organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(4-Hy­dr­oxy­phen­yl)piperazin-1-yl]ethanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 October 2013; accepted 12 October 2013; online 19 October 2013)

In the title compound, C12H16N2O2, the piperazine ring has a chair conformation. The dihedral angle between the mean planes of the benzene ring and the acetyl group is 48.7 (1)°. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains propagating along [010].

Related literature

For the biological activity of piperazine derivatives, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]); Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]). For the crystal structures of related compounds, see: Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012). Acta Cryst. E68, o2237.]); Kavitha et al. (2013a[Kavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013a). Acta Cryst. E69, o485-o486.],b[Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344.]); Peeters et al. (1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461-2464.], 2004[Peeters, O. M., Blaton, N. M., Gerber, J. G. & Gal, J. (2004). Acta Cryst. E60, o367-o369.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O2

  • Mr = 220.27

  • Monoclinic, P 21 /c

  • a = 6.13183 (19) Å

  • b = 12.0106 (4) Å

  • c = 14.8704 (5) Å

  • β = 94.025 (3)°

  • V = 1092.46 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.32 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.833, Tmax = 1.000

  • 6224 measured reflections

  • 2134 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.07

  • 2134 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.88 2.6953 (14) 170
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound is used to synthesize ketoconazole which is a antifungal agent. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives has been reported by (Kharb et al., 2012). Many currently notable drugs contain a piperazine ring as part of their molecular structure. Piperazines are also among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., cis-1-acetyl-4-(4-{[2-(2,4-dichlorophenyl)-2-(1H-1-imidazolyl methyl)-1,3-dioxolan-4-yl]methoxy}phenyl) piperazine: ketoconazole. A crystal structure with disorder (Peeters et al., 1979), (+)-cis-1-acetyl-4-(4-{[(2R,4S)-2-(2,4-dichlorophenyl)-2-(1H- imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazine [(2R,4S)-(+)-ketoconazole] (Peeters et al., 2004), 1-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl}ethanone (Dayananda et al. , 2012), cinnarizinium bis(p-toluenesulfonate)dihydrate (Kavitha et al., 2013a) and flunarizinium hydrogen maleate (Kavitha et al., 2013b) have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The piperazine ring has a chair conformation with puckering parameters (Cremer & Pople, 1975), Q, θ, and ϕ = 0.5661 (13) Å, 174.05 (12)° and 0.9 (13)°, respectively. The dihedral angle between the mean planes of the benzene ring (C6-C11) and the acetyl group (N1/C1/C12/O1) is 48.7 (1)°. Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, O—H···O hydrogen bonds (Table 1) are observed which link the molecules into chains along [0 1 0], as shown in Fig. 2.

Related literature top

For the biological activity of piperazine derivatives, see: Bogatcheva et al. (2006); Brockunier et al. (2004); Elliott (2011); Kharb et al. (2012). For the crystal structures of related compounds, see: Dayananda et al. (2012); Kavitha et al. (2013a,b); Peeters et al. (1979, 2004). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was purchased from Sigma-Aldrich and was recrystallized from ethanol by slow evaporation to give irregular block-like colourless crystals (M.p. = 453 K).

Refinement top

All of the H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), and O-H = 0.82 Å, with Uiso(H) = 1.5Ueq(C-methyl and O) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The O—H···O hydrogen bonds, linking the molecules into chains along [0 1 0], are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
1-[4-(4-Hydroxyphenyl)piperazin-1-yl]ethanone top
Crystal data top
C12H16N2O2F(000) = 472
Mr = 220.27Dx = 1.339 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 6.13183 (19) ÅCell parameters from 3201 reflections
b = 12.0106 (4) Åθ = 3.7–72.1°
c = 14.8704 (5) ŵ = 0.75 mm1
β = 94.025 (3)°T = 173 K
V = 1092.46 (6) Å3Block, colourless
Z = 40.48 × 0.46 × 0.32 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2134 independent reflections
Radiation source: Enhance (Cu) X-ray Source1944 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.025
ω scansθmax = 72.3°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 75
Tmin = 0.833, Tmax = 1.000k = 1414
6224 measured reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2496P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2134 reflectionsΔρmax = 0.22 e Å3
147 parametersΔρmin = 0.18 e Å3
Crystal data top
C12H16N2O2V = 1092.46 (6) Å3
Mr = 220.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.13183 (19) ŵ = 0.75 mm1
b = 12.0106 (4) ÅT = 173 K
c = 14.8704 (5) Å0.48 × 0.46 × 0.32 mm
β = 94.025 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2134 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1944 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 1.000Rint = 0.025
6224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2134 reflectionsΔρmin = 0.18 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76473 (18)0.03376 (8)0.41180 (7)0.0420 (3)
O20.92639 (18)0.80536 (7)0.30904 (7)0.0375 (3)
H20.86260.85140.33830.056*
N10.62601 (17)0.13923 (9)0.41758 (7)0.0273 (3)
N20.71764 (16)0.37192 (8)0.41491 (7)0.0244 (3)
C10.6095 (2)0.03108 (10)0.39631 (8)0.0285 (3)
C20.44858 (19)0.22001 (10)0.40349 (9)0.0299 (3)
H2A0.39140.23840.46080.036*
H2B0.33090.18790.36490.036*
C30.5312 (2)0.32459 (10)0.36038 (9)0.0305 (3)
H3A0.57540.30720.30060.037*
H3B0.41430.37910.35420.037*
C40.89577 (19)0.29095 (10)0.42176 (8)0.0262 (3)
H4A1.02030.32220.45690.031*
H4B0.94070.27380.36200.031*
C50.8215 (2)0.18508 (10)0.46652 (9)0.0290 (3)
H5A0.93810.13040.46800.035*
H5B0.78970.20120.52820.035*
C60.77423 (19)0.48149 (10)0.38735 (8)0.0238 (3)
C70.6271 (2)0.56832 (10)0.39795 (8)0.0276 (3)
H70.49590.55400.42350.033*
C80.6738 (2)0.67575 (10)0.37087 (8)0.0293 (3)
H80.57130.73190.37660.035*
C90.8717 (2)0.70046 (10)0.33537 (8)0.0275 (3)
C101.0194 (2)0.61483 (11)0.32474 (9)0.0315 (3)
H101.15230.62990.30080.038*
C110.9702 (2)0.50671 (10)0.34968 (9)0.0290 (3)
H111.07000.45000.34110.035*
C120.3937 (2)0.01011 (11)0.35382 (10)0.0366 (3)
H12A0.40100.08920.34500.055*
H12B0.36310.02600.29670.055*
H12C0.27960.00670.39270.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (6)0.0251 (5)0.0499 (6)0.0119 (4)0.0068 (5)0.0033 (4)
O20.0524 (6)0.0219 (5)0.0390 (5)0.0023 (4)0.0087 (4)0.0006 (4)
N10.0268 (5)0.0210 (5)0.0336 (6)0.0034 (4)0.0010 (4)0.0004 (4)
N20.0215 (5)0.0200 (5)0.0314 (5)0.0030 (4)0.0008 (4)0.0000 (4)
C10.0396 (7)0.0221 (6)0.0238 (6)0.0032 (5)0.0016 (5)0.0015 (4)
C20.0229 (6)0.0235 (6)0.0431 (7)0.0027 (5)0.0002 (5)0.0042 (5)
C30.0257 (6)0.0229 (6)0.0415 (7)0.0045 (5)0.0071 (5)0.0006 (5)
C40.0226 (6)0.0232 (6)0.0323 (6)0.0048 (5)0.0021 (5)0.0008 (5)
C50.0281 (6)0.0233 (6)0.0348 (6)0.0034 (5)0.0045 (5)0.0023 (5)
C60.0259 (6)0.0209 (6)0.0239 (6)0.0026 (4)0.0028 (4)0.0013 (4)
C70.0286 (6)0.0249 (6)0.0294 (6)0.0048 (5)0.0037 (5)0.0004 (5)
C80.0363 (7)0.0226 (6)0.0290 (6)0.0077 (5)0.0023 (5)0.0015 (5)
C90.0383 (7)0.0204 (6)0.0233 (6)0.0009 (5)0.0023 (5)0.0011 (4)
C100.0274 (6)0.0299 (7)0.0371 (7)0.0019 (5)0.0024 (5)0.0008 (5)
C110.0246 (6)0.0235 (6)0.0386 (7)0.0041 (5)0.0013 (5)0.0006 (5)
C120.0500 (8)0.0229 (6)0.0354 (7)0.0018 (6)0.0080 (6)0.0012 (5)
Geometric parameters (Å, º) top
O1—C11.2387 (16)C4—C51.5200 (17)
O2—H20.8200C5—H5A0.9700
O2—C91.3681 (15)C5—H5B0.9700
N1—C11.3391 (16)C6—C71.3950 (17)
N1—C21.4618 (15)C6—C111.3943 (18)
N1—C51.4651 (16)C7—H70.9300
N2—C31.4688 (15)C7—C81.3875 (18)
N2—C41.4607 (14)C8—H80.9300
N2—C61.4284 (15)C8—C91.3888 (19)
C1—C121.5096 (18)C9—C101.3869 (18)
C2—H2A0.9700C10—H100.9300
C2—H2B0.9700C10—C111.3896 (18)
C2—C31.5136 (18)C11—H110.9300
C3—H3A0.9700C12—H12A0.9600
C3—H3B0.9700C12—H12B0.9600
C4—H4A0.9700C12—H12C0.9600
C4—H4B0.9700
C9—O2—H2109.5N1—C5—H5A109.5
C1—N1—C2124.54 (11)N1—C5—H5B109.5
C1—N1—C5121.83 (10)C4—C5—H5A109.5
C2—N1—C5113.35 (10)C4—C5—H5B109.5
C4—N2—C3109.27 (9)H5A—C5—H5B108.0
C6—N2—C3113.18 (9)C7—C6—N2118.97 (11)
C6—N2—C4115.97 (9)C11—C6—N2123.30 (10)
O1—C1—N1121.45 (13)C11—C6—C7117.74 (11)
O1—C1—C12120.76 (12)C6—C7—H7119.5
N1—C1—C12117.78 (11)C8—C7—C6120.95 (12)
N1—C2—H2A109.6C8—C7—H7119.5
N1—C2—H2B109.6C7—C8—H8119.6
N1—C2—C3110.09 (10)C7—C8—C9120.83 (11)
H2A—C2—H2B108.2C9—C8—H8119.6
C3—C2—H2A109.6O2—C9—C8122.96 (11)
C3—C2—H2B109.6O2—C9—C10118.35 (12)
N2—C3—C2110.98 (10)C10—C9—C8118.68 (11)
N2—C3—H3A109.4C9—C10—H10119.8
N2—C3—H3B109.4C9—C10—C11120.45 (12)
C2—C3—H3A109.4C11—C10—H10119.8
C2—C3—H3B109.4C6—C11—H11119.3
H3A—C3—H3B108.0C10—C11—C6121.31 (11)
N2—C4—H4A109.7C10—C11—H11119.3
N2—C4—H4B109.7C1—C12—H12A109.5
N2—C4—C5109.99 (10)C1—C12—H12B109.5
H4A—C4—H4B108.2C1—C12—H12C109.5
C5—C4—H4A109.7H12A—C12—H12B109.5
C5—C4—H4B109.7H12A—C12—H12C109.5
N1—C5—C4110.90 (10)H12B—C12—H12C109.5
O2—C9—C10—C11179.37 (11)C4—N2—C6—C7166.26 (11)
N1—C2—C3—N256.20 (14)C4—N2—C6—C1114.00 (16)
N2—C4—C5—N156.23 (13)C5—N1—C1—O14.88 (19)
N2—C6—C7—C8179.02 (11)C5—N1—C1—C12174.25 (11)
N2—C6—C11—C10179.29 (11)C5—N1—C2—C352.56 (14)
C1—N1—C2—C3133.46 (13)C6—N2—C3—C2168.28 (10)
C1—N1—C5—C4132.86 (12)C6—N2—C4—C5170.42 (10)
C2—N1—C1—O1178.37 (12)C6—C7—C8—C92.28 (19)
C2—N1—C1—C120.76 (18)C7—C6—C11—C100.97 (19)
C2—N1—C5—C452.98 (14)C7—C8—C9—O2178.98 (11)
C3—N2—C4—C560.23 (13)C7—C8—C9—C102.06 (19)
C3—N2—C6—C766.31 (14)C8—C9—C10—C110.36 (19)
C3—N2—C6—C11113.43 (13)C9—C10—C11—C61.2 (2)
C4—N2—C3—C260.86 (13)C11—C6—C7—C80.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.882.6953 (14)170
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.882.6953 (14)170
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for permission to carry out research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012). Acta Cryst. E68, o2237.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013a). Acta Cryst. E69, o485–o486.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344.  CSD CrossRef IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M., Gerber, J. G. & Gal, J. (2004). Acta Cryst. E60, o367–o369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds