Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
2,3,5,6-Tetra­fluoro­benzene-1,4-diol easily forms cocrystals with heteroaromatic bases containing the pyrazine unit. In the 1:1 complexes with pyrazine, C6H2F4O2·C4H4N2, (I), and quinoxaline, C6H2F4O2·C8H6N2, (II), the crystal components are linked via O-H...N hydrogen bonds into one-dimensional chains. With the largest base, phenazine, the 1:2 benzenediol-phenazine complex, C6H2F4O2·2C12H8N2, (III), was obtained, with the mol­ecules linked via O-H...N inter­actions into a discrete heterotrimer. In all three cocrystals, the two types of mol­ecules are organized into layers via softer C-H...O and C-H...F inter­actions and [pi]-[pi] stacking inter­actions, with stronger hydrogen bonds linking mol­ecules of adjacent layers. In (II) and (III), mol­ecules are arranged into heterostacks, whereas in (I) separate stacks are formed by the heterocyclic base and the benzene­diol molecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110021736/su3047sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110021736/su3047Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110021736/su3047IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110021736/su3047IIIsup4.hkl
Contains datablock III

CCDC references: 786815; 786816; 786817

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) pyrazine–2,3,5,6-tetrafluorobenzene-1,4-diol (1/1) top
Crystal data top
C6H2F4O2·C4H4N2Z = 1
Mr = 262.17F(000) = 132
Triclinic, P1Dx = 1.679 Mg m3
Hall symbol: -P 1Melting point = 444–446 K
a = 3.6671 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.585 (2) ÅCell parameters from 1281 reflections
c = 9.582 (2) Åθ = 4–25°
α = 88.14 (2)°µ = 0.17 mm1
β = 85.67 (2)°T = 294 K
γ = 77.41 (2)°Needle, colourless
V = 259.34 (11) Å30.60 × 0.15 × 0.05 mm
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 3.5°
ω scansh = 34
1921 measured reflectionsk = 89
917 independent reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.132H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0994P)2]
where P = (Fo2 + 2Fc2)/3
917 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7507 (4)0.47473 (16)0.21929 (11)0.0489 (4)
H1O0.79520.36790.18830.059*
F20.5369 (4)0.18462 (13)0.37105 (11)0.0566 (4)
F30.6964 (3)0.78291 (13)0.35828 (10)0.0503 (4)
C10.6268 (4)0.4821 (2)0.35599 (15)0.0334 (4)
C20.5227 (5)0.3426 (2)0.43377 (16)0.0357 (4)
C30.5985 (4)0.6411 (2)0.42691 (16)0.0337 (4)
N1A0.9210 (4)0.15481 (19)0.08028 (13)0.0400 (4)
C2A1.0880 (5)0.0050 (2)0.13160 (16)0.0398 (5)
H2A1.14310.01280.22820.048*
C3A0.8336 (5)0.1583 (2)0.05265 (16)0.0410 (5)
H3A0.72270.27470.09060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0776 (9)0.0364 (8)0.0306 (7)0.0117 (6)0.0095 (6)0.0048 (5)
F20.0937 (9)0.0318 (6)0.0470 (6)0.0225 (6)0.0105 (6)0.0148 (4)
F30.0744 (8)0.0310 (6)0.0462 (6)0.0176 (5)0.0070 (5)0.0043 (4)
C10.0379 (9)0.0317 (9)0.0292 (8)0.0044 (7)0.0018 (6)0.0021 (6)
C20.0438 (9)0.0259 (9)0.0372 (9)0.0060 (7)0.0025 (7)0.0067 (6)
C30.0381 (9)0.0267 (9)0.0359 (8)0.0068 (6)0.0009 (7)0.0025 (6)
N1A0.0463 (9)0.0385 (9)0.0344 (8)0.0088 (7)0.0036 (6)0.0057 (6)
C2A0.0449 (10)0.0459 (10)0.0286 (8)0.0101 (8)0.0008 (7)0.0011 (6)
C3A0.0462 (10)0.0385 (10)0.0349 (8)0.0035 (7)0.0017 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—C11.352 (2)C3—C2i1.375 (2)
O1—H1O0.8500N1A—C2A1.330 (2)
F2—C21.3473 (19)N1A—C3A1.335 (2)
F3—C31.3438 (19)C2A—C3Aii1.373 (2)
C1—C21.379 (2)C2A—H2A0.9600
C1—C31.383 (2)C3A—H3A0.9601
C1—O1—H1O112.3C2i—C3—C1121.86 (15)
O1—C1—C2125.50 (15)C2A—N1A—C3A116.30 (14)
O1—C1—C3118.87 (14)N1A—C2A—C3Aii122.05 (14)
C2—C1—C3115.62 (15)N1A—C2A—H2A118.2
F2—C2—C3i118.52 (15)C3Aii—C2A—H2A119.7
F2—C2—C1118.96 (14)N1A—C3A—C2Aii121.64 (15)
C3i—C2—C1122.51 (16)N1A—C3A—H3A116.1
F3—C3—C2i119.02 (15)C2Aii—C3A—H3A122.2
F3—C3—C1119.11 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.851.902.7343 (19)167
C2A—H2A···F3iii0.962.643.350 (2)131
C3A—H3A···O1iv0.962.623.538 (2)159
Symmetry codes: (iii) x+1, y1, z; (iv) x+1, y+1, z.
(II) quinoxaline–2,3,5,6-tetrafluorobenzene-1,4-diol (1/1) top
Crystal data top
C8H6N2·C6H2F4O2Dx = 1.642 Mg m3
Mr = 312.22Melting point = 439–441 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4532 reflections
a = 7.2094 (5) Åθ = 4–25°
b = 7.4290 (4) ŵ = 0.15 mm1
c = 23.585 (13) ÅT = 294 K
V = 1263.2 (7) Å3Block, colourless
Z = 40.60 × 0.40 × 0.40 mm
F(000) = 632
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
1208 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 3.8°
ω scansh = 48
6629 measured reflectionsk = 88
1324 independent reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0889P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1324 reflectionsΔρmax = 0.17 e Å3
200 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4547 (2)0.3567 (3)0.76926 (6)0.0568 (5)
H1O0.47800.37420.73440.068*
F20.79605 (19)0.4874 (2)0.73004 (5)0.0558 (5)
F31.0550 (2)0.6061 (3)0.80186 (5)0.0620 (5)
O40.9993 (2)0.6086 (3)0.91562 (6)0.0518 (5)
H4O0.97600.58720.95030.062*
F50.65782 (19)0.4845 (2)0.95518 (5)0.0500 (4)
F60.3983 (2)0.3604 (2)0.88326 (6)0.0576 (4)
C10.5882 (3)0.4213 (3)0.80398 (8)0.0367 (5)
C20.7587 (3)0.4858 (3)0.78606 (8)0.0370 (5)
C30.8915 (3)0.5472 (3)0.82274 (9)0.0380 (5)
C40.8635 (3)0.5477 (3)0.88086 (9)0.0357 (5)
C50.6933 (3)0.4851 (3)0.89873 (8)0.0343 (5)
C60.5597 (3)0.4221 (3)0.86215 (9)0.0372 (5)
N1A0.4814 (3)0.3946 (3)0.65244 (7)0.0382 (5)
C2A0.6234 (3)0.3385 (3)0.62236 (10)0.0420 (6)
H2A0.72690.28510.64170.050*
C3A0.6283 (3)0.3531 (3)0.56264 (10)0.0429 (6)
H3A0.73490.30810.54280.051*
N4A0.4930 (3)0.4245 (3)0.53347 (7)0.0393 (5)
C5A0.1906 (3)0.5625 (3)0.53483 (9)0.0398 (5)
H5A0.19200.57220.49420.048*
C6A0.0414 (3)0.6228 (3)0.56504 (10)0.0443 (6)
H6A0.06090.67750.54550.053*
C7A0.0358 (3)0.6069 (3)0.62460 (10)0.0442 (6)
H7A0.07050.65030.64500.053*
C8A0.1790 (3)0.5310 (3)0.65327 (9)0.0399 (5)
H8A0.17350.51920.69380.048*
C9A0.3366 (3)0.4690 (3)0.62353 (8)0.0325 (5)
C10A0.3422 (3)0.4848 (3)0.56344 (9)0.0333 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0464 (9)0.0918 (14)0.0321 (8)0.0208 (11)0.0045 (7)0.0018 (9)
F20.0572 (9)0.0879 (11)0.0224 (6)0.0160 (9)0.0062 (6)0.0016 (7)
F30.0508 (8)0.0993 (12)0.0359 (7)0.0306 (9)0.0093 (7)0.0020 (8)
O40.0494 (9)0.0770 (12)0.0289 (8)0.0214 (10)0.0010 (7)0.0008 (8)
F50.0511 (8)0.0746 (10)0.0242 (7)0.0024 (8)0.0083 (6)0.0010 (6)
F60.0390 (7)0.0939 (11)0.0400 (7)0.0141 (8)0.0083 (6)0.0030 (8)
C10.0369 (11)0.0458 (12)0.0274 (10)0.0015 (11)0.0030 (9)0.0020 (9)
C20.0437 (12)0.0443 (12)0.0231 (9)0.0014 (11)0.0035 (9)0.0001 (9)
C30.0368 (12)0.0452 (13)0.0320 (11)0.0059 (10)0.0058 (9)0.0013 (10)
C40.0400 (11)0.0393 (11)0.0280 (10)0.0018 (10)0.0000 (9)0.0017 (9)
C50.0419 (12)0.0393 (11)0.0217 (10)0.0027 (11)0.0041 (8)0.0013 (8)
C60.0321 (11)0.0449 (12)0.0345 (10)0.0019 (11)0.0068 (9)0.0029 (10)
N1A0.0423 (10)0.0445 (11)0.0279 (9)0.0032 (10)0.0051 (8)0.0005 (8)
C2A0.0403 (13)0.0484 (13)0.0372 (12)0.0015 (11)0.0060 (10)0.0001 (10)
C3A0.0391 (11)0.0524 (14)0.0372 (12)0.0022 (12)0.0021 (10)0.0028 (10)
N4A0.0398 (10)0.0501 (11)0.0279 (8)0.0026 (9)0.0024 (8)0.0014 (9)
C5A0.0407 (12)0.0484 (13)0.0303 (10)0.0039 (11)0.0074 (9)0.0030 (10)
C6A0.0395 (12)0.0481 (14)0.0453 (13)0.0025 (11)0.0095 (11)0.0021 (11)
C7A0.0359 (11)0.0477 (13)0.0490 (13)0.0031 (11)0.0046 (10)0.0031 (11)
C8A0.0442 (12)0.0455 (12)0.0300 (11)0.0068 (12)0.0040 (9)0.0013 (9)
C9A0.0350 (11)0.0359 (10)0.0265 (10)0.0080 (10)0.0021 (8)0.0013 (8)
C10A0.0358 (11)0.0370 (11)0.0270 (10)0.0073 (10)0.0025 (9)0.0001 (8)
Geometric parameters (Å, º) top
O1—C11.352 (3)C2A—C3A1.413 (3)
O1—H1O0.8500C2A—H2A0.9601
F2—C21.348 (2)C3A—N4A1.306 (3)
F3—C31.350 (2)C3A—H3A0.9600
O4—C41.355 (3)N4A—C10A1.372 (3)
O4—H4O0.8501C5A—C6A1.365 (3)
F5—C51.356 (2)C5A—C10A1.409 (3)
F6—C61.346 (3)C5A—H5A0.9600
C1—C21.385 (3)C6A—C7A1.410 (3)
C1—C61.387 (3)C6A—H6A0.9600
C2—C31.369 (3)C7A—C8A1.357 (3)
C3—C41.385 (3)C7A—H7A0.9600
C4—C51.379 (3)C8A—C9A1.412 (3)
C5—C61.375 (3)C8A—H8A0.9600
N1A—C2A1.313 (3)C9A—C10A1.423 (3)
N1A—C9A1.364 (3)
C1—O1—H1O113.0C3A—C2A—H2A119.1
C4—O4—H4O112.1N4A—C3A—C2A122.5 (2)
O1—C1—C2124.73 (19)N4A—C3A—H3A118.8
O1—C1—C6119.7 (2)C2A—C3A—H3A118.7
C2—C1—C6115.6 (2)C3A—N4A—C10A116.94 (18)
F2—C2—C3118.5 (2)C6A—C5A—C10A119.7 (2)
F2—C2—C1118.6 (2)C6A—C5A—H5A120.3
C3—C2—C1122.90 (19)C10A—C5A—H5A120.0
F3—C3—C2119.21 (19)C5A—C6A—C7A121.0 (2)
F3—C3—C4119.2 (2)C5A—C6A—H6A119.6
C2—C3—C4121.6 (2)C7A—C6A—H6A119.4
O4—C4—C5124.83 (18)C8A—C7A—C6A120.6 (2)
O4—C4—C3119.6 (2)C8A—C7A—H7A119.8
C5—C4—C3115.5 (2)C6A—C7A—H7A119.6
F5—C5—C6118.89 (19)C7A—C8A—C9A120.0 (2)
F5—C5—C4117.97 (19)C7A—C8A—H8A120.2
C6—C5—C4123.14 (18)C9A—C8A—H8A119.8
F6—C6—C5119.30 (19)N1A—C9A—C8A119.98 (18)
F6—C6—C1119.5 (2)N1A—C9A—C10A120.63 (19)
C5—C6—C1121.2 (2)C8A—C9A—C10A119.4 (2)
C2A—N1A—C9A117.08 (18)N4A—C10A—C5A120.13 (19)
N1A—C2A—C3A122.2 (2)N4A—C10A—C9A120.6 (2)
N1A—C2A—H2A118.6C5A—C10A—C9A119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.851.942.776 (3)168
O4—H4O···N4Ai0.851.982.791 (3)160
C2A—H2A···F3ii0.962.453.399 (3)169
C3A—H3A···O4ii0.962.613.282 (3)127
C7A—H7A···F2iii0.962.533.156 (3)123
C6A—H6A···F5iv0.962.543.068 (3)114
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2.
(III) phenazine–2,3,5,6-tetrafluorobenzene-1,4-diol (2/1) top
Crystal data top
2C12H8N2·C6H2F4O2F(000) = 556
Mr = 542.48Dx = 1.472 Mg m3
Monoclinic, P21/nMelting point = 474–475 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.1482 (5) ÅCell parameters from 4663 reflections
b = 11.0393 (6) Åθ = 4–25°
c = 12.4185 (8) ŵ = 0.12 mm1
β = 102.585 (5)°T = 294 K
V = 1224.01 (12) Å3Prism, yellow
Z = 20.40 × 0.40 × 0.30 mm
Data collection top
Kuma KM-4 CCD κ geometry
diffractometer
1862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.4°, θmin = 4.6°
ω scansh = 711
8327 measured reflectionsk = 1313
2476 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2476 reflectionsΔρmax = 0.23 e Å3
182 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21884 (10)0.41473 (9)0.39769 (8)0.0511 (3)
H1O0.21020.39500.33040.061*
F20.41476 (9)0.51907 (8)0.27740 (6)0.0551 (3)
F30.68533 (9)0.59817 (8)0.38071 (6)0.0561 (3)
C10.35657 (14)0.45670 (11)0.44484 (10)0.0360 (3)
C20.45577 (14)0.50828 (11)0.38841 (10)0.0363 (3)
C30.59460 (14)0.54945 (11)0.44136 (10)0.0369 (3)
N1A0.14220 (11)0.34095 (9)0.18331 (8)0.0381 (3)
C2A0.23286 (13)0.29055 (11)0.12365 (10)0.0366 (3)
C3A0.38075 (15)0.25496 (12)0.17667 (13)0.0475 (4)
H30.41420.26540.25490.057*
C4A0.47266 (17)0.20697 (14)0.11650 (15)0.0587 (4)
H40.57210.18330.15300.070*
C5A0.42575 (17)0.19064 (15)0.00123 (15)0.0617 (5)
H50.49390.15750.03980.074*
C6A0.28522 (17)0.22220 (14)0.05211 (13)0.0531 (4)
H60.25410.21010.13030.064*
C7A0.18352 (14)0.27264 (11)0.00752 (11)0.0373 (3)
N8A0.04448 (12)0.30270 (10)0.04654 (8)0.0408 (3)
C9A0.04640 (14)0.35099 (11)0.01354 (11)0.0368 (3)
C10A0.19506 (16)0.38402 (13)0.03941 (13)0.0485 (4)
H100.22910.37200.11740.058*
C11A0.28754 (17)0.43271 (14)0.01974 (15)0.0581 (4)
H110.38850.45240.01650.070*
C12A0.23948 (17)0.45313 (15)0.13443 (14)0.0576 (4)
H120.30730.48910.17430.069*
C13A0.09857 (16)0.42389 (13)0.18818 (12)0.0481 (4)
H130.06690.43900.26590.058*
C14A0.00251 (13)0.37098 (11)0.12967 (10)0.0358 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (5)0.0785 (7)0.0372 (5)0.0142 (5)0.0068 (4)0.0101 (5)
F20.0577 (6)0.0756 (6)0.0284 (4)0.0122 (4)0.0015 (4)0.0024 (4)
F30.0534 (5)0.0765 (6)0.0422 (5)0.0212 (4)0.0191 (4)0.0020 (4)
C10.0313 (7)0.0412 (7)0.0346 (7)0.0011 (5)0.0049 (5)0.0059 (5)
C20.0409 (7)0.0412 (7)0.0255 (6)0.0000 (5)0.0045 (5)0.0009 (5)
C30.0384 (7)0.0406 (7)0.0342 (7)0.0044 (5)0.0132 (5)0.0017 (5)
N1A0.0357 (6)0.0462 (6)0.0311 (6)0.0033 (5)0.0043 (5)0.0010 (5)
C2A0.0353 (7)0.0373 (7)0.0360 (7)0.0033 (5)0.0055 (5)0.0031 (5)
C3A0.0372 (7)0.0549 (9)0.0472 (8)0.0000 (6)0.0019 (6)0.0035 (7)
C4A0.0385 (8)0.0637 (10)0.0726 (11)0.0071 (7)0.0094 (7)0.0010 (8)
C5A0.0496 (9)0.0692 (10)0.0716 (12)0.0052 (8)0.0248 (8)0.0111 (8)
C6A0.0540 (9)0.0627 (9)0.0457 (8)0.0024 (7)0.0175 (7)0.0102 (7)
C7A0.0377 (7)0.0382 (7)0.0355 (7)0.0043 (5)0.0069 (5)0.0011 (5)
N8A0.0429 (6)0.0451 (6)0.0321 (6)0.0031 (5)0.0030 (5)0.0032 (5)
C9A0.0357 (7)0.0360 (7)0.0365 (7)0.0033 (5)0.0028 (5)0.0017 (5)
C10A0.0411 (8)0.0508 (8)0.0470 (8)0.0003 (6)0.0047 (6)0.0004 (7)
C11A0.0363 (8)0.0612 (9)0.0726 (11)0.0071 (7)0.0024 (7)0.0006 (8)
C12A0.0455 (9)0.0616 (10)0.0690 (11)0.0063 (7)0.0201 (8)0.0016 (8)
C13A0.0473 (8)0.0563 (8)0.0426 (8)0.0002 (7)0.0136 (6)0.0027 (6)
C14A0.0341 (7)0.0371 (7)0.0349 (7)0.0044 (5)0.0050 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—C11.3504 (15)C5A—C6A1.357 (2)
O1—H1O0.8500C5A—H50.9600
F2—C21.3528 (14)C6A—C7A1.4227 (19)
F3—C31.3483 (14)C6A—H60.9601
C1—C21.3843 (18)C7A—N8A1.3441 (16)
C1—C3i1.3879 (18)N8A—C9A1.3425 (16)
C2—C31.3740 (18)C9A—C10A1.4231 (18)
C3—C1i1.3879 (18)C9A—C14A1.4309 (18)
N1A—C2A1.3469 (16)C10A—C11A1.347 (2)
N1A—C14A1.3475 (15)C10A—H100.9600
C2A—C3A1.4248 (18)C11A—C12A1.414 (2)
C2A—C7A1.4280 (17)C11A—H110.9601
C3A—C4A1.349 (2)C12A—C13A1.355 (2)
C3A—H30.9601C12A—H120.9600
C4A—C5A1.413 (2)C13A—C14A1.4202 (18)
C4A—H40.9601C13A—H130.9601
C1—O1—H1O113.1C5A—C6A—H6119.9
O1—C1—C2125.05 (12)C7A—C6A—H6119.8
O1—C1—C3i119.19 (11)N8A—C7A—C6A119.45 (12)
C2—C1—C3i115.76 (12)N8A—C7A—C2A121.79 (11)
F2—C2—C3118.73 (11)C6A—C7A—C2A118.76 (12)
F2—C2—C1119.03 (11)C9A—N8A—C7A116.98 (11)
C3—C2—C1122.23 (12)N8A—C9A—C10A119.35 (12)
F3—C3—C2118.81 (11)N8A—C9A—C14A121.73 (11)
F3—C3—C1i119.18 (11)C10A—C9A—C14A118.92 (12)
C2—C3—C1i122.00 (11)C11A—C10A—C9A120.05 (14)
C2A—N1A—C14A117.46 (11)C11A—C10A—H10120.1
N1A—C2A—C3A119.76 (12)C9A—C10A—H10119.9
N1A—C2A—C7A121.04 (11)C10A—C11A—C12A121.22 (14)
C3A—C2A—C7A119.20 (12)C10A—C11A—H11119.3
C4A—C3A—C2A119.74 (14)C12A—C11A—H11119.5
C4A—C3A—H3120.6C13A—C12A—C11A120.78 (14)
C2A—C3A—H3119.7C13A—C12A—H12119.8
C3A—C4A—C5A121.51 (14)C11A—C12A—H12119.4
C3A—C4A—H4119.1C12A—C13A—C14A120.10 (13)
C5A—C4A—H4119.4C12A—C13A—H13120.0
C6A—C5A—C4A120.52 (14)C14A—C13A—H13119.9
C6A—C5A—H5119.7N1A—C14A—C13A120.09 (12)
C4A—C5A—H5119.8N1A—C14A—C9A120.99 (11)
C5A—C6A—C7A120.25 (14)C13A—C14A—C9A118.92 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.851.892.7257 (14)166
C3A—H3···N8Aii0.962.603.4958 (18)155
C5A—H5···O1iii0.962.483.4203 (18)165
C4A—H4···F3iv0.962.533.3445 (17)143
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+3/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds