organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Adamantan-2-yl­­idene)benzo­hydrazide

aCollege of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 21 June 2012; accepted 24 June 2012; online 30 June 2012)

The title mol­ecule, C17H20N2O, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine N atoms. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction. There are also C—H⋯O, C—H⋯N and C—H⋯π inter­actions present within the chains.

Related literature

For the biological activity of adamantane derivatives, see: Togo et al. (1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For the biological activity of hydrazone derivatives, see: Zheng et al. (2009[Zheng, L., Wu, L., Zhao, B., Dong, W. & Miao, J. (2009). Bioorg. Med. Chem. 17, 1957-1962.]); Moldovan et al. (2011[Moldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P. & Pîrnău, A. (2011). Eur. J. Med. Chem. 46, 526-534.]). For related adamantane structures, see: Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Rouchal et al. (2010[Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.]); El-Emam et al. (2012[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657-o658.]). For related cyclic ketone hydrazone structures, see: Sankar et al. (2010[Sankar, C., Pandiarajan, K., Thiruvalluvar, A. & Gayathri, P. (2010). Acta Cryst. E66, o2841.]); El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]); Kia et al. (2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382.]); Kadi et al. (2011[Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O

  • Mr = 268.35

  • Orthorhombic, P b c a

  • a = 7.9698 (3) Å

  • b = 17.5466 (8) Å

  • c = 20.1350 (8) Å

  • V = 2815.7 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 120 K

  • 0.26 × 0.08 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.942, Tmax = 0.988

  • 7280 measured reflections

  • 2634 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.03

  • 2634 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.95 (2) 2.17 (2) 3.087 (2) 162 (2)
C3—H3⋯O1i 0.93 2.47 3.381 (3) 167
C9—H9⋯O1i 0.98 2.33 3.210 (3) 149
C9—H9⋯N2i 0.98 2.55 3.402 (3) 145
C15—H15ACg1ii 0.97 2.57 3.519 (3) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. App. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam & Ibrahim, 1991). In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives (Almutairi et al., 2012; El-Emam et al., 2012), we synthesized the title compound as a precursor for potential chemotherapeutic agents. Herein, we report on the synthesis and crystal structure of the title compound.

The title molecule, Fig. 1, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine nitrogen atoms, N1 and N2.

In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains propagating along the a axis direction. There are also C-H···O, C-H···N and C-H···π interactions present within the chains (Table 1).

Related literature top

For the biological activity of adamantane derivatives, see: Togo et al. (1968); Kadi et al. (2007, 2010); Al-Deeb et al. (2006); El-Emam et al. (2004). For the biological activity of hydrazone derivatives, see: Zheng et al. (2009); Moldovan et al. (2011). For related adamantane structures, see: Almutairi et al. (2012); Rouchal et al. (2010; El-Emam et al. (2012). For related cyclic ketone hydrazone structures, see: Sankar et al. (2010); El-Emam & Ibrahim (1991); Kia et al. (2009); Kadi et al. (2011).

Experimental top

A mixture of benzohydrazide (1.36 g, 0.01 mol), 2-adamantanone (1.5 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for 4 h. On cooling, the precipitated crystalline solid was filtered, dried and recrystallized from ethanol to yield 2.52 g (94%) of the title compound as colourless needle crystals [M.p. 517-519 K]. Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

The NH H-atom was located in a difference electron-density map and freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH(aromatic), CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = 1.2Ueq(parent C-atom).

Structure description top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam & Ibrahim, 1991). In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives (Almutairi et al., 2012; El-Emam et al., 2012), we synthesized the title compound as a precursor for potential chemotherapeutic agents. Herein, we report on the synthesis and crystal structure of the title compound.

The title molecule, Fig. 1, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine nitrogen atoms, N1 and N2.

In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains propagating along the a axis direction. There are also C-H···O, C-H···N and C-H···π interactions present within the chains (Table 1).

For the biological activity of adamantane derivatives, see: Togo et al. (1968); Kadi et al. (2007, 2010); Al-Deeb et al. (2006); El-Emam et al. (2004). For the biological activity of hydrazone derivatives, see: Zheng et al. (2009); Moldovan et al. (2011). For related adamantane structures, see: Almutairi et al. (2012); Rouchal et al. (2010; El-Emam et al. (2012). For related cyclic ketone hydrazone structures, see: Sankar et al. (2010); El-Emam & Ibrahim (1991); Kia et al. (2009); Kadi et al. (2011).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
N'-(Adamantan-2-ylidene)benzohydrazide top
Crystal data top
C17H20N2OF(000) = 1152
Mr = 268.35Dx = 1.266 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 1578 reflections
a = 7.9698 (3) Åθ = 3.3–70.4°
b = 17.5466 (8) ŵ = 0.62 mm1
c = 20.1350 (8) ÅT = 120 K
V = 2815.7 (2) Å3Prism, colourless
Z = 80.26 × 0.08 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2634 independent reflections
Radiation source: Enhance (Cu) X-ray Source1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.2673 pixels mm-1θmax = 70.4°, θmin = 3.3°
ω scansh = 69
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2120
Tmin = 0.942, Tmax = 0.988l = 2420
7280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
2634 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H20N2OV = 2815.7 (2) Å3
Mr = 268.35Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.9698 (3) ŵ = 0.62 mm1
b = 17.5466 (8) ÅT = 120 K
c = 20.1350 (8) Å0.26 × 0.08 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2634 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1859 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.988Rint = 0.052
7280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2634 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

1H NMR (CDCl3, 500.13MHz): δ 1.82–1.96 (m, 14H, Adamantane-H), 7.36–7.43 (m, 3H, Ar—H), 7.51–7.53 (m, 2H, Ar—H), 8.81 (s, 1H, NH). 13C NMR (CDCl3, 125.76MHz): δ 27.70, 31.82, 36.20, 37.93, 39.06, 164.47 (Adamantane-C), 127.29, 128.66, 131.73, 133.77 (Ar—C), 171.29 (CO).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41632 (17)0.06584 (9)0.16083 (8)0.0312 (5)
N10.6033 (2)0.11608 (10)0.23403 (9)0.0235 (5)
N20.4774 (2)0.16129 (10)0.26108 (9)0.0223 (5)
C10.5611 (2)0.07181 (12)0.18124 (10)0.0246 (6)
C20.7017 (2)0.02971 (12)0.14858 (10)0.0249 (6)
C30.8416 (3)0.00356 (13)0.18307 (12)0.0293 (6)
C40.9655 (3)0.03725 (14)0.14965 (14)0.0371 (8)
C50.9494 (3)0.05134 (15)0.08214 (14)0.0401 (8)
C60.8098 (3)0.02579 (14)0.04800 (12)0.0369 (7)
C70.6858 (3)0.01433 (13)0.08093 (11)0.0293 (6)
C80.5128 (2)0.20447 (12)0.31045 (10)0.0220 (6)
C90.6735 (3)0.21136 (13)0.34927 (10)0.0264 (6)
C100.6324 (3)0.18818 (14)0.42134 (11)0.0310 (7)
C110.7330 (3)0.29468 (14)0.34814 (11)0.0313 (7)
C120.4986 (3)0.24128 (14)0.45032 (11)0.0296 (6)
C130.3753 (2)0.25512 (12)0.33641 (10)0.0237 (6)
C140.3378 (3)0.23380 (14)0.40906 (11)0.0291 (6)
C150.4369 (3)0.33837 (13)0.33421 (11)0.0296 (7)
C160.5968 (3)0.34691 (13)0.37629 (11)0.0288 (6)
C170.5592 (3)0.32391 (14)0.44831 (10)0.0279 (6)
H1N0.716 (3)0.1276 (15)0.2457 (12)0.028 (6)*
H30.852300.013300.228300.0350*
H41.059000.055000.172600.0440*
H51.032800.078100.059800.0480*
H60.799200.035600.002800.0440*
H70.591600.031100.057900.0350*
H90.759800.177800.330700.0320*
H10A0.592000.136000.422200.0370*
H10B0.733300.190800.448200.0370*
H11A0.834500.299700.374400.0380*
H11B0.758500.309600.302900.0380*
H120.475400.226700.496400.0360*
H130.274000.249300.309300.0280*
H14A0.251900.267300.426800.0350*
H14B0.296500.181900.411300.0350*
H15A0.460200.352900.288700.0360*
H15B0.350100.371900.351300.0360*
H160.635300.399900.375000.0350*
H17A0.659700.329300.475100.0330*
H17B0.473500.357100.466600.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (7)0.0321 (9)0.0339 (8)0.0024 (7)0.0040 (6)0.0082 (7)
N10.0219 (8)0.0216 (9)0.0270 (9)0.0025 (7)0.0013 (7)0.0049 (8)
N20.0230 (8)0.0205 (9)0.0235 (8)0.0016 (7)0.0015 (7)0.0002 (7)
C10.0276 (10)0.0218 (11)0.0244 (10)0.0000 (9)0.0005 (8)0.0009 (9)
C20.0280 (10)0.0190 (10)0.0277 (11)0.0026 (8)0.0062 (9)0.0018 (9)
C30.0274 (10)0.0225 (11)0.0381 (12)0.0009 (9)0.0020 (9)0.0011 (10)
C40.0292 (11)0.0298 (13)0.0522 (15)0.0041 (10)0.0051 (10)0.0029 (12)
C50.0431 (13)0.0270 (12)0.0501 (15)0.0032 (10)0.0223 (12)0.0052 (12)
C60.0528 (14)0.0248 (12)0.0330 (12)0.0033 (11)0.0161 (12)0.0025 (10)
C70.0374 (11)0.0214 (11)0.0290 (11)0.0013 (9)0.0022 (9)0.0010 (9)
C80.0242 (9)0.0199 (10)0.0220 (10)0.0005 (8)0.0001 (8)0.0015 (9)
C90.0245 (9)0.0289 (12)0.0259 (10)0.0035 (9)0.0012 (9)0.0065 (9)
C100.0388 (11)0.0284 (13)0.0257 (11)0.0050 (10)0.0087 (10)0.0007 (10)
C110.0299 (10)0.0342 (13)0.0298 (11)0.0096 (10)0.0010 (9)0.0049 (10)
C120.0380 (11)0.0288 (12)0.0220 (10)0.0016 (10)0.0010 (9)0.0008 (9)
C130.0250 (9)0.0219 (11)0.0242 (10)0.0016 (8)0.0003 (8)0.0014 (9)
C140.0307 (10)0.0270 (12)0.0296 (11)0.0017 (9)0.0070 (9)0.0039 (10)
C150.0371 (11)0.0235 (12)0.0282 (11)0.0032 (9)0.0021 (9)0.0002 (9)
C160.0359 (11)0.0222 (11)0.0284 (11)0.0055 (10)0.0006 (9)0.0017 (9)
C170.0313 (10)0.0276 (12)0.0248 (10)0.0014 (9)0.0031 (9)0.0060 (9)
Geometric parameters (Å, º) top
O1—C11.229 (2)C15—C161.538 (3)
N1—N21.390 (2)C16—C171.535 (3)
N1—C11.359 (3)C3—H30.9300
N2—C81.281 (3)C4—H40.9300
N1—H1N0.95 (2)C5—H50.9300
C1—C21.495 (3)C6—H60.9300
C2—C71.394 (3)C7—H70.9300
C2—C31.391 (3)C9—H90.9800
C3—C41.393 (3)C10—H10A0.9700
C4—C51.388 (4)C10—H10B0.9700
C5—C61.383 (3)C11—H11A0.9700
C6—C71.383 (3)C11—H11B0.9700
C8—C91.505 (3)C12—H120.9800
C8—C131.505 (3)C13—H130.9800
C9—C111.537 (3)C14—H14A0.9700
C9—C101.542 (3)C14—H14B0.9700
C10—C121.532 (3)C15—H15A0.9700
C11—C161.530 (3)C15—H15B0.9700
C12—C171.529 (3)C16—H160.9800
C12—C141.533 (3)C17—H17A0.9700
C13—C141.539 (3)C17—H17B0.9700
C13—C151.542 (3)
N2—N1—C1117.00 (15)C5—C6—H6120.00
N1—N2—C8118.84 (16)C7—C6—H6120.00
N2—N1—H1N117.7 (15)C2—C7—H7120.00
C1—N1—H1N123.3 (15)C6—C7—H7120.00
N1—C1—C2116.18 (15)C8—C9—H9111.00
O1—C1—C2120.97 (18)C10—C9—H9110.00
O1—C1—N1122.86 (18)C11—C9—H9110.00
C1—C2—C7117.22 (17)C9—C10—H10A110.00
C3—C2—C7119.77 (19)C9—C10—H10B110.00
C1—C2—C3122.97 (19)C12—C10—H10A110.00
C2—C3—C4119.8 (2)C12—C10—H10B110.00
C3—C4—C5120.0 (2)H10A—C10—H10B108.00
C4—C5—C6120.3 (2)C9—C11—H11A110.00
C5—C6—C7120.1 (2)C9—C11—H11B110.00
C2—C7—C6120.1 (2)C16—C11—H11A110.00
N2—C8—C13117.29 (16)C16—C11—H11B110.00
N2—C8—C9129.62 (18)H11A—C11—H11B108.00
C9—C8—C13113.07 (17)C10—C12—H12109.00
C8—C9—C11109.34 (18)C14—C12—H12109.00
C8—C9—C10106.66 (18)C17—C12—H12109.00
C10—C9—C11109.29 (18)C8—C13—H13110.00
C9—C10—C12110.24 (19)C14—C13—H13110.00
C9—C11—C16110.21 (19)C15—C13—H13110.00
C10—C12—C17110.30 (19)C12—C14—H14A110.00
C10—C12—C14108.88 (19)C12—C14—H14B110.00
C14—C12—C17109.33 (19)C13—C14—H14A110.00
C8—C13—C15108.53 (15)C13—C14—H14B110.00
C8—C13—C14109.15 (17)H14A—C14—H14B108.00
C14—C13—C15108.63 (17)C13—C15—H15A110.00
C12—C14—C13109.39 (18)C13—C15—H15B110.00
C13—C15—C16109.90 (18)C16—C15—H15A110.00
C11—C16—C15109.00 (18)C16—C15—H15B110.00
C11—C16—C17109.34 (19)H15A—C15—H15B108.00
C15—C16—C17109.46 (19)C11—C16—H16110.00
C12—C17—C16109.64 (18)C15—C16—H16110.00
C2—C3—H3120.00C17—C16—H16110.00
C4—C3—H3120.00C12—C17—H17A110.00
C3—C4—H4120.00C12—C17—H17B110.00
C5—C4—H4120.00C16—C17—H17A110.00
C4—C5—H5120.00C16—C17—H17B110.00
C6—C5—H5120.00H17A—C17—H17B108.00
C1—N1—N2—C8179.23 (19)C9—C8—C13—C1459.8 (2)
N2—N1—C1—O16.1 (3)C9—C8—C13—C1558.4 (2)
N2—N1—C1—C2174.01 (17)C8—C9—C10—C1260.3 (2)
N1—N2—C8—C94.7 (3)C11—C9—C10—C1257.8 (2)
N1—N2—C8—C13177.34 (17)C8—C9—C11—C1657.4 (2)
O1—C1—C2—C3148.1 (2)C10—C9—C11—C1659.1 (2)
O1—C1—C2—C729.5 (3)C9—C10—C12—C1461.6 (2)
N1—C1—C2—C331.7 (3)C9—C10—C12—C1758.3 (2)
N1—C1—C2—C7150.6 (2)C9—C11—C16—C1559.3 (2)
C1—C2—C3—C4178.1 (2)C9—C11—C16—C1760.3 (2)
C7—C2—C3—C40.5 (3)C10—C12—C14—C1359.2 (2)
C1—C2—C7—C6178.7 (2)C17—C12—C14—C1361.3 (2)
C3—C2—C7—C61.0 (3)C10—C12—C17—C1659.2 (2)
C2—C3—C4—C50.3 (4)C14—C12—C17—C1660.5 (2)
C3—C4—C5—C60.8 (4)C8—C13—C14—C1257.5 (2)
C4—C5—C6—C70.3 (4)C15—C13—C14—C1260.7 (2)
C5—C6—C7—C20.5 (4)C8—C13—C15—C1658.7 (2)
N2—C8—C9—C10117.8 (2)C14—C13—C15—C1659.8 (2)
N2—C8—C9—C11124.1 (2)C13—C15—C16—C1160.2 (2)
C13—C8—C9—C1060.2 (2)C13—C15—C16—C1759.4 (2)
C13—C8—C9—C1157.9 (2)C11—C16—C17—C1259.9 (2)
N2—C8—C13—C14118.5 (2)C15—C16—C17—C1259.4 (2)
N2—C8—C13—C15123.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.95 (2)2.17 (2)3.087 (2)162 (2)
C3—H3···O1i0.932.473.381 (3)167
C9—H9···O1i0.982.333.210 (3)149
C9—H9···N2i0.982.553.402 (3)145
C15—H15A···Cg1ii0.972.573.519 (3)164
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O
Mr268.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)7.9698 (3), 17.5466 (8), 20.1350 (8)
V3)2815.7 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.26 × 0.08 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.942, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7280, 2634, 1859
Rint0.052
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.03
No. of reflections2634
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.95 (2)2.17 (2)3.087 (2)162 (2)
C3—H3···O1i0.932.473.381 (3)167
C9—H9···O1i0.982.333.210 (3)149
C9—H9···N2i0.982.553.402 (3)145
C15—H15A···Cg1ii0.972.573.519 (3)164
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. Financial support from the Spanish Ministerio de Economía y Competitividad (MAT2010–15094, MAT2006–01997, Factoría de Cristalización – Consolider Ingenio 2010, and FPI grant BES-2011–046948 to MSM-A) and FEDER are gratefully acknowledged.

References

First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. App. Cryst. 27, 435.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P. & Pîrnău, A. (2011). Eur. J. Med. Chem. 46, 526–534.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSankar, C., Pandiarajan, K., Thiruvalluvar, A. & Gayathri, P. (2010). Acta Cryst. E66, o2841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, L., Wu, L., Zhao, B., Dong, W. & Miao, J. (2009). Bioorg. Med. Chem. 17, 1957–1962.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds