organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o581-o582

{2-[(2-Bromo-5-meth­­oxy­benzyl­­idene)amino]-4,5,6,7-tetra­hydro­benzo[b]thiophen-3-yl}(phen­yl)methanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 April 2014; accepted 12 April 2014; online 18 April 2014)

In the title compound, C23H20BrNO2S, disorder was modeled for the outer two C atoms of the cyclo­hexene ring over two sets of sites with an occupancy ratio of 0.580 (11):0.420 (11). Both rings have a half-chair conformation. The dihedral angles between the mean plane of the thio­phene ring and the benzene and phenyl rings are 9.2 (2) and 66.1 (2)°, respectively. The benzene and phenyl rings are inclined to each other by 74.8 (8)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For applications of 2-amino­thio­phene derivatives, see: Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]); Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209-246.]). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83-90.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20BrNO2S

  • Mr = 454.37

  • Monoclinic, P 21 /n

  • a = 8.84813 (17) Å

  • b = 12.5563 (2) Å

  • c = 18.4384 (4) Å

  • β = 102.363 (2)°

  • V = 2001.00 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.92 mm−1

  • T = 173 K

  • 0.26 × 0.22 × 0.14 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.725, Tmax = 1.000

  • 12404 measured reflections

  • 3853 independent reflections

  • 3440 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.05

  • 3853 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.95 2.58 3.294 (3) 132
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON.

Supporting information


Comment top

2-Aminothiophene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals (Sabnis et al. 1999; Puterová et al. 2010). Schiff base compounds show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988) and have been used as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological interest such as β-lactams (Taggi et al., 2002). In continuation of our work on the Schiff base derivatives of 2-aminothiophenes (Kubicki et al., 2012), we report herein on the crystal structure of the title compound.

In the title compound, Fig. 1, disorder was modeled for atoms C5 and C6 of the cyclohexene ring over two sites (A and B) with an occupancy ratio of 0.580 (11):0.420 (11). Both rings have half-chair conformations with puckering parameters (Cremer & Pople, 1975) Q,θ, and ϕ being = 0.520 (6) Å, 49.9 (4) ° and 154.8 (6) °, respectively, for ring A and being = 0.527 (8) Å, 130.1 (5) ° and 322.0 (7) °, respectively, for ring B. The dihedral angles between the mean plane of the thiophene ring and the benzene and phenyl rings are 9.2 (2) ° and 66.1 (2) °, respectively. The benzene and phenyl rings are twisted with respect to each other by 74.8 (8)°. Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, molecules are linked by pairs of C-H···O hydrogen bonds forming inversion dimers (Table 1 and Fig. 2).

Related literature top

For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Kubicki et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of (2-amino-4,5,6,7-tetrahydro-benzo[b]thiophen-3-yl)- phenyl-methanone (200 mg, 0.79 mmol) in 10 ml of methanol an equimolar amount of 2-bromo-5-methoxybenzaldehyde (170 mg, 0.79 mmol) was added with constant stirring. The mixture was then refluxed for 6 hours and a yellow precipitate was obtained. The reaction completion was confirmed by thin layer chromatography. The precipitate was filtered and dried at room temperature overnight. Slow evaporation of a solution in CH2Cl2 gave yellow block-like crystals of the title compound.

Refinement top

All H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95 - 0.99Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. Atoms C5 and C6, of the tetrahydrobenzothiophenyl ring, are disordered over two sites (A and B) and were refined with an occupancy ratio of 0.574 (11):0.426 (11).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level (the minor component atoms C5B and C6B are not shown).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity; the minor component atoms C5B and C6B are not shown).
{2-[(2-Bromo-5-methoxybenzylidene)amino]-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl}(phenyl)methanone top
Crystal data top
C23H20BrNO2SF(000) = 928
Mr = 454.37Dx = 1.508 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.84813 (17) ÅCell parameters from 5917 reflections
b = 12.5563 (2) Åθ = 4.3–71.4°
c = 18.4384 (4) ŵ = 3.92 mm1
β = 102.363 (2)°T = 173 K
V = 2001.00 (7) Å3Irregular, yellow
Z = 40.26 × 0.22 × 0.14 mm
Data collection top
Agilent Eos Gemini
diffractometer
3440 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.034
ω scansθmax = 71.3°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1010
Tmin = 0.725, Tmax = 1.000k = 1513
12404 measured reflectionsl = 2222
3853 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1502P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3853 reflectionsΔρmax = 0.56 e Å3
273 parametersΔρmin = 0.31 e Å3
Crystal data top
C23H20BrNO2SV = 2001.00 (7) Å3
Mr = 454.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.84813 (17) ŵ = 3.92 mm1
b = 12.5563 (2) ÅT = 173 K
c = 18.4384 (4) Å0.26 × 0.22 × 0.14 mm
β = 102.363 (2)°
Data collection top
Agilent Eos Gemini
diffractometer
3853 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3440 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 1.000Rint = 0.034
12404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
3853 reflectionsΔρmin = 0.31 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.09686 (3)0.02458 (2)0.60828 (2)0.03755 (10)
S10.37522 (6)0.13254 (4)0.41239 (3)0.02972 (12)
O10.3841 (2)0.10568 (12)0.20797 (8)0.0407 (4)
O20.17717 (19)0.45920 (12)0.48309 (10)0.0405 (4)
N10.31360 (18)0.08489 (13)0.41394 (9)0.0273 (3)
C10.4306 (2)0.10714 (15)0.27533 (11)0.0277 (4)
C20.4297 (2)0.00672 (15)0.31824 (11)0.0252 (4)
C30.4776 (2)0.09409 (15)0.29439 (10)0.0260 (4)
C40.5456 (2)0.11311 (16)0.22707 (12)0.0326 (4)
H4AA0.46320.10740.18150.039*0.580 (11)
H4AB0.62460.05810.22470.039*0.580 (11)
H4BC0.65600.09220.23820.039*0.420 (11)
H4BD0.49060.06890.18520.039*0.420 (11)
C5A0.6185 (8)0.2219 (3)0.2307 (3)0.0388 (14)0.580 (11)
H5AA0.71740.22130.26800.047*0.580 (11)
H5AB0.64180.23940.18190.047*0.580 (11)
C6A0.5129 (10)0.3069 (3)0.2513 (3)0.0427 (14)0.580 (11)
H6AA0.55680.37830.24620.051*0.580 (11)
H6AB0.41000.30280.21730.051*0.580 (11)
C5B0.5303 (11)0.2343 (5)0.2047 (4)0.0386 (18)0.420 (11)
H5BA0.41980.25240.18650.046*0.420 (11)
H5BB0.58480.24760.16390.046*0.420 (11)
C6B0.5977 (12)0.3033 (5)0.2695 (4)0.0411 (17)0.420 (11)
H6BA0.70600.28200.29040.049*0.420 (11)
H6BB0.59740.37860.25360.049*0.420 (11)
C70.4959 (3)0.29043 (15)0.33123 (12)0.0353 (4)
H7AA0.41280.33670.34190.042*0.580 (11)
H7AB0.59380.30890.36620.042*0.580 (11)
H7BC0.39940.33220.31650.042*0.420 (11)
H7BD0.55430.31860.37930.042*0.420 (11)
C80.4568 (2)0.17526 (15)0.34010 (11)0.0269 (4)
C90.3723 (2)0.00049 (15)0.38167 (11)0.0255 (4)
C100.4899 (2)0.20856 (15)0.31299 (10)0.0267 (4)
C110.5983 (2)0.20984 (17)0.38015 (12)0.0346 (4)
H110.62930.14510.40570.041*
C120.6606 (3)0.3059 (2)0.40951 (14)0.0441 (5)
H120.73620.30690.45470.053*
C130.6125 (3)0.40071 (19)0.37281 (15)0.0483 (6)
H130.65580.46640.39280.058*
C140.5021 (3)0.39969 (18)0.30749 (14)0.0444 (5)
H140.46740.46470.28320.053*
C150.4416 (3)0.30354 (16)0.27719 (12)0.0345 (4)
H150.36680.30290.23180.041*
C160.2623 (2)0.07449 (15)0.47319 (11)0.0277 (4)
H160.26470.00670.49640.033*
C170.1995 (2)0.16678 (16)0.50565 (11)0.0281 (4)
C180.1202 (2)0.15806 (16)0.56306 (11)0.0299 (4)
C190.0562 (2)0.24697 (18)0.58977 (12)0.0348 (4)
H190.00090.23920.62760.042*
C200.0754 (2)0.34625 (17)0.56152 (12)0.0358 (5)
H200.03190.40710.57990.043*
C210.1592 (2)0.35725 (16)0.50552 (12)0.0319 (4)
C220.2189 (2)0.26847 (16)0.47765 (11)0.0299 (4)
H220.27390.27630.43900.036*
C230.2887 (3)0.47572 (17)0.43904 (14)0.0413 (5)
H23A0.25360.44140.39060.062*
H23B0.38790.44490.46420.062*
H23C0.30150.55230.43200.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04351 (15)0.03807 (15)0.03571 (15)0.00469 (8)0.01879 (10)0.00195 (8)
S10.0388 (3)0.0250 (2)0.0288 (2)0.00344 (17)0.0148 (2)0.00060 (17)
O10.0647 (10)0.0314 (7)0.0247 (7)0.0017 (7)0.0063 (7)0.0007 (6)
O20.0448 (9)0.0312 (7)0.0485 (9)0.0077 (6)0.0168 (7)0.0049 (7)
N10.0286 (8)0.0273 (8)0.0282 (8)0.0024 (6)0.0107 (6)0.0035 (6)
C10.0306 (9)0.0271 (9)0.0278 (10)0.0021 (7)0.0116 (7)0.0006 (7)
C20.0252 (9)0.0253 (9)0.0259 (9)0.0015 (7)0.0075 (7)0.0021 (7)
C30.0256 (8)0.0259 (9)0.0270 (9)0.0015 (7)0.0070 (7)0.0027 (7)
C40.0370 (10)0.0313 (10)0.0336 (11)0.0019 (8)0.0167 (8)0.0013 (8)
C5A0.046 (3)0.031 (2)0.046 (3)0.0047 (19)0.027 (3)0.0045 (17)
C6A0.058 (4)0.028 (2)0.051 (3)0.003 (2)0.030 (3)0.0095 (18)
C5B0.044 (4)0.038 (3)0.037 (3)0.001 (3)0.016 (3)0.010 (2)
C6B0.047 (4)0.033 (3)0.047 (4)0.005 (3)0.017 (3)0.011 (2)
C70.0453 (11)0.0235 (10)0.0386 (11)0.0014 (8)0.0125 (9)0.0031 (8)
C80.0262 (9)0.0260 (9)0.0291 (10)0.0018 (7)0.0073 (7)0.0033 (7)
C90.0272 (9)0.0231 (8)0.0278 (9)0.0023 (7)0.0092 (7)0.0002 (7)
C100.0308 (9)0.0267 (9)0.0267 (9)0.0021 (7)0.0154 (7)0.0011 (7)
C110.0352 (10)0.0351 (11)0.0354 (11)0.0033 (8)0.0119 (8)0.0009 (8)
C120.0424 (12)0.0498 (14)0.0425 (13)0.0135 (10)0.0144 (10)0.0113 (10)
C130.0623 (15)0.0338 (12)0.0562 (15)0.0214 (11)0.0295 (12)0.0137 (11)
C140.0671 (15)0.0253 (10)0.0479 (13)0.0045 (10)0.0279 (12)0.0012 (9)
C150.0463 (12)0.0289 (10)0.0323 (11)0.0002 (8)0.0169 (9)0.0023 (8)
C160.0282 (9)0.0281 (9)0.0279 (9)0.0009 (7)0.0086 (7)0.0006 (7)
C170.0256 (9)0.0311 (10)0.0288 (10)0.0003 (7)0.0085 (7)0.0031 (8)
C180.0289 (9)0.0342 (10)0.0286 (10)0.0008 (7)0.0107 (8)0.0012 (8)
C190.0290 (9)0.0471 (12)0.0318 (10)0.0034 (8)0.0140 (8)0.0043 (9)
C200.0329 (10)0.0377 (11)0.0387 (11)0.0095 (8)0.0123 (9)0.0047 (9)
C210.0297 (9)0.0304 (10)0.0352 (11)0.0042 (7)0.0061 (8)0.0004 (8)
C220.0291 (9)0.0356 (10)0.0270 (9)0.0015 (7)0.0105 (8)0.0007 (8)
C230.0443 (12)0.0361 (12)0.0447 (13)0.0001 (9)0.0121 (10)0.0061 (9)
Geometric parameters (Å, º) top
Br1—C181.903 (2)C6B—C71.603 (7)
S1—C81.7314 (19)C7—H7AA0.9900
S1—C91.7506 (19)C7—H7AB0.9900
O1—C11.222 (2)C7—H7BC0.9900
O2—C211.365 (3)C7—H7BD0.9900
O2—C231.421 (3)C7—C81.504 (3)
N1—C91.380 (3)C10—C111.395 (3)
N1—C161.277 (2)C10—C151.386 (3)
C1—C21.489 (3)C11—H110.9500
C1—C101.491 (3)C11—C121.387 (3)
C2—C31.433 (3)C12—H120.9500
C2—C91.374 (3)C12—C131.391 (4)
C3—C41.510 (3)C13—H130.9500
C3—C81.360 (3)C13—C141.379 (4)
C4—H4AA0.9900C14—H140.9500
C4—H4AB0.9900C14—C151.389 (3)
C4—H4BC0.9900C15—H150.9500
C4—H4BD0.9900C16—H160.9500
C4—C5A1.506 (4)C16—C171.467 (3)
C4—C5B1.575 (6)C17—C181.394 (3)
C5A—H5AA0.9900C17—C221.402 (3)
C5A—H5AB0.9900C18—C191.389 (3)
C5A—C6A1.519 (8)C19—H190.9500
C6A—H6AA0.9900C19—C201.375 (3)
C6A—H6AB0.9900C20—H200.9500
C6A—C71.526 (5)C20—C211.401 (3)
C5B—H5BA0.9900C21—C221.379 (3)
C5B—H5BB0.9900C22—H220.9500
C5B—C6B1.494 (12)C23—H23A0.9800
C6B—H6BA0.9900C23—H23B0.9800
C6B—H6BB0.9900C23—H23C0.9800
C8—S1—C991.38 (9)C8—C7—H7AA110.1
C21—O2—C23116.75 (16)C8—C7—H7AB110.1
C16—N1—C9121.68 (17)C8—C7—H7BC109.5
O1—C1—C2119.22 (18)C8—C7—H7BD109.5
O1—C1—C10119.64 (18)C3—C8—S1112.26 (14)
C2—C1—C10121.13 (17)C3—C8—C7126.05 (18)
C3—C2—C1123.31 (17)C7—C8—S1121.68 (15)
C9—C2—C1123.55 (17)N1—C9—S1125.24 (14)
C9—C2—C3112.97 (17)C2—C9—S1110.80 (15)
C2—C3—C4126.00 (17)C2—C9—N1123.88 (18)
C8—C3—C2112.57 (17)C11—C10—C1122.00 (18)
C8—C3—C4121.43 (17)C15—C10—C1118.12 (18)
C3—C4—H4AA109.6C15—C10—C11119.77 (19)
C3—C4—H4AB109.6C10—C11—H11120.1
C3—C4—H4BC109.7C12—C11—C10119.8 (2)
C3—C4—H4BD109.7C12—C11—H11120.1
C3—C4—C5B110.0 (3)C11—C12—H12120.0
H4AA—C4—H4AB108.1C11—C12—C13120.0 (2)
H4BC—C4—H4BD108.2C13—C12—H12120.0
C5A—C4—C3110.4 (2)C12—C13—H13119.9
C5A—C4—H4AA109.6C14—C13—C12120.2 (2)
C5A—C4—H4AB109.6C14—C13—H13119.9
C5B—C4—H4BC109.7C13—C14—H14120.0
C5B—C4—H4BD109.7C13—C14—C15120.0 (2)
C4—C5A—H5AA109.3C15—C14—H14120.0
C4—C5A—H5AB109.3C10—C15—C14120.2 (2)
C4—C5A—C6A111.6 (5)C10—C15—H15119.9
H5AA—C5A—H5AB108.0C14—C15—H15119.9
C6A—C5A—H5AA109.3N1—C16—H16119.9
C6A—C5A—H5AB109.3N1—C16—C17120.24 (18)
C5A—C6A—H6AA109.7C17—C16—H16119.9
C5A—C6A—H6AB109.7C18—C17—C16122.95 (18)
C5A—C6A—C7109.8 (5)C18—C17—C22118.20 (18)
H6AA—C6A—H6AB108.2C22—C17—C16118.85 (17)
C7—C6A—H6AA109.7C17—C18—Br1121.43 (15)
C7—C6A—H6AB109.7C19—C18—Br1117.50 (15)
C4—C5B—H5BA109.5C19—C18—C17121.06 (19)
C4—C5B—H5BB109.5C18—C19—H19120.0
H5BA—C5B—H5BB108.1C20—C19—C18120.08 (19)
C6B—C5B—C4110.7 (6)C20—C19—H19120.0
C6B—C5B—H5BA109.5C19—C20—H20120.1
C6B—C5B—H5BB109.5C19—C20—C21119.75 (19)
C5B—C6B—H6BA109.9C21—C20—H20120.1
C5B—C6B—H6BB109.9O2—C21—C20115.47 (18)
C5B—C6B—C7108.8 (6)O2—C21—C22124.50 (19)
H6BA—C6B—H6BB108.3C22—C21—C20120.02 (19)
C7—C6B—H6BA109.9C17—C22—H22119.6
C7—C6B—H6BB109.9C21—C22—C17120.81 (18)
C6A—C7—H7AA110.1C21—C22—H22119.6
C6A—C7—H7AB110.1O2—C23—H23A109.5
C6B—C7—H7BC109.5O2—C23—H23B109.5
C6B—C7—H7BD109.5O2—C23—H23C109.5
H7AA—C7—H7AB108.4H23A—C23—H23B109.5
H7BC—C7—H7BD108.1H23A—C23—H23C109.5
C8—C7—C6A107.9 (2)H23B—C23—H23C109.5
C8—C7—C6B110.6 (3)
Br1—C18—C19—C20177.08 (17)C5B—C6B—C7—C843.3 (8)
O1—C1—C2—C342.7 (3)C6B—C7—C8—S1169.4 (4)
O1—C1—C2—C9132.2 (2)C6B—C7—C8—C311.4 (5)
O1—C1—C10—C11153.30 (19)C8—S1—C9—N1177.94 (17)
O1—C1—C10—C1522.8 (3)C8—S1—C9—C20.96 (15)
O2—C21—C22—C17177.79 (19)C8—C3—C4—C5A13.9 (4)
N1—C16—C17—C18169.70 (19)C8—C3—C4—C5B19.7 (5)
N1—C16—C17—C229.9 (3)C9—S1—C8—C31.23 (15)
C1—C2—C3—C44.7 (3)C9—S1—C8—C7179.49 (17)
C1—C2—C3—C8175.86 (17)C9—N1—C16—C17179.50 (17)
C1—C2—C9—S1174.92 (15)C9—C2—C3—C4179.91 (18)
C1—C2—C9—N12.1 (3)C9—C2—C3—C80.4 (2)
C1—C10—C11—C12174.01 (19)C10—C1—C2—C3136.11 (19)
C1—C10—C15—C14175.38 (19)C10—C1—C2—C948.9 (3)
C2—C1—C10—C1125.5 (3)C10—C11—C12—C131.4 (3)
C2—C1—C10—C15158.38 (18)C11—C10—C15—C140.8 (3)
C2—C3—C4—C5A165.5 (3)C11—C12—C13—C140.5 (4)
C2—C3—C4—C5B160.9 (4)C12—C13—C14—C151.7 (4)
C2—C3—C8—S11.2 (2)C13—C14—C15—C101.1 (3)
C2—C3—C8—C7179.59 (18)C15—C10—C11—C122.0 (3)
C3—C2—C9—S10.5 (2)C16—N1—C9—S13.8 (3)
C3—C2—C9—N1177.51 (17)C16—N1—C9—C2179.59 (19)
C3—C4—C5A—C6A46.7 (7)C16—C17—C18—Br13.6 (3)
C3—C4—C5B—C6B53.2 (8)C16—C17—C18—C19176.87 (19)
C4—C3—C8—S1179.33 (15)C16—C17—C22—C21178.74 (18)
C4—C3—C8—C70.1 (3)C17—C18—C19—C202.4 (3)
C4—C5A—C6A—C767.6 (8)C18—C17—C22—C210.9 (3)
C4—C5B—C6B—C765.5 (9)C18—C19—C20—C210.2 (3)
C5A—C4—C5B—C6B43.5 (7)C19—C20—C21—O2177.5 (2)
C5A—C6A—C7—C6B51.1 (7)C19—C20—C21—C221.6 (3)
C5A—C6A—C7—C849.3 (7)C20—C21—C22—C171.3 (3)
C6A—C7—C8—S1161.2 (4)C22—C17—C18—Br1176.77 (14)
C6A—C7—C8—C317.9 (4)C22—C17—C18—C192.7 (3)
C5B—C4—C5A—C6A48.4 (6)C23—O2—C21—C20166.49 (19)
C5B—C6B—C7—C6A46.2 (7)C23—O2—C21—C2212.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.952.583.294 (3)132
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.952.583.294 (3)132
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a Junior Research Fellowship and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83–90.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058–1066.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209–246.  Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o581-o582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds