole; Cu-N = 1.9525 (16)-2.0768 (18) Å] binuclear net nodes, which are expanded in a third dimension by centrosymmetric [V2O2F6]2- pillars. The concerted [mu]-tr and [mu]-O bridging between the CuI and VIV ions allows a multi-centre accommodation of the vanadium oxyfluoride moiety on a cationic Cu/tr2eth matrix [Cu-O = 2.1979 (15) Å and V-N = 2.1929 (17) Å]. The distorted octa­hedral coordination of [VONF4] is completed by two terminal and two bridging F- ions [V-F = 1.8874 (14)-1.8928 (13) and 2.0017 (13)-2.1192 (12) Å, respectively]. The resulting three-dimensional framework has a primitive cubic net topology and adopts a threefold inter­penetration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110034323/su3051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110034323/su3051Isup2.hkl
Contains datablock I

CCDC reference: 796068

Comment top

In recent years, the structure-directing properties of vanadium oxyfluoride (VOF) species have found a range of applications in crystal design with a view to preparing magnetic materials (Aldous, Goff et al., 2007) and in the construction of polar optically active arrays (Stephens et al., 2005). In particular, both discrete and oligomeric VOF units have been exploited as bifunctional anionic linkers between complex cations, such as [CuPy4]2+, to generate polymeric chains (Welk et al., 2000; Mahenthirarajah et al., 2008) and complicated three-dimensional frameworks (Mahenthirarajah & Lightfoot, 2008). Even more versatile possibilities may be found with the utilization of VOF anions as polynucleating linkers between polynuclear complex cations, or as pillaring groups between extended metal–organic layers (Noro et al., 2002). Such systems possess a special and as yet completely unexplored potential for sustaining the inorganic/organic integrity of framework solids. Our present strategy considers further modification of the VOF unit by substitution of the fluoride ligands and setting up additional V—N bonds with the metal–amine portion of the structure, which could complement the short inorganic M—O—M links (Lysenko et al., 2006). We have therefore examined a prototypical polydentate ligand, 1,2-bis(1,2,4-triazol-4-yl)ethane (tr2eth), typically used to support short N1,N2-triazole bridges between pairs of metal ions (Habib, Hoffmann, Hoppe & Janiak, 2009). Here, we report the structure of a [Cu2(tr2eth)2[V2O2F6]] complex, (I), that features an exceptional concerted organic/inorganic linkage between two types of metal ions, leading to a multi-centre and an extremely tight accommodation of the anionic VOF unit on a cationic metal–organic matrix.

The asymmetric unit of (I) includes one CuI cation, one organic ligand and one-half of a [V2O2F6]2- anion, which resides across an inversion centre (Fig. 1). Selected geometric paramaters are given in Table 1. It is important from synthetic considerations that both metals appear in a reduced form (CuI and VIV). Such behaviour of V2O5/HF systems is well known for hydrothermal reactions (Aldous, Goff et al., 2007 or Aldous, Stephens & Lightfoot, 2007 ?), while CuII ions under similar conditions are also readily reduced in the presence of triazole ligands (Habib, Hoffmann, Hoppe, Steinfeld & Janiak, 2009).

Atom Cu1 adopts a distorted coordination tetrahedron, [CuN3O], in which the Cu—N bond lengths [1.9525 (16)–2.0768 (18) Å] are characteristic of tetracoordinate Cu(µ-tr)2Cu complexes [tr is triazole; Cu—N = 1.991 (3)–2.082 (3) Å; Drabent et al., 2003]. The Cu1—O1 bond is slightly elongated [2.1979 (15) Å] and therefore the metal ion approaches the plane of the three N donor atoms as close as 0.2388 (11) Å. The present complex VOF unit is sustained with two [VNOF4] octahedra sharing the F···F edge. It may be directly related to a previously reported binuclear anion, [V2O2(µ-F)2F4(H2O)2]2- (Bukove et al., 1981), as a result of substitution of the weakly bound aqua ligands (which are cis-positioned towards the VO bond) by triazole groups, with the formation of triazole/oxido double bridges. Notably, the coordination of the oxido ligand to the CuI ion results in elongation of the short VO bond to 1.6275 (15) Å, which may be compared with the same distance in the tetramethylammonium and 4,4'-bipyridinium ionic salts of the above diaqua anion [1.607 (5) and 1.606 (2) Å, respectively; Aldous, Stephens & Lightfoot, 2007). This also produces a shortening of the V1—F3 bond compared with the corresponding trans-fluoride ligand [2.1192 (12) Å in (I) versus 2.173 (3) Å reported by Bukove et al. (1981)]. The distorted coordination octahedron around the VIV ion is completed by two terminal and two µ-fluorides and a relatively distant triazole-N donor atom [V1—N2 = 2.1929 (17) Å].

The bis(triazole) ligands adopt a µ4-coordination, with the triazole halves providing a double connection for two CuI ions [Cu1···Cu1iv = 3.6104 (5) Å; symmetry code: (iv) = 2 - x, 1 - y, 1 - z], as well as unprecedented bridging of the heterometallic CuI/VIV pair [Cu1···V1 = 3.4174 (5) Å] (Fig. 1). Thus, the triazole and oxido bridges are complementary and they act in synergy for the incorporation of the VOF fragment into the –(VVCuCu)n– polymeric chains. The latter run along the c direction and include alternation of the above Cu(µ-tr)2Cu, Cu(µ-tr)(µ-O)V and V(µ-F)2V fragments [V1···V1iii = 3.3367 (7) Å; symmetry code: (iii) 2 - x, 1 - y, -z], whereas the double functionality of the bis(triazole) linkers allows propagation of this geometry in two other directions. Recently, we have demonstrated the utility of combining triazole and oxido bridging for the design of metal oxide–organic frameworks (Lysenko et al., 2010).

The entire three-dimensional connectivity in (I) may be best described in terms of a primitive cubic framework (NaCl) composed of organic and oxyfluoride links. Thus, the CuI ions and bis(triazole) ligands afford a distinct subtopology of the structure, which exists in the form of a two-dimensional square-grid net parallel to (001) (Fig. 2). The net nodes are sustained by characteristic (tr)Cu(µ-tr)2Cu(tr) dimers, which themselves typically dominate self-assembly in such systems involving either monofunctional (Drabent et al., 2003) or bitopic triazole ligands (Habib, Hoffmann, Hoppe, Steinfeld & Janiak, 2009). These layers are stacked on top of one another, separated by 11.2220 (16) Å, and are interconnected by inorganic [V2O2F6]2- units acting as pillars which expand the structure in the third dimension (Fig. 3). For the accommodation of such pillaring with building blocks on the two axial sides of the layer, the available functionality at the Cu2(tr)4 nodes includes unsaturated coordination positions at the CuI ions in combination with uncoordinated triazole-N donors. This case perfectly complements the bonding preferences of the coordinatively unsaturated [V2O2F6]2- blocks and enables a double interaction (Cu—O and V—N) between the counterparts.

The resulting three-dimensional array is open since it contains channels of ca 6.0 × 6.5 Å (calculated using PLATON; Spek, 2009) running along the c direction, while the porosity of the structure is eliminated by the interpenetration of three identical frameworks (Fig. 4). This is a relatively rare threefold class Ia interpenetration, where equivalent nets are related by a single translation vector (Blatov et al., 2004). Close interaction between the interpenetrating frameworks occurs by means of weak C—H···F hydrogen bonding, involving the terminal fluoride ligands and the CH groups of the triazole groups, with the shortest C···F separation being only 2.803 (2) Å (Table 2).

In conclusion, our findings suggest a flexible approach for the development of hybrid heterometallic frameworks incorporating metal oxyfluoride units. The utility of triazole ligands for the concerted organic/oxido bridging of CuI and VIV ions provides a new design tool for the integration of organic and inorganic counterparts, which could find wider application in the synthesis of functionalized MOF materials.

Related literature top

For related literature, see: Aldous, Goff, Attfield & Lightfoot (2007); Aldous, Stephens & Lightfoot (2007); Blatov et al. (2004); Bukove et al. (1981); Drabent et al. (2003); Habib, Hoffmann, Hoppe & Janiak (2009); Habib, Hoffmann, Hoppe, Steinfeld & Janiak (2009); Lysenko et al. (2006, 2010); Mahenthirarajah & Lightfoot (2008); Mahenthirarajah, Li & Lightfoot (2008); Noro et al. (2002); Spek (2009); Stephens et al. (2005); Welk (2000).

Experimental top

1,2-Bis(1,2,4-triazol-4-yl)ethane (tr2eth) was prepared in a 65% yield by reacting ethylenediamine (1.50 g, 1.67 ml, 25.0 mmol) and dimethylformamide azine (8.87 g, 62.5 mmol) in boiling xylene (12 ml) in the presence of TsOH.H2O (0.38 g, 2.0 mmol) as a catalyst. Complex (I) was prepared under hydrothermal conditions starting with V2O5 and 48% HF solution. In a typical reaction, Cu(OAc)2.H2O (19.9 mg, 0.10 mmol), tr2eth (16.4 mg, 0.10 mmol), V2O5 (18.1 mg, 0.10 mmol), aqueous HF (100 µl) and water (5 ml) were added to a Teflon vessel, which was placed in a steel bomb and heated to 448 K for 24 h. The mixture was then slowly cooled to room temperature over a period of 60 h and afforded brownish crystals of (I) (yield 13.4 mg, 38%).

Refinement top

All H atoms were located in difference Fourier maps and then refined as riding, with C—H (aromatic) = 0.94 Å and C—H (methylene) = 0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Note the unprecedented triazole bridge between the CuI and Viv ions. [Symmetry codes: (i) 3/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 - x, 1/2 + y, 1/2 - z; (iii) 2 - x, 1 - y, -z; (iv) 2 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. The copper(I)–bis(triazole) subtopology in the structure of (I), in the form of the planar square-grid net supported by the dinuclear nodes. N atoms are shaded grey and the paler bonds indicate the location of the [V2O2F6]2- moieties, which reside above and below the layer plane. [Symmetry codes: (iv) 2 - x, 1 - y, 1 - z; (v) 1/2 - x, -1/2 + y, 1/2 - z.]
[Figure 3] Fig. 3. A projection on the ac plane, showing the mode of interconnection of the copper(I)–bis(triazole) layers (which are orthogonal to the drawing plane) by [V2O2F6]2- pillars, shown as polyhedra. H atoms have been omitted for clarity [Symmetry code: (iv) 2 - x, 1 - y, 1 - z.]
[Figure 4] Fig. 4. The interpenetration of three topologically identical three-dimensional frameworks in the structure of (I), shown in projection on the ab plane. A single framework is shaded grey and marked with black bonds.
poly[bis[µ4-1,2-bis(1,2,4-triazol-4-yl)ethane]di-µ2-fluorido-tetrafluoridodi-µ2-oxido-dicopper(I)divanadium(IV)] top
Crystal data top
[Cu2V2F6O2(C6H8N6)2]F(000) = 692
Mr = 703.33Dx = 2.249 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1630 (6) ÅCell parameters from 8000 reflections
b = 13.7698 (10) Åθ = 2.2–28.0°
c = 12.4856 (11) ŵ = 2.99 mm1
β = 101.370 (8)°T = 213 K
V = 1038.77 (16) Å3Prism, brown
Z = 20.15 × 0.12 × 0.12 mm
Data collection top
Stoe IPDS
diffractometer
2499 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ oscillation scansθmax = 28.0°, θmin = 2.2°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 88
Tmin = 0.663, Tmax = 0.716k = 1818
8977 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2V2F6O2(C6H8N6)2]V = 1038.77 (16) Å3
Mr = 703.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1630 (6) ŵ = 2.99 mm1
b = 13.7698 (10) ÅT = 213 K
c = 12.4856 (11) Å0.15 × 0.12 × 0.12 mm
β = 101.370 (8)°
Data collection top
Stoe IPDS
diffractometer
2499 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
2157 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.716Rint = 0.032
8977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.02Δρmax = 0.66 e Å3
2499 reflectionsΔρmin = 0.47 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.96536 (4)0.438375 (18)0.370120 (19)0.01751 (9)
V10.97241 (6)0.54180 (2)0.12202 (3)0.01560 (9)
F10.7280 (2)0.61927 (9)0.13772 (11)0.0273 (3)
F21.1206 (3)0.65737 (10)0.09656 (12)0.0328 (3)
F31.1748 (2)0.46611 (9)0.04611 (10)0.0200 (3)
O11.0975 (3)0.52238 (11)0.24764 (12)0.0234 (3)
N10.7868 (3)0.37056 (12)0.24042 (13)0.0162 (3)
N20.7642 (3)0.41574 (12)0.13880 (13)0.0154 (3)
N30.5257 (3)0.29648 (12)0.12491 (13)0.0166 (3)
N40.2421 (3)0.03688 (13)0.08686 (14)0.0193 (4)
N50.2818 (3)0.08723 (13)0.01205 (13)0.0169 (3)
N60.0064 (3)0.15786 (13)0.09907 (14)0.0182 (3)
C10.6428 (3)0.29921 (15)0.22963 (17)0.0189 (4)
H10.62340.25640.28570.023*
C20.6060 (3)0.37025 (15)0.07158 (16)0.0171 (4)
H20.55570.38630.00230.021*
C30.0766 (3)0.08084 (16)0.15119 (17)0.0203 (4)
H30.01550.06170.22310.024*
C40.1380 (4)0.15891 (15)0.00192 (17)0.0209 (4)
H40.12780.20440.05680.025*
C50.3494 (4)0.22702 (16)0.07982 (18)0.0231 (4)
H5A0.41130.16130.08240.028*
H5B0.28950.24310.00320.028*
C60.1653 (3)0.22970 (16)0.14392 (18)0.0216 (4)
H6A0.22520.21500.22090.026*
H6B0.10010.29480.13970.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01492 (14)0.02149 (14)0.01532 (13)0.00205 (9)0.00100 (9)0.00204 (9)
V10.01753 (18)0.01434 (16)0.01496 (16)0.00425 (12)0.00324 (13)0.00021 (11)
F10.0281 (7)0.0264 (7)0.0277 (7)0.0056 (5)0.0063 (6)0.0067 (5)
F20.0429 (9)0.0205 (6)0.0374 (7)0.0131 (6)0.0141 (7)0.0005 (5)
F30.0168 (6)0.0254 (6)0.0186 (6)0.0031 (5)0.0055 (5)0.0003 (5)
O10.0232 (8)0.0303 (8)0.0168 (7)0.0105 (6)0.0040 (6)0.0009 (6)
N10.0154 (8)0.0172 (8)0.0161 (8)0.0018 (6)0.0035 (6)0.0011 (6)
N20.0125 (8)0.0186 (8)0.0157 (7)0.0018 (6)0.0045 (6)0.0012 (6)
N30.0124 (8)0.0174 (8)0.0198 (8)0.0041 (6)0.0027 (6)0.0010 (6)
N40.0135 (8)0.0255 (9)0.0188 (8)0.0047 (7)0.0030 (7)0.0054 (7)
N50.0134 (8)0.0217 (8)0.0159 (8)0.0039 (6)0.0032 (6)0.0042 (6)
N60.0120 (8)0.0215 (8)0.0211 (8)0.0048 (6)0.0033 (6)0.0014 (6)
C10.0174 (10)0.0198 (9)0.0192 (9)0.0046 (7)0.0033 (8)0.0022 (7)
C20.0129 (9)0.0223 (10)0.0169 (9)0.0029 (7)0.0045 (7)0.0005 (7)
C30.0126 (9)0.0290 (11)0.0187 (10)0.0058 (8)0.0016 (8)0.0054 (8)
C40.0175 (10)0.0242 (10)0.0207 (9)0.0050 (8)0.0028 (8)0.0055 (8)
C50.0200 (11)0.0239 (10)0.0266 (11)0.0103 (8)0.0070 (9)0.0081 (8)
C60.0134 (9)0.0217 (10)0.0301 (11)0.0057 (7)0.0049 (8)0.0068 (8)
Geometric parameters (Å, º) top
Cu1—N5i1.9525 (16)N4—C31.315 (3)
Cu1—N12.0007 (16)N4—N51.395 (2)
Cu1—N4ii2.0768 (18)N5—C41.316 (3)
Cu1—O12.1979 (15)N6—C41.358 (3)
V1—O11.6275 (15)N6—C31.359 (3)
V1—F11.8874 (14)N6—C61.476 (2)
V1—F21.8928 (13)C1—H10.9400
V1—F32.0017 (13)C2—H20.9400
V1—F3iii2.1192 (12)C3—H30.9400
V1—N22.1929 (17)C4—H40.9400
N1—C11.313 (3)C5—C61.512 (3)
N1—N21.395 (2)C5—H5A0.9800
N2—C21.314 (2)C5—H5B0.9800
N3—C21.360 (3)C6—H6A0.9800
N3—C11.364 (2)C6—H6B0.9800
N3—C51.474 (2)
N5i—Cu1—N1139.07 (7)C3—N4—Cu1iv128.05 (14)
N5i—Cu1—N4ii113.20 (7)N5—N4—Cu1iv122.95 (12)
N1—Cu1—N4ii103.15 (7)C4—N5—N4106.87 (16)
N5i—Cu1—O1105.62 (7)C4—N5—Cu1v129.06 (14)
N1—Cu1—O184.41 (6)N4—N5—Cu1v123.50 (13)
N4ii—Cu1—O1101.04 (7)C4—N6—C3105.34 (16)
O1—V1—F1103.23 (7)C4—N6—C6126.68 (18)
O1—V1—F298.48 (7)C3—N6—C6127.86 (17)
F1—V1—F287.91 (7)N1—C1—N3109.77 (18)
O1—V1—F398.61 (7)N1—C1—H1125.1
F1—V1—F3158.15 (6)N3—C1—H1125.1
F2—V1—F389.53 (6)N2—C2—N3109.83 (17)
O1—V1—F3iii167.19 (7)N2—C2—H2125.1
F1—V1—F3iii86.41 (5)N3—C2—H2125.1
F2—V1—F3iii90.19 (6)N4—C3—N6110.41 (17)
F3—V1—F3iii71.90 (5)N4—C3—H3124.8
O1—V1—N287.30 (7)N6—C3—H3124.8
F1—V1—N286.76 (6)N5—C4—N6110.42 (18)
F2—V1—N2172.91 (7)N5—C4—H4124.8
F3—V1—N293.68 (6)N6—C4—H4124.8
F3iii—V1—N284.82 (6)N3—C5—C6110.84 (17)
V1—F3—V1iii108.10 (5)N3—C5—H5A109.5
V1—O1—Cu1125.94 (8)C6—C5—H5A109.5
C1—N1—N2107.22 (16)N3—C5—H5B109.5
C1—N1—Cu1133.24 (14)C6—C5—H5B109.5
N2—N1—Cu1117.93 (12)H5A—C5—H5B108.1
C2—N2—N1107.27 (16)N6—C6—C5109.84 (17)
C2—N2—V1133.73 (14)N6—C6—H6A109.7
N1—N2—V1118.97 (12)C5—C6—H6A109.7
C2—N3—C1105.91 (16)N6—C6—H6B109.7
C2—N3—C5127.56 (16)C5—C6—H6B109.7
C1—N3—C5126.53 (17)H6A—C6—H6B108.2
C3—N4—N5106.96 (17)
O1—V1—F3—V1iii171.14 (7)F1—V1—N2—N198.14 (14)
F1—V1—F3—V1iii7.14 (18)F2—V1—N2—N1139.4 (5)
F2—V1—F3—V1iii90.36 (7)F3—V1—N2—N1103.75 (14)
F3iii—V1—F3—V1iii0.0F3iii—V1—N2—N1175.18 (14)
N2—V1—F3—V1iii83.32 (6)C3—N4—N5—C40.0 (2)
F1—V1—O1—Cu165.90 (11)Cu1iv—N4—N5—C4164.87 (15)
F2—V1—O1—Cu1155.74 (10)C3—N4—N5—Cu1v172.12 (15)
F3—V1—O1—Cu1113.45 (10)Cu1iv—N4—N5—Cu1v7.2 (2)
F3iii—V1—O1—Cu172.1 (4)N2—N1—C1—N30.4 (2)
N2—V1—O1—Cu120.13 (11)Cu1—N1—C1—N3164.27 (14)
N5i—Cu1—O1—V1165.16 (11)C2—N3—C1—N10.1 (2)
N1—Cu1—O1—V125.62 (11)C5—N3—C1—N1179.83 (19)
N4ii—Cu1—O1—V176.72 (12)N1—N2—C2—N30.6 (2)
N5i—Cu1—N1—C171.4 (2)V1—N2—C2—N3178.40 (14)
N4ii—Cu1—N1—C181.1 (2)C1—N3—C2—N20.4 (2)
O1—Cu1—N1—C1178.8 (2)C5—N3—C2—N2179.39 (19)
N5i—Cu1—N1—N2125.20 (14)N5—N4—C3—N60.2 (2)
N4ii—Cu1—N1—N282.32 (15)Cu1iv—N4—C3—N6163.73 (15)
O1—Cu1—N1—N217.75 (14)C4—N6—C3—N40.2 (3)
C1—N1—N2—C20.7 (2)C6—N6—C3—N4175.94 (19)
Cu1—N1—N2—C2166.79 (14)N4—N5—C4—N60.1 (2)
C1—N1—N2—V1178.83 (14)Cu1v—N5—C4—N6171.40 (14)
Cu1—N1—N2—V111.38 (19)C3—N6—C4—N50.2 (3)
O1—V1—N2—C2177.1 (2)C6—N6—C4—N5176.02 (19)
F1—V1—N2—C279.4 (2)C2—N3—C5—C6123.3 (2)
F2—V1—N2—C238.1 (7)C1—N3—C5—C657.0 (3)
F3—V1—N2—C278.7 (2)C4—N6—C6—C564.8 (3)
F3iii—V1—N2—C27.24 (19)C3—N6—C6—C5119.8 (2)
O1—V1—N2—N15.29 (15)N3—C5—C6—N6178.56 (17)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1vi0.942.232.999 (2)138
C2—H2···F1vii0.942.182.994 (2)144
C4—H4···F2vii0.941.972.803 (2)147
Symmetry codes: (vi) x+3/2, y1/2, z+1/2; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2V2F6O2(C6H8N6)2]
Mr703.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)213
a, b, c (Å)6.1630 (6), 13.7698 (10), 12.4856 (11)
β (°) 101.370 (8)
V3)1038.77 (16)
Z2
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.15 × 0.12 × 0.12
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.663, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
8977, 2499, 2157
Rint0.032
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.02
No. of reflections2499
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.47

Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.01; Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N5i1.9525 (16)V1—F11.8874 (14)
Cu1—N12.0007 (16)V1—F21.8928 (13)
Cu1—N4ii2.0768 (18)V1—F32.0017 (13)
Cu1—O12.1979 (15)V1—F3iii2.1192 (12)
V1—O11.6275 (15)V1—N22.1929 (17)
N5i—Cu1—N1139.07 (7)O1—V1—F3iii167.19 (7)
N5i—Cu1—N4ii113.20 (7)F1—V1—F3iii86.41 (5)
N1—Cu1—N4ii103.15 (7)F2—V1—F3iii90.19 (6)
N5i—Cu1—O1105.62 (7)F3—V1—F3iii71.90 (5)
N1—Cu1—O184.41 (6)O1—V1—N287.30 (7)
N4ii—Cu1—O1101.04 (7)F1—V1—N286.76 (6)
O1—V1—F1103.23 (7)F2—V1—N2172.91 (7)
O1—V1—F298.48 (7)F3—V1—N293.68 (6)
F1—V1—F287.91 (7)F3iii—V1—N284.82 (6)
O1—V1—F398.61 (7)V1—F3—V1iii108.10 (5)
F1—V1—F3158.15 (6)V1—O1—Cu1125.94 (8)
F2—V1—F389.53 (6)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1iv0.942.232.999 (2)138
C2—H2···F1v0.942.182.994 (2)144
C4—H4···F2v0.941.972.803 (2)147
Symmetry codes: (iv) x+3/2, y1/2, z+1/2; (v) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds