organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o145-o146

1-Acetyl-5-meth­­oxy-4-(phenyl­sulfan­yl)imidazolidin-2-one

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 31 December 2013; accepted 3 January 2014; online 15 January 2014)

The title compound, C12H14N2O3S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The five-membered imidazolidin-2-one rings in both mol­ecules are twisted about the C—C bond. In the crystal, the A and B mol­ecules are associated via pairs of N—H⋯O hydrogen bonds, forming AB dimers. These dimers are linked via C—H⋯S hydrogen bonds, forming double dimers, which are in turn linked via C—H⋯O hydrogen bonds forming two-dimensional networks lying parallel to (001). There are also C—H⋯π inter­actions present, which consolide the layers and link them, so forming a three-dimensional structure.

Related literature

For the anti­tumor activity of imidazolidinones, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008-2014.]); Lee et al. (2000[Lee, S. H., Park, K. L., Choi, S. U., Lee, C. O. & Jung, S. H. (2000). Arch. Pharm. Res. 23, 579-584.]); Kim et al. (2003[Kim, I., Lee, C., Kim, H. & Jung, S. (2003). Arch. Pharm. Res. 26, 9-14.]). For related crystal structures, see: Park et al. (2000[Park, K.-L., Moon, B.-G., Jung, S.-H., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, 1247-1250.]); Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008-2014.]); Kapon & Reisner (1989[Kapon, M. & Reisner, G. M. (1989). Acta Cryst. C45, 780-782.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O3S

  • Mr = 266.31

  • Triclinic, [P \overline 1]

  • a = 9.0371 (8) Å

  • b = 12.0642 (10) Å

  • c = 12.8369 (11) Å

  • α = 93.066 (1)°

  • β = 105.869 (1)°

  • γ = 111.574 (1)°

  • V = 1233.20 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.25 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.974

  • 22009 measured reflections

  • 6246 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.03

  • 6246 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C6 and C13–C18, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.88 1.99 2.8483 (13) 165
N3—H3N⋯O3ii 0.89 1.99 2.8623 (13) 167
C8—H8⋯S2iii 1.00 2.86 3.7891 (12) 156
C7—H7⋯O3iv 1.00 2.63 3.4150 (15) 135
C18—H18⋯O3ii 0.95 2.55 3.4790 (15) 167
C20—H20⋯O1v 1.00 2.47 3.4604 (15) 173
C2—H2⋯Cg2iii 0.95 2.83 3.5830 (17) 137
C15—H15⋯Cg1 0.95 2.68 3.4496 (15) 138
Symmetry codes: (i) x-1, y-1, z-1; (ii) x+1, y+1, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Imidazolidinones are an interesting class of compounds possessing antitumor activity (Abdel-Aziz et al., 2012; Lee et al., 2000; Kim et al., 2003). As a continuation of our studies on new biologically active compounds we report herein on the synthesis and crystal structure of the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The 5-membered rings (N1/C7/C8/N2/C9 and N3/C19/C20/N4/C21) are twisted about the C7—C8 and C19—C20 bonds, respectively, with puckering parameters (Cremer & Pople, 1975) of Q2 = 0.214 (1) Å; φ2 = 59.8 (3)° for molecule A and Q2 = 0.181 (1) Å; φ2 = 229.3 (4)° for molecule B.

In the crystal the A and B molecules are linked via pairs of N—H···O hydrogen bonds forming dimer-like arrangements (Table 1 and Fig. 2). The phenyl groups project outwards on both edges of the relatively flat central portion of the dimer. These dimers are linked via C—H···S hydrogen bonds forming double-dimers. These units are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to the ab plane. There are also C—H···π interactions present consolidating the layers and linking them so forming a three-dimensional structure - see Table 1 for details of the hydrogen bonding and C—H···π interactions.

Related literature top

For the antitumor activity of imidazolidinones, see: Abdel-Aziz et al. (2012); Lee et al. (2000); Kim et al. (2003). For related crystal structures, see: Park et al. (2000); Abdel-Aziz et al. (2012); Kapon & Reisner (1989). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

Trifluoroacetic acid (0.3 equiv) was added dropwise to a stirred solution of 1-acetyl-4,5-dimethoxyimidazolidin-2-one (1 equiv) and thiophenol (1 equiv) in dry CH3CN (0.01 mol/L) over a period of 15 min at room temperature. After being stirred for 2 h at room temperature, the mixture was quenched by adding aqueous ammonium chloride solution (5 ml), extracted with ethyl acetate, washed with brine and dried over anhydrous sodium sulfate. The product obtained after evaporation of the solvent was purified by column chromatography using mixture of hexane and CHCl3 as eluent. Colourless rod-like crystals were obtained by slow evaporation of the eluent solution.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom: N—H = 0.88 & 0.89 Å, C—H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

Imidazolidinones are an interesting class of compounds possessing antitumor activity (Abdel-Aziz et al., 2012; Lee et al., 2000; Kim et al., 2003). As a continuation of our studies on new biologically active compounds we report herein on the synthesis and crystal structure of the title compound.

The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit, Fig. 1. The 5-membered rings (N1/C7/C8/N2/C9 and N3/C19/C20/N4/C21) are twisted about the C7—C8 and C19—C20 bonds, respectively, with puckering parameters (Cremer & Pople, 1975) of Q2 = 0.214 (1) Å; φ2 = 59.8 (3)° for molecule A and Q2 = 0.181 (1) Å; φ2 = 229.3 (4)° for molecule B.

In the crystal the A and B molecules are linked via pairs of N—H···O hydrogen bonds forming dimer-like arrangements (Table 1 and Fig. 2). The phenyl groups project outwards on both edges of the relatively flat central portion of the dimer. These dimers are linked via C—H···S hydrogen bonds forming double-dimers. These units are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to the ab plane. There are also C—H···π interactions present consolidating the layers and linking them so forming a three-dimensional structure - see Table 1 for details of the hydrogen bonding and C—H···π interactions.

For the antitumor activity of imidazolidinones, see: Abdel-Aziz et al. (2012); Lee et al. (2000); Kim et al. (2003). For related crystal structures, see: Park et al. (2000); Abdel-Aziz et al. (2012); Kapon & Reisner (1989). For ring conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
1-Acetyl-5-methoxy-4-(phenylsulfanyl)imidazolidin-2-one top
Crystal data top
C12H14N2O3SZ = 4
Mr = 266.31F(000) = 560
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0371 (8) ÅCell parameters from 9891 reflections
b = 12.0642 (10) Åθ = 2.3–29.1°
c = 12.8369 (11) ŵ = 0.26 mm1
α = 93.066 (1)°T = 100 K
β = 105.869 (1)°Rod, colourless
γ = 111.574 (1)°0.25 × 0.14 × 0.10 mm
V = 1233.20 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6246 independent reflections
Radiation source: fine-focus sealed tube5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 29.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1211
Tmin = 0.847, Tmax = 0.974k = 1616
22009 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3898P]
where P = (Fo2 + 2Fc2)/3
6246 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H14N2O3Sγ = 111.574 (1)°
Mr = 266.31V = 1233.20 (18) Å3
Triclinic, P1Z = 4
a = 9.0371 (8) ÅMo Kα radiation
b = 12.0642 (10) ŵ = 0.26 mm1
c = 12.8369 (11) ÅT = 100 K
α = 93.066 (1)°0.25 × 0.14 × 0.10 mm
β = 105.869 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6246 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
5490 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.974Rint = 0.034
22009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
6246 reflectionsΔρmin = 0.35 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04876 (4)0.16574 (3)0.33282 (2)0.01531 (8)
O10.00144 (11)0.07345 (8)0.32035 (7)0.01676 (18)
O20.08977 (13)0.24894 (9)0.16722 (8)0.0265 (2)
O30.25546 (11)0.12264 (8)0.01801 (7)0.01828 (18)
N10.09455 (13)0.04366 (9)0.11887 (8)0.0155 (2)
H1N0.13800.09290.08910.019*
N20.03201 (12)0.11728 (9)0.13027 (8)0.0144 (2)
C10.11335 (15)0.31463 (10)0.30058 (9)0.0145 (2)
C20.28336 (16)0.38990 (11)0.33308 (11)0.0193 (2)
H20.36460.36070.36960.023*
C30.33403 (16)0.50771 (12)0.31202 (12)0.0228 (3)
H30.45010.55830.33300.027*
C40.21611 (17)0.55186 (12)0.26060 (11)0.0205 (3)
H40.25100.63270.24720.025*
C50.04669 (16)0.47702 (12)0.22883 (10)0.0197 (2)
H50.03420.50700.19340.024*
C60.00562 (15)0.35878 (11)0.24838 (10)0.0178 (2)
H60.12180.30810.22640.021*
C70.05695 (14)0.08366 (10)0.21295 (9)0.0131 (2)
H70.15540.13470.19120.016*
C80.07070 (14)0.03672 (10)0.23658 (9)0.0137 (2)
H80.18960.02880.25670.016*
C90.14064 (15)0.06988 (10)0.06753 (9)0.0137 (2)
C100.01687 (16)0.22561 (11)0.10365 (10)0.0172 (2)
C110.13220 (18)0.30806 (11)0.00263 (11)0.0217 (3)
H11A0.10310.37790.01150.033*
H11B0.12050.26410.06390.033*
H11C0.24830.33600.00190.033*
C120.05831 (19)0.15414 (13)0.38084 (11)0.0250 (3)
H12A0.00110.23640.33850.037*
H12B0.03590.15260.45130.037*
H12C0.17910.12860.39420.037*
S20.45632 (4)0.91180 (3)0.63984 (2)0.01550 (8)
O40.47788 (11)1.14846 (8)0.66767 (7)0.01680 (18)
O50.38711 (12)1.30406 (8)0.81309 (8)0.0219 (2)
O60.70722 (12)1.16581 (8)1.01055 (7)0.02057 (19)
N30.57467 (13)1.01168 (9)0.86090 (8)0.0165 (2)
H3N0.61130.96190.89870.020*
N40.50197 (13)1.16831 (9)0.85376 (8)0.0147 (2)
C130.38049 (15)0.75462 (11)0.64573 (10)0.0156 (2)
C140.27394 (16)0.67501 (12)0.54824 (10)0.0209 (3)
H140.24000.70590.48350.025*
C150.21730 (17)0.55073 (12)0.54547 (11)0.0231 (3)
H150.14590.49710.47860.028*
C160.26439 (17)0.50477 (12)0.63972 (12)0.0226 (3)
H160.22450.41980.63790.027*
C170.37027 (18)0.58348 (12)0.73695 (11)0.0216 (3)
H170.40220.55200.80170.026*
C180.42995 (16)0.70802 (11)0.74040 (10)0.0185 (2)
H180.50410.76130.80690.022*
C190.43039 (15)0.97353 (10)0.76257 (9)0.0134 (2)
H190.33020.91390.77710.016*
C200.40610 (14)1.09291 (10)0.74557 (9)0.0139 (2)
H200.28511.07940.72580.017*
C210.60722 (15)1.11992 (11)0.91856 (9)0.0149 (2)
C220.49203 (16)1.27940 (11)0.87707 (10)0.0164 (2)
C230.61395 (18)1.36279 (12)0.98098 (11)0.0233 (3)
H23A0.59171.43590.98860.035*
H23B0.72851.38500.97840.035*
H23C0.60141.32201.04400.035*
C240.35893 (17)1.16093 (12)0.57410 (10)0.0222 (3)
H24A0.27661.08060.53470.033*
H24B0.41751.20380.52500.033*
H24C0.30141.20690.59860.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01895 (15)0.01327 (14)0.01343 (13)0.00573 (11)0.00561 (11)0.00232 (10)
O10.0190 (4)0.0173 (4)0.0165 (4)0.0087 (3)0.0062 (3)0.0084 (3)
O20.0328 (5)0.0231 (5)0.0284 (5)0.0198 (4)0.0046 (4)0.0058 (4)
O30.0205 (4)0.0160 (4)0.0159 (4)0.0085 (4)0.0008 (3)0.0003 (3)
N10.0187 (5)0.0136 (5)0.0135 (4)0.0094 (4)0.0001 (4)0.0020 (4)
N20.0154 (5)0.0123 (5)0.0154 (4)0.0070 (4)0.0028 (4)0.0022 (4)
C10.0172 (5)0.0122 (5)0.0143 (5)0.0061 (4)0.0055 (4)0.0009 (4)
C20.0166 (6)0.0163 (6)0.0263 (6)0.0088 (5)0.0058 (5)0.0028 (5)
C30.0165 (6)0.0156 (6)0.0360 (7)0.0056 (5)0.0089 (5)0.0042 (5)
C40.0245 (6)0.0155 (6)0.0268 (6)0.0101 (5)0.0124 (5)0.0061 (5)
C50.0212 (6)0.0193 (6)0.0218 (6)0.0117 (5)0.0064 (5)0.0049 (5)
C60.0158 (5)0.0181 (6)0.0181 (5)0.0065 (5)0.0041 (4)0.0019 (5)
C70.0143 (5)0.0122 (5)0.0132 (5)0.0059 (4)0.0039 (4)0.0029 (4)
C80.0132 (5)0.0132 (5)0.0146 (5)0.0058 (4)0.0032 (4)0.0035 (4)
C90.0155 (5)0.0140 (5)0.0137 (5)0.0076 (4)0.0053 (4)0.0042 (4)
C100.0212 (6)0.0141 (5)0.0201 (6)0.0089 (5)0.0094 (5)0.0051 (5)
C110.0295 (7)0.0140 (6)0.0223 (6)0.0101 (5)0.0077 (5)0.0008 (5)
C120.0337 (7)0.0231 (7)0.0226 (6)0.0147 (6)0.0092 (6)0.0140 (5)
S20.01739 (15)0.01489 (15)0.01454 (14)0.00679 (11)0.00530 (11)0.00111 (11)
O40.0169 (4)0.0185 (4)0.0150 (4)0.0068 (3)0.0048 (3)0.0056 (3)
O50.0236 (5)0.0193 (4)0.0261 (5)0.0132 (4)0.0063 (4)0.0056 (4)
O60.0254 (5)0.0183 (4)0.0159 (4)0.0120 (4)0.0006 (4)0.0010 (3)
N30.0202 (5)0.0145 (5)0.0140 (4)0.0103 (4)0.0000 (4)0.0007 (4)
N40.0166 (5)0.0139 (5)0.0140 (4)0.0079 (4)0.0033 (4)0.0015 (4)
C130.0144 (5)0.0149 (5)0.0190 (5)0.0072 (4)0.0062 (4)0.0006 (4)
C140.0215 (6)0.0206 (6)0.0190 (6)0.0104 (5)0.0022 (5)0.0012 (5)
C150.0191 (6)0.0187 (6)0.0265 (6)0.0064 (5)0.0030 (5)0.0061 (5)
C160.0226 (6)0.0146 (6)0.0332 (7)0.0068 (5)0.0142 (5)0.0002 (5)
C170.0278 (7)0.0205 (6)0.0225 (6)0.0126 (5)0.0126 (5)0.0051 (5)
C180.0204 (6)0.0177 (6)0.0174 (5)0.0076 (5)0.0062 (5)0.0002 (5)
C190.0143 (5)0.0128 (5)0.0132 (5)0.0061 (4)0.0038 (4)0.0014 (4)
C200.0139 (5)0.0137 (5)0.0139 (5)0.0058 (4)0.0038 (4)0.0023 (4)
C210.0170 (5)0.0144 (5)0.0149 (5)0.0077 (5)0.0050 (4)0.0029 (4)
C220.0194 (6)0.0138 (5)0.0188 (5)0.0072 (5)0.0090 (5)0.0040 (4)
C230.0322 (7)0.0152 (6)0.0211 (6)0.0114 (5)0.0042 (5)0.0001 (5)
C240.0257 (7)0.0235 (6)0.0161 (5)0.0112 (5)0.0021 (5)0.0063 (5)
Geometric parameters (Å, º) top
S1—C11.7830 (12)S2—C131.7775 (13)
S1—C71.8186 (12)S2—C191.8157 (12)
O1—C81.3998 (14)O4—C201.4059 (14)
O1—C121.4301 (15)O4—C241.4329 (14)
O2—C101.2115 (15)O5—C221.2124 (15)
O3—C91.2264 (14)O6—C211.2232 (15)
N1—C91.3483 (15)N3—C211.3545 (15)
N1—C71.4538 (14)N3—C191.4496 (14)
N1—H1N0.8764N3—H3N0.8921
N2—C101.3975 (15)N4—C221.3980 (15)
N2—C91.4032 (14)N4—C211.4017 (15)
N2—C81.4733 (15)N4—C201.4609 (15)
C1—C21.3936 (17)C13—C141.3957 (17)
C1—C61.3978 (17)C13—C181.3977 (17)
C2—C31.3903 (18)C14—C151.3897 (18)
C2—H20.9500C14—H140.9500
C3—C41.3875 (18)C15—C161.384 (2)
C3—H30.9500C15—H150.9500
C4—C51.3886 (18)C16—C171.3882 (19)
C4—H40.9500C16—H160.9500
C5—C61.3887 (18)C17—C181.3907 (18)
C5—H50.9500C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.5413 (16)C19—C201.5524 (16)
C7—H71.0000C19—H191.0000
C8—H81.0000C20—H201.0000
C10—C111.5006 (18)C22—C231.4976 (17)
C11—H11A0.9800C23—H23A0.9800
C11—H11B0.9800C23—H23B0.9800
C11—H11C0.9800C23—H23C0.9800
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
C1—S1—C799.86 (5)C13—S2—C19101.64 (6)
C8—O1—C12115.46 (10)C20—O4—C24113.52 (9)
C9—N1—C7113.25 (10)C21—N3—C19113.13 (10)
C9—N1—H1N122.1C21—N3—H3N116.4
C7—N1—H1N123.2C19—N3—H3N125.0
C10—N2—C9128.26 (10)C22—N4—C21128.30 (10)
C10—N2—C8121.10 (10)C22—N4—C20119.61 (10)
C9—N2—C8110.62 (9)C21—N4—C20111.81 (9)
C2—C1—C6119.69 (11)C14—C13—C18119.31 (11)
C2—C1—S1119.75 (9)C14—C13—S2117.24 (10)
C6—C1—S1120.47 (9)C18—C13—S2123.35 (9)
C3—C2—C1119.98 (11)C15—C14—C13120.31 (12)
C3—C2—H2120.0C15—C14—H14119.8
C1—C2—H2120.0C13—C14—H14119.8
C4—C3—C2120.41 (12)C16—C15—C14120.29 (12)
C4—C3—H3119.8C16—C15—H15119.9
C2—C3—H3119.8C14—C15—H15119.9
C3—C4—C5119.56 (12)C15—C16—C17119.66 (12)
C3—C4—H4120.2C15—C16—H16120.2
C5—C4—H4120.2C17—C16—H16120.2
C4—C5—C6120.64 (12)C16—C17—C18120.61 (12)
C4—C5—H5119.7C16—C17—H17119.7
C6—C5—H5119.7C18—C17—H17119.7
C5—C6—C1119.71 (11)C17—C18—C13119.81 (11)
C5—C6—H6120.1C17—C18—H18120.1
C1—C6—H6120.1C13—C18—H18120.1
N1—C7—C8102.27 (9)N3—C19—C20102.59 (9)
N1—C7—S1114.45 (8)N3—C19—S2115.63 (8)
C8—C7—S1111.08 (8)C20—C19—S2109.31 (8)
N1—C7—H7109.6N3—C19—H19109.7
C8—C7—H7109.6C20—C19—H19109.7
S1—C7—H7109.6S2—C19—H19109.7
O1—C8—N2111.86 (9)O4—C20—N4108.69 (9)
O1—C8—C7108.49 (9)O4—C20—C19111.93 (9)
N2—C8—C7101.79 (9)N4—C20—C19101.96 (9)
O1—C8—H8111.4O4—C20—H20111.3
N2—C8—H8111.4N4—C20—H20111.3
C7—C8—H8111.4C19—C20—H20111.3
O3—C9—N1126.89 (11)O6—C21—N3126.56 (11)
O3—C9—N2125.95 (11)O6—C21—N4126.45 (11)
N1—C9—N2107.15 (10)N3—C21—N4106.99 (10)
O2—C10—N2118.56 (11)O5—C22—N4119.20 (11)
O2—C10—C11122.56 (11)O5—C22—C23123.21 (11)
N2—C10—C11118.88 (11)N4—C22—C23117.59 (11)
C10—C11—H11A109.5C22—C23—H23A109.5
C10—C11—H11B109.5C22—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C10—C11—H11C109.5C22—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
O1—C12—H12A109.5O4—C24—H24A109.5
O1—C12—H12B109.5O4—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
O1—C12—H12C109.5O4—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
C7—S1—C1—C288.48 (10)C19—S2—C13—C14135.75 (10)
C7—S1—C1—C695.09 (10)C19—S2—C13—C1848.11 (12)
C6—C1—C2—C30.98 (19)C18—C13—C14—C150.18 (19)
S1—C1—C2—C3177.44 (10)S2—C13—C14—C15176.47 (10)
C1—C2—C3—C41.2 (2)C13—C14—C15—C160.8 (2)
C2—C3—C4—C50.9 (2)C14—C15—C16—C170.8 (2)
C3—C4—C5—C60.22 (19)C15—C16—C17—C180.3 (2)
C4—C5—C6—C10.03 (19)C16—C17—C18—C131.24 (19)
C2—C1—C6—C50.35 (18)C14—C13—C18—C171.19 (19)
S1—C1—C6—C5176.78 (9)S2—C13—C18—C17177.25 (10)
C9—N1—C7—C817.42 (13)C21—N3—C19—C2017.05 (13)
C9—N1—C7—S1137.63 (9)C21—N3—C19—S2135.93 (9)
C1—S1—C7—N185.84 (9)C13—S2—C19—N392.14 (9)
C1—S1—C7—C8158.98 (8)C13—S2—C19—C20152.75 (8)
C12—O1—C8—N291.43 (12)C24—O4—C20—N4128.97 (10)
C12—O1—C8—C7157.09 (10)C24—O4—C20—C19119.19 (11)
C10—N2—C8—O182.90 (13)C22—N4—C20—O470.60 (13)
C9—N2—C8—O195.95 (11)C21—N4—C20—O4103.86 (11)
C10—N2—C8—C7161.46 (10)C22—N4—C20—C19171.06 (10)
C9—N2—C8—C719.68 (12)C21—N4—C20—C1914.49 (12)
N1—C7—C8—O197.00 (10)N3—C19—C20—O498.13 (10)
S1—C7—C8—O125.53 (11)S2—C19—C20—O425.09 (12)
N1—C7—C8—N221.08 (11)N3—C19—C20—N417.87 (11)
S1—C7—C8—N2143.61 (8)S2—C19—C20—N4141.09 (8)
C7—N1—C9—O3174.34 (12)C19—N3—C21—O6170.27 (12)
C7—N1—C9—N25.55 (13)C19—N3—C21—N48.52 (14)
C10—N2—C9—O38.5 (2)C22—N4—C21—O62.6 (2)
C8—N2—C9—O3170.27 (11)C20—N4—C21—O6176.49 (12)
C10—N2—C9—N1171.40 (11)C22—N4—C21—N3178.58 (12)
C8—N2—C9—N19.84 (13)C20—N4—C21—N34.72 (13)
C9—N2—C10—O2177.09 (12)C21—N4—C22—O5176.52 (12)
C8—N2—C10—O24.27 (18)C20—N4—C22—O510.04 (17)
C9—N2—C10—C112.51 (19)C21—N4—C22—C233.76 (19)
C8—N2—C10—C11176.13 (11)C20—N4—C22—C23169.67 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C13–C18, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.881.992.8483 (13)165
N3—H3N···O3ii0.891.992.8623 (13)167
C8—H8···S2iii1.002.863.7891 (12)156
C7—H7···O3iv1.002.633.4150 (15)135
C18—H18···O3ii0.952.553.4790 (15)167
C20—H20···O1v1.002.473.4604 (15)173
C2—H2···Cg2iii0.952.833.5830 (17)137
C15—H15···Cg10.952.683.4496 (15)138
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C13–C18, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.881.992.8483 (13)165
N3—H3N···O3ii0.891.992.8623 (13)167
C8—H8···S2iii1.002.863.7891 (12)156
C7—H7···O3iv1.002.633.4150 (15)135
C18—H18···O3ii0.952.553.4790 (15)167
C20—H20···O1v1.002.473.4604 (15)173
C2—H2···Cg2iii0.952.833.5830 (17)137
C15—H15···Cg10.952.683.4496 (15)138
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z; (v) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for financial support. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., El-Subbagh, H. I., Al-Obaid, A. M., Alanazi, A. M. & Al-Omar, M. A. (2012). Bioorg. Med. Chem. Lett. 22, 2008–2014.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKapon, M. & Reisner, G. M. (1989). Acta Cryst. C45, 780–782.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, I., Lee, C., Kim, H. & Jung, S. (2003). Arch. Pharm. Res. 26, 9–14.  CrossRef PubMed CAS Google Scholar
First citationLee, S. H., Park, K. L., Choi, S. U., Lee, C. O. & Jung, S. H. (2000). Arch. Pharm. Res. 23, 579–584.  Web of Science CrossRef PubMed Google Scholar
First citationPark, K.-L., Moon, B.-G., Jung, S.-H., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, 1247–1250.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o145-o146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds