organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1116-o1117

Crystal structure of 3-[4-(benz­yl­oxy)phen­yl]-2,3-di­hydro-1H-benzo[f]chromen-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 September 2014; accepted 17 September 2014; online 20 September 2014)

In the title compound, C26H20O3, the pyran ring has a distorted half-chair conformation and its mean plane is inclined to the naphthalene ring system, to which it is fused, by 10.79 (9)°. The dihedral angles between the napthalene unit and the benzene and phenyl rings are 54.39 (9) and 52.65 (12)°, respectively, while the benzene and phenyl rings are inclined to one another by 74.80 (14)°. There is a short C—H⋯O contact in the chromen-1-one unit. In the crystal, mol­ecules are linked by two pairs of C—H⋯O hydrogen bonds, forming inversion dimers described by graph set motifs R22(8) and R22(10), giving rise to chains running parallel to (101). The chains are linked via C—H⋯π inter­actions, forming sheets lying parallel to (010).

1. Related literature

For the biological activity of flavone derivatives, see: Thomas et al. (2013[Thomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6, Suppl. 2, 11-15.]); Kumar et al. (2014[Kumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468-1474.]); Lee et al. (2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). Biol. Chem. 57, 129-132.]). For the synthesis of the title compound, see: Kumar et al. (2014[Kumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468-1474.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H19O3

  • Mr = 379.41

  • Monoclinic, P 21 /n

  • a = 6.9632 (4) Å

  • b = 35.846 (2) Å

  • c = 7.7879 (5) Å

  • β = 100.375 (3)°

  • V = 1912.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.979

  • 26372 measured reflections

  • 3956 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.067

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 0.98

  • 3956 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of rings C1–C6 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.93 2.50 3.342 (3) 150
C13—H13⋯O2ii 0.98 2.51 3.314 (3) 140
C7—H7⋯Cg4i 0.93 2.96 3.688 (2) 136
C16—H16⋯Cg2iii 0.93 2.90 3.602 (2) 133
C19—H19⋯Cg2iv 0.93 2.97 3.593 (2) 126
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For the biological activity of flavone derivatives, see: Thomas et al. (2013); Kumar et al. (2014); Lee et al. (2014). For the synthesis of the title compound, see: Kumar et al. (2014).

Experimental top

The title compound was synthesized following the reported procedure (Kumar et al., 2014). The crude product produced was recrystallized twice from chloroform yielding block-like colourless crystals.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93–0.98 Å, with Uiso(H)= 1.5 Ueq(C-methyl) and Uiso(H)= 1.2Ueq(C) for other H atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the a axis of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1 for details).
3-[4-(Benzyloxy)phenyl]-2,3-dihydro-1H-benzo[f]chromen-1-one top
Crystal data top
C26H19O3Z = 4
Mr = 379.41F(000) = 796.0
Monoclinic, P21/nDx = 1.318 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.9632 (4) ÅCell parameters from 3956 reflections
b = 35.846 (2) ŵ = 0.09 mm1
c = 7.7879 (5) ÅT = 293 K
β = 100.375 (3)°Block, colourless
V = 1912.1 (2) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
3956 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω and ϕ scanθmax = 26.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.971, Tmax = 0.979k = 4444
26372 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.9692P]
where P = (Fo2 + 2Fc2)/3
3956 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C26H19O3V = 1912.1 (2) Å3
Mr = 379.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9632 (4) ŵ = 0.09 mm1
b = 35.846 (2) ÅT = 293 K
c = 7.7879 (5) Å0.35 × 0.30 × 0.25 mm
β = 100.375 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3956 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2814 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.979Rint = 0.067
26372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 0.98Δρmax = 0.56 e Å3
3956 reflectionsΔρmin = 0.45 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C220.0790 (5)0.22907 (8)0.9025 (5)0.0828 (10)
H220.09110.20930.98100.099*
C230.0400 (6)0.26438 (9)0.9588 (5)0.0856 (10)
H230.02870.26831.07460.103*
C250.0388 (5)0.28758 (8)0.6783 (5)0.0820 (10)
H250.02540.30750.60040.098*
C10.9499 (3)0.06874 (5)0.7729 (3)0.0373 (5)
C21.1154 (3)0.08336 (6)0.7143 (3)0.0450 (5)
H21.20120.06710.67360.054*
C31.1523 (4)0.12073 (7)0.7161 (3)0.0543 (6)
H31.26100.12950.67460.065*
C41.0296 (4)0.14605 (6)0.7791 (3)0.0568 (7)
H41.05650.17150.78000.068*
C50.8703 (4)0.13318 (6)0.8392 (3)0.0514 (6)
H50.78910.15000.88220.062*
C60.8258 (3)0.09490 (6)0.8376 (3)0.0412 (5)
C70.6594 (3)0.08175 (6)0.8992 (3)0.0482 (6)
H70.58100.09870.94510.058*
C80.6111 (3)0.04520 (6)0.8932 (3)0.0465 (5)
H80.50020.03730.93380.056*
C90.7292 (3)0.01921 (6)0.8251 (3)0.0375 (5)
C100.8997 (3)0.02972 (5)0.7698 (3)0.0344 (4)
C111.0247 (3)0.00040 (6)0.7191 (3)0.0364 (5)
C120.9490 (3)0.03946 (6)0.7283 (3)0.0408 (5)
H121.02770.06040.75250.049*
C130.7290 (3)0.04024 (5)0.6933 (3)0.0373 (5)
H130.68290.02970.57700.045*
C140.6330 (3)0.07754 (5)0.7027 (3)0.0371 (5)
C150.4393 (3)0.08196 (6)0.6255 (3)0.0481 (6)
H150.37340.06200.56560.058*
C160.3404 (3)0.11518 (6)0.6346 (3)0.0498 (6)
H160.21010.11730.58150.060*
C170.4364 (3)0.14510 (5)0.7228 (3)0.0400 (5)
C180.6314 (3)0.14146 (6)0.7982 (3)0.0507 (6)
H180.69820.16170.85530.061*
C190.7269 (3)0.10812 (6)0.7892 (3)0.0492 (6)
H190.85730.10600.84220.059*
C200.1518 (4)0.18447 (7)0.6774 (4)0.0630 (7)
H20A0.07460.16570.72340.076*
H20B0.12660.18270.55100.076*
C210.1004 (3)0.22258 (6)0.7340 (4)0.0529 (6)
C240.0182 (4)0.29332 (7)0.8453 (5)0.0685 (8)
H240.01080.31700.88220.082*
C260.0797 (5)0.25237 (8)0.6224 (4)0.0744 (9)
H260.09350.24890.50700.089*
O10.3549 (2)0.17907 (4)0.7444 (2)0.0519 (4)
O21.1831 (2)0.00482 (4)0.6780 (2)0.0514 (4)
O30.6623 (2)0.01632 (4)0.8212 (2)0.0444 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.116 (3)0.0570 (18)0.085 (2)0.0332 (17)0.042 (2)0.0208 (15)
C230.116 (3)0.072 (2)0.076 (2)0.0312 (19)0.036 (2)0.0007 (16)
C250.106 (3)0.0529 (17)0.093 (3)0.0263 (16)0.034 (2)0.0219 (16)
C10.0407 (11)0.0366 (11)0.0335 (11)0.0028 (8)0.0035 (9)0.0002 (8)
C20.0477 (13)0.0410 (12)0.0466 (13)0.0067 (9)0.0088 (10)0.0024 (10)
C30.0565 (14)0.0479 (14)0.0575 (15)0.0153 (11)0.0076 (12)0.0022 (11)
C40.0704 (17)0.0349 (12)0.0602 (16)0.0083 (11)0.0015 (13)0.0017 (11)
C50.0586 (15)0.0365 (12)0.0555 (15)0.0049 (10)0.0009 (12)0.0033 (10)
C60.0447 (12)0.0372 (11)0.0396 (12)0.0039 (9)0.0016 (9)0.0034 (9)
C70.0489 (13)0.0425 (13)0.0553 (14)0.0072 (10)0.0148 (11)0.0086 (10)
C80.0433 (12)0.0494 (13)0.0506 (13)0.0003 (10)0.0183 (10)0.0058 (10)
C90.0409 (11)0.0353 (11)0.0378 (11)0.0007 (8)0.0108 (9)0.0011 (8)
C100.0369 (10)0.0356 (10)0.0313 (10)0.0016 (8)0.0079 (8)0.0023 (8)
C110.0360 (11)0.0389 (11)0.0347 (11)0.0008 (8)0.0077 (8)0.0019 (8)
C120.0389 (11)0.0337 (11)0.0507 (13)0.0011 (8)0.0109 (9)0.0012 (9)
C130.0411 (11)0.0344 (11)0.0379 (11)0.0008 (8)0.0110 (9)0.0015 (8)
C140.0396 (11)0.0359 (11)0.0371 (11)0.0028 (8)0.0099 (9)0.0001 (8)
C150.0471 (13)0.0356 (12)0.0585 (15)0.0005 (9)0.0010 (11)0.0072 (10)
C160.0422 (12)0.0426 (13)0.0608 (15)0.0060 (9)0.0008 (11)0.0040 (11)
C170.0469 (12)0.0311 (10)0.0430 (12)0.0051 (9)0.0106 (10)0.0023 (8)
C180.0493 (13)0.0392 (12)0.0602 (15)0.0005 (10)0.0011 (11)0.0102 (10)
C190.0400 (12)0.0430 (13)0.0615 (16)0.0045 (9)0.0010 (10)0.0060 (10)
C200.0506 (14)0.0508 (15)0.083 (2)0.0120 (11)0.0008 (13)0.0111 (13)
C210.0452 (13)0.0426 (13)0.0702 (17)0.0091 (10)0.0090 (12)0.0011 (11)
C240.0710 (18)0.0450 (15)0.093 (2)0.0124 (12)0.0234 (16)0.0042 (14)
C260.094 (2)0.0689 (19)0.0622 (18)0.0301 (16)0.0193 (16)0.0089 (14)
O10.0497 (9)0.0351 (8)0.0694 (11)0.0092 (7)0.0063 (8)0.0039 (7)
O20.0432 (9)0.0484 (9)0.0678 (11)0.0025 (7)0.0236 (8)0.0018 (8)
O30.0485 (9)0.0363 (8)0.0545 (10)0.0070 (6)0.0256 (7)0.0050 (7)
Geometric parameters (Å, º) top
C22—C211.367 (4)C10—C111.484 (3)
C22—C231.383 (4)C11—O21.218 (2)
C22—H220.9300C11—C121.502 (3)
C23—C241.353 (4)C12—C131.507 (3)
C23—H230.9300C12—H120.9300
C25—C241.350 (5)C13—O31.453 (2)
C25—C261.381 (4)C13—C141.503 (3)
C25—H250.9300C13—H130.9800
C1—C21.414 (3)C14—C151.384 (3)
C1—C61.428 (3)C14—C191.387 (3)
C1—C101.441 (3)C15—C161.384 (3)
C2—C31.364 (3)C15—H150.9300
C2—H20.9300C16—C171.380 (3)
C3—C41.394 (4)C16—H160.9300
C3—H30.9300C17—O11.367 (2)
C4—C51.360 (4)C17—C181.385 (3)
C4—H40.9300C18—C191.376 (3)
C5—C61.406 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.412 (3)C20—O11.430 (3)
C7—C81.352 (3)C20—C211.499 (3)
C7—H70.9300C20—H20A0.9700
C8—C91.408 (3)C20—H20B0.9700
C8—H80.9300C21—C261.368 (4)
C9—O31.355 (2)C24—H240.9300
C9—C101.386 (3)C26—H260.9300
C21—C22—C23121.5 (3)C11—C12—H12124.4
C21—C22—H22119.3C13—C12—H12124.4
C23—C22—H22119.3O3—C13—C14106.96 (15)
C24—C23—C22120.0 (3)O3—C13—C12107.76 (16)
C24—C23—H23120.0C14—C13—C12117.02 (17)
C22—C23—H23120.0O3—C13—H13108.3
C24—C25—C26120.4 (3)C14—C13—H13108.3
C24—C25—H25119.8C12—C13—H13108.3
C26—C25—H25119.8C15—C14—C19117.26 (19)
C2—C1—C6116.79 (19)C15—C14—C13119.22 (18)
C2—C1—C10124.30 (19)C19—C14—C13123.50 (19)
C6—C1—C10118.91 (19)C14—C15—C16122.1 (2)
C3—C2—C1121.6 (2)C14—C15—H15118.9
C3—C2—H2119.2C16—C15—H15118.9
C1—C2—H2119.2C17—C16—C15119.6 (2)
C2—C3—C4121.1 (2)C17—C16—H16120.2
C2—C3—H3119.4C15—C16—H16120.2
C4—C3—H3119.4O1—C17—C16125.4 (2)
C5—C4—C3119.3 (2)O1—C17—C18115.40 (19)
C5—C4—H4120.3C16—C17—C18119.21 (19)
C3—C4—H4120.3C19—C18—C17120.4 (2)
C4—C5—C6121.3 (2)C19—C18—H18119.8
C4—C5—H5119.3C17—C18—H18119.8
C6—C5—H5119.3C18—C19—C14121.4 (2)
C5—C6—C7121.0 (2)C18—C19—H19119.3
C5—C6—C1119.8 (2)C14—C19—H19119.3
C7—C6—C1119.11 (19)O1—C20—C21106.8 (2)
C8—C7—C6121.8 (2)O1—C20—H20A110.4
C8—C7—H7119.1C21—C20—H20A110.4
C6—C7—H7119.1O1—C20—H20B110.4
C7—C8—C9119.7 (2)C21—C20—H20B110.4
C7—C8—H8120.1H20A—C20—H20B108.6
C9—C8—H8120.1C26—C21—C22117.4 (2)
O3—C9—C10123.98 (18)C26—C21—C20121.9 (3)
O3—C9—C8114.13 (18)C22—C21—C20120.7 (2)
C10—C9—C8121.89 (19)C23—C24—C25119.6 (3)
C9—C10—C1118.51 (18)C23—C24—H24120.2
C9—C10—C11117.45 (17)C25—C24—H24120.2
C1—C10—C11123.97 (18)C21—C26—C25121.1 (3)
O2—C11—C10124.10 (18)C21—C26—H26119.4
O2—C11—C12119.87 (18)C25—C26—H26119.4
C10—C11—C12115.97 (17)C17—O1—C20118.75 (18)
C11—C12—C13111.26 (17)C9—O3—C13114.78 (15)
C21—C22—C23—C241.3 (6)C11—C12—C13—C14178.52 (17)
C6—C1—C2—C31.4 (3)O3—C13—C14—C1577.2 (2)
C10—C1—C2—C3178.2 (2)C12—C13—C14—C15161.9 (2)
C1—C2—C3—C41.2 (4)O3—C13—C14—C19101.1 (2)
C2—C3—C4—C50.2 (4)C12—C13—C14—C1919.8 (3)
C3—C4—C5—C60.6 (4)C19—C14—C15—C160.7 (4)
C4—C5—C6—C7179.6 (2)C13—C14—C15—C16177.7 (2)
C4—C5—C6—C10.4 (3)C14—C15—C16—C170.1 (4)
C2—C1—C6—C50.6 (3)C15—C16—C17—O1178.6 (2)
C10—C1—C6—C5178.97 (19)C15—C16—C17—C181.1 (4)
C2—C1—C6—C7179.5 (2)O1—C17—C18—C19178.1 (2)
C10—C1—C6—C71.0 (3)C16—C17—C18—C191.7 (4)
C5—C6—C7—C8177.8 (2)C17—C18—C19—C141.1 (4)
C1—C6—C7—C82.2 (3)C15—C14—C19—C180.1 (4)
C6—C7—C8—C90.4 (4)C13—C14—C19—C18178.2 (2)
C7—C8—C9—O3178.1 (2)C23—C22—C21—C260.6 (5)
C7—C8—C9—C102.7 (3)C23—C22—C21—C20177.2 (3)
O3—C9—C10—C1177.06 (19)O1—C20—C21—C26102.0 (3)
C8—C9—C10—C13.8 (3)O1—C20—C21—C2275.7 (3)
O3—C9—C10—C115.9 (3)C22—C23—C24—C251.3 (6)
C8—C9—C10—C11173.2 (2)C26—C25—C24—C230.7 (5)
C2—C1—C10—C9177.6 (2)C22—C21—C26—C250.0 (5)
C6—C1—C10—C91.9 (3)C20—C21—C26—C25177.8 (3)
C2—C1—C10—C115.6 (3)C24—C25—C26—C210.0 (5)
C6—C1—C10—C11174.91 (19)C16—C17—O1—C202.6 (3)
C9—C10—C11—O2175.6 (2)C18—C17—O1—C20177.1 (2)
C1—C10—C11—O21.3 (3)C21—C20—O1—C17175.0 (2)
C9—C10—C11—C121.8 (3)C10—C9—O3—C1324.6 (3)
C1—C10—C11—C12178.61 (19)C8—C9—O3—C13156.19 (19)
O2—C11—C12—C13152.1 (2)C14—C13—O3—C9177.39 (17)
C10—C11—C12—C1330.4 (2)C12—C13—O3—C956.0 (2)
C11—C12—C13—O358.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C1–C6 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.503.342 (3)150
C13—H13···O2ii0.982.513.314 (3)140
C7—H7···Cg4i0.932.963.688 (2)136
C16—H16···Cg2iii0.932.903.602 (2)133
C19—H19···Cg2iv0.932.973.593 (2)126
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C1–C6 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.503.342 (3)150
C13—H13···O2ii0.982.513.314 (3)140
C7—H7···Cg4i0.932.963.688 (2)136
C16—H16···Cg2iii0.932.903.602 (2)133
C19—H19···Cg2iv0.932.973.593 (2)126
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, B., Kumari, B., Singh, N., Ram, B. & Balram, B. (2014). J. Appl. Chem. 3, 1468–1474.  CAS Google Scholar
First citationLee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). Biol. Chem. 57, 129–132.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6, Suppl. 2, 11–15.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1116-o1117
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds