research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2E)-N-methyl-2-(2-oxo-1,2-di­hydroace­naphthylen-1-yl­idene)hydrazinecarbo­thio­amide

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, Pachaiyappa's College for Men, Kancheepuram 631 501, India, and cDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 October 2014; accepted 21 October 2014; online 24 October 2014)

In the title compound, C14H11N3OS, the ace­naphthyl­ene ring system and hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) are essentially coplanar [with maximum deviations from their mean planes of −0.009 (2) and 0.033 (2) Å, respectively], and make a dihedral angle of 1.59 (9)°. The mol­ecular conformation is stabilized by two weak intra­molecular hydrogen bonds (N—H⋯O and N—H⋯N), which generate S(6) and S(5) ring motifs. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains along [010]. The chains are linked via pairs of C—H⋯O hydrogen bonds, enclosing R22(10) ring motifs, and C—H⋯π inter­actions, forming a three-dimensional framework. The absolute structure of the title compound was determined by resonant scattering.

1. Chemical context

The design and synthesis of thio­semicarbazones are of considerable inter­est because of their versatile chemistry and various biological activities, such as anti­tumor, anti­bacterial, anti­viral, anti­amoebic and anti­malarial (Kelly et al., 1996[Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53-59.]). They comprise an intriguing class of chelating mol­ecules, which possess a wide range of beneficial medicinal properties (Prabhakaran et al. 2008[Prabhakaran, R., Huang, R., Renukadevi, S. V., Karvembu, R., Zeller, M. & Natarajan, K. (2008). Inorg. Chim. Acta, 361, 2547-2552.]). Thio­semicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp, 3520-3528.]), their inter­esting binding motifs (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]) and their use as ligands in catalysis (Xie et al., 2010[Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641-1647.]). In view of their biological importance, the crystal structure of the title compound has been determined and the results are presented herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The atoms of both the ace­naphthyl­ene ring system and the =N—NH—C=S—NH– segment are essentially coplanar, the maximum deviations from their mean planes being −0.009 (2) and 0.033 (2) Å for atoms C12 and C14, respectively. The dihedral angle between the benzene and cyclo­pentane rings of the acenapthalene unit is 1.59 (9)°. The mol­ecular structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds, forming S(6) and S(5) ring motifs, respectively (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of ring C1/C6–C10.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.03 2.7178 (19) 136
N3—H3⋯N1 0.86 2.26 2.6437 (19) 107
N3—H3⋯S1i 0.86 2.64 3.4407 (15) 156
C4—H4⋯O1ii 0.93 2.47 3.246 (2) 141
C2—H2ACgiii 0.93 2.76 3.502 (2) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds (Table 1[link] and Fig. 2[link]), forming chains along [010]. The chains are linked via pairs of C—H⋯O hydrogen bonds, enclosing R22(10) ring motifs, and C—H⋯π inter­actions, forming a three-dimensional framework (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the substructure 2-(imino)­ace­naphthylen-1(2H)-one gave 13 hits, including that of the ethyl analogue of the title compound, ace­naphthyl­ene-1,2-dione 4-ethyl­thio­semicarbazone (GUR­HAD; Pascu et al., 2010[Pascu, S. I., Waghorn, P. A., Kennedy, B. W. C., Arrowsmith, R. L., Bayly, S. R., Dilworth, J. R., Christlieb, M., Tyrrell, R. M., Zhong, J., Kowalczyk, R. M., Collison, D., Aley, P. K., Churchill, G. C. & Aigbirhio, F. I. (2010). Chem. Asian J. 5, 506-519.]). The two mol­ecules differ in the dihedral angle between the mean planes of the ace­naphthyl­ene ring system and hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) which is 1.59 (9)° in the title compound but 9.14 (6)° in the ethyl analogue (GURHAD; Pascu et al., 2010[Pascu, S. I., Waghorn, P. A., Kennedy, B. W. C., Arrowsmith, R. L., Bayly, S. R., Dilworth, J. R., Christlieb, M., Tyrrell, R. M., Zhong, J., Kowalczyk, R. M., Collison, D., Aley, P. K., Churchill, G. C. & Aigbirhio, F. I. (2010). Chem. Asian J. 5, 506-519.]). In the crystals of both compounds, mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains along [010].

5. Synthesis and crystallization

An ethano­lic solution of N-methyl­hydrazinecarbo­thio­amide (0.01 mol) was added to an ethano­lic solution (50 ml) containing ace­naphthyl­ene-1,2-dione (0.01 mol). The mixture was refluxed for 2 h during which time a yellow precipitate separated out. The reaction mixture was then cooled to room temperature and the precipitate was filtered off. It was then washed with ethanol and dried under vacuum. The yield of the isolated product was 89%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were fixed geom­etrically and allowed to ride on their parent atoms: N—H = 0.86 and C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The absolute structure of the title compound was determined by resonant scattering, with a Flack parameter of 0.02 (8).

Table 2
Experimental details

Crystal data
Chemical formula C14H11N3OS
Mr 269.33
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.1110 (6), 10.0547 (11), 21.497 (2)
V3) 1320.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.932, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 23135, 3941, 2929
Rint 0.030
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 0.99
No. of reflections 3941
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Friedel pairs
Absolute structure parameter −0.02 (8)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The design and synthesis of thio­semicarbazones are of considerable inter­est because of their versatile chemistry and various biological activities, such as anti­tumor, anti­bacterial, anti­viral, anti­amoebic and anti­malarial (Kelly et al., 1996). They comprise an intriguing class of chelating molecules, which possess a wide range of beneficial medicinal properties (Prabhakaran et al. 2008). Thio­semicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010), their inter­esting binding motifs (Lobana et al., 2009) and their use as ligands in catalysis (Xie et al., 2010). In view of their biological importance, the crystal structure of the title compound has been determined and the results are presented herein.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The atoms of both the ace­naphthyl­ene ring system and the =N—NH—C=S—NH– segment are essentially coplanar, the maximum deviations from their mean planes being -0.009 (2) and 0.033 (2) Å for C12 and C14, respectively. The dihedral angle between the benzene and cyclo­pentane rings of the acenapthalene unit is 1.59 (9)°. The molecular structure is stabilized by N—H···O and N—H···N hydrogen bonds, forming S(6) and S(5) ring motifs, respectively (Table 1 and Fig. 1).

Supra­molecular features top

In the crystal, molecules are linked by N—H···S hydrogen bonds (Table 1 and Fig. 2), forming chains along [010]. The chains are linked via pairs of C—H···O hydrogen bonds, enclosing R22(10) ring motifs, and C—H···π inter­actions, forming a three-dimensional framework (Table 1 and Fig. 2).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for the substructure 2-(imino)­ace­naphthylen-1(2H)-one gave 13 hits, including that of the ethyl analogue of the title compound, ace­naphthyl­ene-1,2-dione 4-ethyl­thio­semicarbazone (GURHAD; Pascu et al., 2010). The two molecules differ in the dihedral angle between the mean planes of the ace­naphthyl­ene ring system and hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) which is 1.59 (9)° in the title compound but 9.14 (6)° in the ethyl analogue (GURHAD; Pascu et al., 2010). In the crystals of both compounds, molecules are linked via N—H···S hydrogen bonds, forming chains along [010].

Synthesis and crystallization top

An ethano­lic solution of N-methyl­hydrazinecarbo­thio­amide (0.01 mol) was added to an ethano­lic solution (50 ml) containing ace­naphthyl­ene-1,2-dione (0.01 mol). The mixture was refluxed for 2 h during which time an yellow precipitate separated out. The reaction mixture was then cooled to room temperature and the precipitate was filtered off. It was then washed with ethanol and dried under vacuum. The yield of the isolated product was 89%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were fixed geometrically and allowed to ride on their parent atoms: N—H = 0.86 and C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The absolute structure of the title compound was determined by resonant scattering, with a Flack parameter of 0.02 (8).

Related literature top

For related literature, see: Groom & Allen (2014); Chellan et al. (2010); Kelly et al. (1996); Lobana et al. (2009); Pascu et al. (2010); Prabhakaran et al. (2008); Xie et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
(2E)-N-Methyl-2-(2-oxo-1,2-dihydroacenaphthylen-1-ylidene)hydrazinecarbothioamide top
Crystal data top
C14H11N3OSZ = 4
Mr = 269.33F(000) = 560
Orthorhombic, P212121Dx = 1.354 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 6.1110 (6) ŵ = 0.24 mm1
b = 10.0547 (11) ÅT = 293 K
c = 21.497 (2) ÅBlock, yellow
V = 1320.8 (2) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3941 independent reflections
Radiation source: fine-focus sealed tube2929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.932, Tmax = 0.954k = 1314
23135 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2048P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3941 reflectionsΔρmax = 0.19 e Å3
173 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983); Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C14H11N3OSV = 1320.8 (2) Å3
Mr = 269.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1110 (6) ŵ = 0.24 mm1
b = 10.0547 (11) ÅT = 293 K
c = 21.497 (2) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2929 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.954Rint = 0.030
23135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.19 e Å3
S = 0.99Δρmin = 0.21 e Å3
3941 reflectionsAbsolute structure: Flack (1983); Friedel pairs
173 parametersAbsolute structure parameter: 0.02 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25692 (8)0.16757 (4)0.21243 (2)0.04960 (13)
N10.7542 (2)0.05741 (12)0.17414 (6)0.0365 (3)
C61.2232 (3)0.09719 (15)0.07905 (7)0.0371 (3)
O10.8428 (2)0.16301 (14)0.08374 (6)0.0550 (4)
N20.6084 (2)0.04380 (14)0.17558 (7)0.0416 (3)
H20.62590.11090.15130.050*
C71.0847 (3)0.14650 (15)0.12619 (7)0.0342 (3)
C130.4342 (3)0.04074 (16)0.21510 (8)0.0380 (3)
N30.4208 (2)0.06205 (15)0.25248 (7)0.0445 (3)
H30.52250.12100.25060.053*
C120.9103 (3)0.04864 (16)0.13442 (7)0.0350 (3)
C51.1533 (3)0.02565 (17)0.05510 (8)0.0425 (4)
C110.9539 (3)0.06370 (17)0.08912 (8)0.0403 (4)
C81.1346 (3)0.26514 (17)0.15336 (8)0.0416 (4)
H81.04450.30150.18380.050*
C91.3268 (3)0.3313 (2)0.13404 (9)0.0492 (4)
H91.36320.41140.15300.059*
C140.2450 (4)0.0824 (2)0.29673 (10)0.0634 (5)
H14A0.24210.00990.32580.095*
H14B0.26860.16420.31870.095*
H14C0.10800.08660.27500.095*
C11.4122 (3)0.16161 (19)0.05877 (8)0.0435 (4)
C21.5292 (4)0.0968 (2)0.01114 (10)0.0604 (6)
H2A1.65590.13560.00450.072*
C41.2699 (4)0.0860 (2)0.00894 (9)0.0578 (5)
H41.22520.16680.00780.069*
C31.4596 (4)0.0221 (2)0.01250 (11)0.0671 (6)
H3A1.54080.06210.04390.080*
C101.4618 (3)0.2829 (2)0.08867 (9)0.0505 (5)
H101.58670.33000.07750.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (2)0.0413 (2)0.0654 (3)0.0080 (2)0.0033 (2)0.01024 (19)
N10.0345 (6)0.0331 (6)0.0420 (7)0.0008 (6)0.0020 (7)0.0007 (5)
C60.0373 (9)0.0370 (8)0.0369 (8)0.0031 (7)0.0004 (7)0.0047 (6)
O10.0621 (8)0.0423 (7)0.0605 (8)0.0123 (7)0.0046 (7)0.0140 (6)
N20.0397 (7)0.0361 (7)0.0488 (8)0.0054 (6)0.0055 (7)0.0043 (6)
C70.0353 (8)0.0338 (8)0.0336 (7)0.0004 (6)0.0001 (6)0.0013 (6)
C130.0337 (8)0.0365 (8)0.0438 (8)0.0028 (6)0.0001 (7)0.0089 (7)
N30.0401 (8)0.0406 (7)0.0528 (8)0.0015 (6)0.0077 (7)0.0009 (7)
C120.0356 (8)0.0326 (7)0.0368 (7)0.0007 (6)0.0014 (7)0.0021 (6)
C50.0498 (10)0.0395 (9)0.0381 (8)0.0029 (8)0.0047 (8)0.0009 (7)
C110.0436 (9)0.0357 (8)0.0415 (8)0.0005 (7)0.0003 (7)0.0040 (7)
C80.0454 (10)0.0386 (9)0.0407 (9)0.0029 (8)0.0000 (8)0.0019 (7)
C90.0523 (10)0.0432 (9)0.0521 (10)0.0129 (9)0.0088 (8)0.0013 (8)
C140.0583 (12)0.0610 (12)0.0707 (13)0.0037 (11)0.0226 (12)0.0021 (9)
C10.0388 (9)0.0476 (9)0.0441 (9)0.0044 (8)0.0042 (7)0.0129 (8)
C20.0513 (12)0.0702 (14)0.0596 (12)0.0090 (10)0.0196 (10)0.0180 (10)
C40.0742 (14)0.0496 (10)0.0495 (10)0.0103 (11)0.0164 (11)0.0068 (8)
C30.0747 (16)0.0684 (15)0.0581 (12)0.0179 (12)0.0285 (12)0.0009 (10)
C100.0397 (10)0.0547 (11)0.0572 (11)0.0100 (8)0.0044 (8)0.0157 (9)
Geometric parameters (Å, º) top
S1—C131.6744 (17)C5—C111.472 (3)
N1—C121.283 (2)C8—C91.412 (2)
N1—N21.3528 (19)C8—H80.9300
C6—C11.394 (2)C9—C101.367 (3)
C6—C51.405 (2)C9—H90.9300
C6—C71.410 (2)C14—H14A0.9600
O1—C111.213 (2)C14—H14B0.9600
N2—C131.362 (2)C14—H14C0.9600
N2—H20.8600C1—C21.409 (3)
C7—C81.363 (2)C1—C101.411 (3)
C7—C121.461 (2)C2—C31.367 (3)
C13—N31.312 (2)C2—H2A0.9300
N3—C141.449 (2)C4—C31.403 (3)
N3—H30.8600C4—H40.9300
C12—C111.515 (2)C3—H3A0.9300
C5—C41.364 (3)C10—H100.9300
C12—N1—N2116.93 (13)C7—C8—H8120.9
C1—C6—C5123.08 (16)C9—C8—H8120.9
C1—C6—C7123.95 (16)C10—C9—C8122.95 (18)
C5—C6—C7112.96 (15)C10—C9—H9118.5
N1—N2—C13120.78 (14)C8—C9—H9118.5
N1—N2—H2119.6N3—C14—H14A109.5
C13—N2—H2119.6N3—C14—H14B109.5
C8—C7—C6118.78 (16)H14A—C14—H14B109.5
C8—C7—C12134.48 (16)N3—C14—H14C109.5
C6—C7—C12106.73 (13)H14A—C14—H14C109.5
N3—C13—N2116.67 (15)H14B—C14—H14C109.5
N3—C13—S1125.49 (13)C6—C1—C2115.65 (19)
N2—C13—S1117.84 (13)C6—C1—C10115.92 (16)
C13—N3—C14124.05 (16)C2—C1—C10128.43 (18)
C13—N3—H3118.0C3—C2—C1121.1 (2)
C14—N3—H3118.0C3—C2—H2A119.4
N1—C12—C7125.20 (14)C1—C2—H2A119.4
N1—C12—C11127.56 (15)C5—C4—C3117.9 (2)
C7—C12—C11107.22 (14)C5—C4—H4121.1
C4—C5—C6119.92 (18)C3—C4—H4121.1
C4—C5—C11132.73 (18)C2—C3—C4122.4 (2)
C6—C5—C11107.34 (15)C2—C3—H3A118.8
O1—C11—C5129.05 (16)C4—C3—H3A118.8
O1—C11—C12125.21 (16)C9—C10—C1120.19 (17)
C5—C11—C12105.74 (14)C9—C10—H10119.9
C7—C8—C9118.19 (17)C1—C10—H10119.9
C12—N1—N2—C13178.14 (14)C6—C5—C11—C120.95 (18)
C1—C6—C7—C81.1 (2)N1—C12—C11—O10.7 (3)
C5—C6—C7—C8179.95 (15)C7—C12—C11—O1179.08 (17)
C1—C6—C7—C12178.56 (15)N1—C12—C11—C5179.18 (16)
C5—C6—C7—C120.34 (19)C7—C12—C11—C50.76 (18)
N1—N2—C13—N32.3 (2)C6—C7—C8—C91.7 (2)
N1—N2—C13—S1178.08 (12)C12—C7—C8—C9177.74 (17)
N2—C13—N3—C14179.01 (17)C7—C8—C9—C101.3 (3)
S1—C13—N3—C141.4 (3)C5—C6—C1—C21.3 (2)
N2—N1—C12—C7179.26 (15)C7—C6—C1—C2179.96 (16)
N2—N1—C12—C111.1 (2)C5—C6—C1—C10178.58 (16)
C8—C7—C12—N10.8 (3)C7—C6—C1—C100.2 (2)
C6—C7—C12—N1178.75 (15)C6—C1—C2—C30.6 (3)
C8—C7—C12—C11179.24 (18)C10—C1—C2—C3179.2 (2)
C6—C7—C12—C110.29 (17)C6—C5—C4—C30.7 (3)
C1—C6—C5—C41.4 (3)C11—C5—C4—C3178.57 (19)
C7—C6—C5—C4179.72 (17)C1—C2—C3—C40.0 (4)
C1—C6—C5—C11178.08 (15)C5—C4—C3—C20.1 (3)
C7—C6—C5—C110.83 (19)C8—C9—C10—C10.0 (3)
C4—C5—C11—O10.5 (4)C6—C1—C10—C90.7 (2)
C6—C5—C11—O1178.88 (19)C2—C1—C10—C9179.5 (2)
C4—C5—C11—C12179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of ring C1/C6–C10.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.032.7178 (19)136
N3—H3···N10.862.262.6437 (19)107
N3—H3···S1i0.862.643.4407 (15)156
C4—H4···O1ii0.932.473.246 (2)141
C2—H2A···Cgiii0.932.763.502 (2)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of ring C1/C6–C10.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.032.7178 (19)136
N3—H3···N10.862.262.6437 (19)107
N3—H3···S1i0.862.643.4407 (15)156
C4—H4···O1ii0.932.473.246 (2)141
C2—H2A···Cgiii0.932.763.502 (2)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H11N3OS
Mr269.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.1110 (6), 10.0547 (11), 21.497 (2)
V3)1320.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.932, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
23135, 3941, 2929
Rint0.030
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 0.99
No. of reflections3941
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21
Absolute structureFlack (1983); Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp, 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53–59.  CSD CrossRef Web of Science Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationPascu, S. I., Waghorn, P. A., Kennedy, B. W. C., Arrowsmith, R. L., Bayly, S. R., Dilworth, J. R., Christlieb, M., Tyrrell, R. M., Zhong, J., Kowalczyk, R. M., Collison, D., Aley, P. K., Churchill, G. C. & Aigbirhio, F. I. (2010). Chem. Asian J. 5, 506–519.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrabhakaran, R., Huang, R., Renukadevi, S. V., Karvembu, R., Zeller, M. & Natarajan, K. (2008). Inorg. Chim. Acta, 361, 2547–2552.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds