metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­iodo-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}copper(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 28 April 2012; accepted 6 May 2012; online 12 May 2012)

In the title compound, [Cu(C19H16I4N2O2)], the CuII atom and the substituted C atom of the diamine segment lie on a crystallographic twofold rotation axis. The geometry around the CuII atom is distorted square-planar, which is supported by the N2O2 donor atoms of the coordinated Schiff base. The dihedral angle between the symmetry-related substituted benzene rings is 29.40 (19)°. In the crystal, a short I⋯I [3.8766 (6) Å] contact is present and links neighbouring mol­ecules into chains propagating along the a axis.

Related literature

For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem., 23, 109-112.]). For a related structure, see: Kargar et al. (2012[Kargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012). Acta Cryst. E68, o564.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H16I4N2O2)]

  • Mr = 875.48

  • Orthorhombic, P b c n

  • a = 16.9336 (10) Å

  • b = 15.9602 (12) Å

  • c = 8.7041 (5) Å

  • V = 2352.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.20 mm−1

  • T = 296 K

  • 0.21 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.269, Tmax = 0.551

  • 9807 measured reflections

  • 2321 independent reflections

  • 1791 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.04

  • 2321 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, owing to their ease of preparation and structural variations (Granovski et al., 1993; Blower, 1998).

The asymmetric unit of the title compound, Fig. 1, comprises half of a tetradentate Schiff base ligand. Atoms Cu1 and C9 lie on a crystallographic two-fold rotation axis. The geometry around the CuII atom is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base. The dihedral angle between the symmetry-related substituted benzene rings is 29.40 (19)°. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a related structure (Kargar et al., 2012).

In the crystal, a short I···I [3.8766 (6) Å] contact is present, which is shorter than the sum of the van der Waals radii of I atoms [3.96 Å; Bondi, 1964]. It links neighbouring molecules along the a axis forming chains.

Related literature top

For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2012). For standard values of bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized by adding 3,5-diiodo-salicylaldehyde-2,2-dimethyl-1,3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Red single crystals of the title compound, suitable for X-ray structure analysis, were obtained from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code: (A) = -x, y, -z+1/2].
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c-axis, showing how the molecules are linked via the intermolecular I···I interactions (dashed lines) to form chains along the a axis [the H atoms have been omitted for clarity].
{4,4',6,6'-Tetraiodo-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) top
Crystal data top
[Cu(C19H16I4N2O2)]F(000) = 1604
Mr = 875.48Dx = 2.472 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1126 reflections
a = 16.9336 (10) Åθ = 2.5–27.5°
b = 15.9602 (12) ŵ = 6.20 mm1
c = 8.7041 (5) ÅT = 296 K
V = 2352.4 (3) Å3Block, red
Z = 40.21 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2321 independent reflections
Radiation source: fine-focus sealed tube1791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.269, Tmax = 0.551k = 1319
9807 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.021P)2 + 2.4697P]
where P = (Fo2 + 2Fc2)/3
2321 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C19H16I4N2O2)]V = 2352.4 (3) Å3
Mr = 875.48Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.9336 (10) ŵ = 6.20 mm1
b = 15.9602 (12) ÅT = 296 K
c = 8.7041 (5) Å0.21 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1791 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.551Rint = 0.030
9807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.94 e Å3
2321 reflectionsΔρmin = 0.67 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.16096 (2)0.747572 (19)0.30639 (4)0.04900 (11)
I20.39828 (2)0.53650 (3)0.63814 (5)0.06704 (14)
Cu10.00000.48949 (5)0.25000.03357 (18)
O10.07523 (17)0.57300 (18)0.3038 (3)0.0384 (7)
N10.0505 (2)0.4038 (2)0.3745 (4)0.0348 (8)
C10.1415 (2)0.5623 (3)0.3769 (4)0.0332 (10)
C20.1945 (3)0.6301 (3)0.3943 (4)0.0350 (10)
C30.2653 (2)0.6228 (3)0.4678 (4)0.0384 (11)
H30.29850.66910.47580.046*
C40.2882 (2)0.5464 (3)0.5306 (5)0.0394 (10)
C50.2393 (3)0.4793 (3)0.5191 (5)0.0417 (11)
H50.25470.42830.56130.050*
C60.1657 (2)0.4854 (3)0.4444 (5)0.0348 (10)
C70.1168 (2)0.4116 (3)0.4443 (5)0.0364 (10)
H70.13490.36560.49970.044*
C80.0045 (3)0.3268 (3)0.3955 (4)0.0401 (10)
H8A0.04860.34160.42700.048*
H8B0.02810.29410.47760.048*
C90.00000.2724 (4)0.25000.0369 (14)
C100.0730 (3)0.2171 (3)0.2632 (6)0.0599 (14)
H10A0.07090.18620.35780.090*
H10B0.07450.17870.17830.090*
H10C0.11950.25150.26180.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0663 (2)0.03097 (18)0.04979 (18)0.00876 (16)0.00490 (15)0.00638 (14)
I20.04541 (19)0.0625 (3)0.0932 (3)0.00148 (19)0.02547 (19)0.0029 (2)
Cu10.0359 (4)0.0272 (4)0.0376 (4)0.0000.0041 (3)0.000
O10.0396 (16)0.0278 (16)0.0478 (17)0.0031 (14)0.0093 (14)0.0029 (14)
N10.041 (2)0.027 (2)0.0359 (18)0.0058 (17)0.0016 (16)0.0042 (16)
C10.037 (2)0.032 (2)0.031 (2)0.003 (2)0.0005 (18)0.0022 (19)
C20.042 (2)0.028 (2)0.035 (2)0.004 (2)0.0031 (19)0.0039 (19)
C30.038 (2)0.037 (3)0.041 (2)0.012 (2)0.0025 (19)0.007 (2)
C40.033 (2)0.041 (3)0.045 (2)0.003 (2)0.002 (2)0.003 (2)
C50.045 (3)0.037 (3)0.043 (3)0.003 (2)0.005 (2)0.001 (2)
C60.038 (2)0.029 (2)0.037 (2)0.0042 (19)0.0026 (19)0.0021 (19)
C70.046 (3)0.028 (2)0.036 (2)0.000 (2)0.002 (2)0.0057 (19)
C80.048 (3)0.035 (3)0.036 (2)0.008 (2)0.0007 (19)0.004 (2)
C90.041 (3)0.024 (3)0.045 (3)0.0000.007 (3)0.000
C100.063 (3)0.050 (3)0.066 (3)0.022 (3)0.006 (3)0.002 (3)
Geometric parameters (Å, º) top
I1—C22.103 (4)C4—C51.358 (6)
I2—C42.092 (4)C5—C61.409 (6)
Cu1—O11.902 (3)C5—H50.9300
Cu1—O1i1.902 (3)C6—C71.439 (6)
Cu1—N1i1.944 (3)C7—H70.9300
Cu1—N11.944 (3)C8—C91.538 (5)
O1—C11.301 (5)C8—H8A0.9700
N1—C71.283 (5)C8—H8B0.9700
N1—C81.466 (5)C9—C101.522 (6)
C1—C21.414 (6)C9—C10i1.522 (6)
C1—C61.422 (6)C9—C8i1.538 (5)
C2—C31.364 (6)C10—H10A0.9600
C3—C41.391 (6)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
O1—Cu1—O1i91.04 (17)C5—C6—C1120.4 (4)
O1—Cu1—N1i157.69 (13)C5—C6—C7116.9 (4)
O1i—Cu1—N1i93.51 (13)C1—C6—C7122.7 (4)
O1—Cu1—N193.51 (13)N1—C7—C6125.7 (4)
O1i—Cu1—N1157.69 (13)N1—C7—H7117.2
N1i—Cu1—N190.5 (2)C6—C7—H7117.2
C1—O1—Cu1127.3 (3)N1—C8—C9113.4 (3)
C7—N1—C8119.2 (4)N1—C8—H8A108.9
C7—N1—Cu1125.5 (3)C9—C8—H8A108.9
C8—N1—Cu1115.2 (3)N1—C8—H8B108.9
O1—C1—C2120.0 (4)C9—C8—H8B108.9
O1—C1—C6124.3 (4)H8A—C8—H8B107.7
C2—C1—C6115.7 (4)C10—C9—C10i109.2 (6)
C3—C2—C1122.9 (4)C10—C9—C8107.8 (3)
C3—C2—I1119.0 (3)C10i—C9—C8110.4 (3)
C1—C2—I1118.1 (3)C10—C9—C8i110.4 (3)
C2—C3—C4120.2 (4)C10i—C9—C8i107.8 (3)
C2—C3—H3119.9C8—C9—C8i111.2 (5)
C4—C3—H3119.9C9—C10—H10A109.5
C5—C4—C3119.6 (4)C9—C10—H10B109.5
C5—C4—I2121.1 (3)H10A—C10—H10B109.5
C3—C4—I2119.3 (3)C9—C10—H10C109.5
C4—C5—C6121.3 (4)H10A—C10—H10C109.5
C4—C5—H5119.4H10B—C10—H10C109.5
C6—C5—H5119.4
O1i—Cu1—O1—C1168.3 (4)C2—C3—C4—I2178.6 (3)
N1i—Cu1—O1—C189.9 (5)C3—C4—C5—C60.1 (7)
N1—Cu1—O1—C110.1 (3)I2—C4—C5—C6178.9 (3)
O1—Cu1—N1—C77.0 (4)C4—C5—C6—C11.0 (6)
O1i—Cu1—N1—C7108.3 (4)C4—C5—C6—C7177.3 (4)
N1i—Cu1—N1—C7151.1 (4)O1—C1—C6—C5178.8 (4)
O1—Cu1—N1—C8168.9 (3)C2—C1—C6—C51.6 (6)
O1i—Cu1—N1—C867.5 (5)O1—C1—C6—C73.0 (6)
N1i—Cu1—N1—C833.1 (2)C2—C1—C6—C7176.6 (4)
Cu1—O1—C1—C2173.7 (3)C8—N1—C7—C6175.1 (4)
Cu1—O1—C1—C66.8 (6)Cu1—N1—C7—C60.5 (6)
O1—C1—C2—C3179.1 (4)C5—C6—C7—N1175.5 (4)
C6—C1—C2—C31.3 (6)C1—C6—C7—N16.2 (7)
O1—C1—C2—I12.2 (5)C7—N1—C8—C9111.6 (4)
C6—C1—C2—I1177.3 (3)Cu1—N1—C8—C972.3 (4)
C1—C2—C3—C40.4 (6)N1—C8—C9—C10157.0 (4)
I1—C2—C3—C4178.3 (3)N1—C8—C9—C10i83.8 (5)
C2—C3—C4—C50.4 (6)N1—C8—C9—C8i35.9 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C19H16I4N2O2)]
Mr875.48
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)16.9336 (10), 15.9602 (12), 8.7041 (5)
V3)2352.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.20
Crystal size (mm)0.21 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.269, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
9807, 2321, 1791
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.04
No. of reflections2321
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and TS thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem., 23, 109–112.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441-452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012). Acta Cryst. E68, o564.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds