organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­bromo-2-nitro­biphen­yl

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 27 December 2011; accepted 4 January 2012; online 11 January 2012)

The title compound, C12H7Br2NO2, a biphenyl derivative, displays a twisted conformation with the two benzene rings making a dihedral angle of 55.34 (14)°. The dihedral angle between the nitro group and its parent benzene ring is 26.8 (2)°. The crystal structure is stabilized by inter­molecular C—H⋯Br and C—H⋯O inter­actions, which lead to the formation of chains propagating along the c-axis direction.

Related literature

For the use of dibromo-2-nitro-biphenyl as a crucial precursor in the formation of 2,7-disubstituted carbazole derivatives, see: Dierschke et al. (2003[Dierschke, F., Grimsdale, A. C. & Mullen, K. (2003). Synthesis, pp. 2470-2472.]); Blouin et al. (2007[Blouin, N., Michaud, A. & Leclerc, M. (2007). Adv. Mater. 19, 2295-2300.]). For details concerning 3,6-disubstituted analogs, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404-9411.]). For related structures, see: Akhter et al. (2009[Akhter, Z., Akhter, T., Bolte, M., Baig, M. A. & Siddiqi, H. M. (2009). Acta Cryst. E65, o710.]); Hou et al. (2011[Hou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.]); Kia et al. (2009[Kia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o966-o967.]); Rajnikant et al. (1995[Rajnikant, Watkin, D. & Tranter, G. (1995). Acta Cryst. C51, 2161-2163.]); Sim (1986[Sim, G. A. (1986). Acta Cryst. C42, 1411-1413.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7Br2NO2

  • Mr = 357.01

  • Orthorhombic, P b c n

  • a = 15.8761 (14) Å

  • b = 7.4350 (7) Å

  • c = 20.7517 (13) Å

  • V = 2449.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.61 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.089, Tmax = 0.138

  • 13009 measured reflections

  • 2607 independent reflections

  • 1521 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.00

  • 2607 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br2i 0.93 2.89 3.798 (3) 165
C9—H9⋯O2ii 0.93 2.57 3.454 (5) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Biphenyl and its derivatives are important industrial intermediates used in the production of heat transfer fluids, formulations for dye carriers used in textile dyeing and polychlorinated biphenyls used in insecticides. The C—Br bond in certain biphenyl derivatives is labile and the compound can be used for the preparation of carboxylic acid functionalized biphenyl derivatives. 4,4'-Dibromo-2-nitro-biphenyl is used as an crucial precursor in the formation of 2,7-disubstituted carbazole derivatives (Dierschke et al., 2003; Blouin et al., 2007), which have been found to display unusual electronic properties when compared to the 3,6-disubstituted analogs (Thomas et al., 2001).

Structures of biphenyl and its derivatives have been studied extensively in the past and even now, because of the differences found in the inter–ring torsion angle ϕ in the solid state (Rajnikant et al., 1995), which alters the electronic properties. In a continuation of our on-going research program aimed at investigating the trends in crystallization and crystal growth of some substituted biphenyl derivatives, the crystal and molecular structure of the title compound is presented herein.

The title compound (Fig. 1) displays a twisted conformation with the two benzene rings making a dihedral angle of 55.34 (14)°. The dihedral angle between the nitro group and its parent benzene ring is 26.76 (20)°. The length of the bond connecting the phenyl rings, 1.483 (5) Å, is close to the standard value of 1.48 Å for a Csp2—Csp2 single bond, and to that observed in similar structures, for example 2-Bromo-4'-phenylacetophenone (II) [Sim, 1986], 4-Methoxy-2-nitro-4'-(trifluoromethyl)-biphenyl (III) [Hou et al., 2011], and N-[1-(Biphenyl-4-yl)ethylidene]-N'-(2,4-dinitrophenyl)hydrazine (IV) [Kia et al., 2009]. All the bond lengths and angles are comparable to those obserbed in related structures. The distribution of bond angles around atom C4 is quite similar to that reported for 2-substituted biphenyls with angle C3—C4—C5 considerably less than 120° and angle C3—C4—C10 greater than 120°, as observed in the related structures, Biphenyl-2-methanol (V) [Rajnikant et al., 1995], and 4-(4-Nitrophenoxy) biphenyl (VI) [Akhter et al., 2009]. The two bromine atoms and the nitro group are in antiperiplanar positions with respect to the benzene rings to which they are attached.

In the crystal, there are no classical hydrogen bonds and the crystal structure is stabilized by intermolecular C—H···Br and C—H···O interactions (Table 1 and Fig. 2), which lead to the formation of one-dimensional chains propagating along the c axis direction.

Related literature top

For the use of dibromo-2-nitro-biphenyl as a crucial precursor in the formation of 2,7-disubstituted carbazole derivatives, see: Dierschke et al. (2003); Blouin et al. (2007). For details concerning 3,6-disubstituted analogs, see: Thomas et al. (2001). For related structures, see: Akhter et al. (2009); Hou et al. (2011); Kia et al. (2009); Rajnikant et al. (1995); Sim (1986).

Experimental top

The title compound was synthesized by following a protocol reported in literature (Dierschke et al., 2003), in which the expensive fuming nitric acid was replaced by a potassium nitrate and sulfuric acid mixture. 4,4,-Dibromobiphenyl (25 g) was suspended in 120 ml of glacial acetic acid and heated to 363 K for 45 min. with efficient stirring. A preformed mixture of KNO3 (18 g) and H2SO4 (36 ml) was added drop wise maintaining the temperature at 363 K. After the addition was complete the mixture was heated and stirred for further 30 min. On completion of the reaction, the mixture was cooled and poured into water. The yellow precipitate formed was filtered and recrystallized from ethanol [Yield: 82%]. The spectral data matched with those reported in the literature (Dierschke et al., 2003).

Refinement top

All the H atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis, showing the C-H···Br and C-H···O interactions as dashed lines (see Table 1 for details).
4,4'-Dibromo-2-nitrobiphenyl top
Crystal data top
C12H7Br2NO2F(000) = 1376
Mr = 357.01Dx = 1.936 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 15.8761 (14) Åθ = 20–30°
b = 7.4350 (7) ŵ = 6.61 mm1
c = 20.7517 (13) ÅT = 293 K
V = 2449.5 (4) Å3Needle, yellow
Z = 80.40 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2607 independent reflections
Radiation source: fine-focus sealed tube1521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scanθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1820
Tmin = 0.089, Tmax = 0.138k = 99
13009 measured reflectionsl = 1626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.041P)2 + 1.6705P]
where P = (Fo2 + 2Fc2)/3
2607 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C12H7Br2NO2V = 2449.5 (4) Å3
Mr = 357.01Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 15.8761 (14) ŵ = 6.61 mm1
b = 7.4350 (7) ÅT = 293 K
c = 20.7517 (13) Å0.40 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1521 reflections with I > 2σ(I)
Tmin = 0.089, Tmax = 0.138Rint = 0.045
13009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
2607 reflectionsΔρmin = 0.70 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03710 (3)0.09619 (7)0.65877 (2)0.05528 (18)
Br20.15585 (3)0.40559 (8)0.15916 (2)0.06048 (19)
C70.1445 (2)0.3592 (6)0.24826 (17)0.0382 (10)
C90.1668 (2)0.1683 (6)0.33822 (18)0.0410 (10)
H90.18800.06180.35520.049*
C10.0668 (2)0.1609 (5)0.57419 (16)0.0321 (9)
O10.30721 (17)0.1125 (4)0.51041 (14)0.0524 (8)
C110.0974 (3)0.4456 (6)0.35168 (19)0.0438 (11)
H110.07020.52870.37790.053*
N0.26111 (19)0.2075 (5)0.47864 (15)0.0342 (8)
C50.0275 (2)0.2556 (5)0.46893 (18)0.0343 (10)
H50.01440.29060.44030.041*
O20.28561 (16)0.3083 (5)0.43688 (14)0.0518 (8)
C40.1106 (2)0.2495 (5)0.44718 (16)0.0289 (9)
C20.1493 (2)0.1555 (5)0.55524 (17)0.0329 (9)
H20.19100.12120.58420.039*
C100.1272 (2)0.2897 (5)0.37828 (16)0.0292 (9)
C60.0050 (2)0.2116 (5)0.53120 (17)0.0362 (10)
H60.05110.21620.54400.043*
C80.1752 (2)0.2031 (7)0.27314 (19)0.0467 (12)
H80.20180.12010.24650.056*
C30.1701 (2)0.2011 (5)0.49318 (17)0.0280 (9)
C120.1067 (3)0.4826 (6)0.28703 (19)0.0476 (11)
H120.08730.59080.27010.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0631 (3)0.0675 (4)0.0352 (3)0.0030 (3)0.01363 (19)0.0059 (2)
Br20.0541 (3)0.0981 (5)0.0293 (2)0.0006 (3)0.00445 (18)0.0110 (3)
C70.034 (2)0.056 (3)0.025 (2)0.002 (2)0.0014 (17)0.002 (2)
C90.046 (3)0.042 (3)0.034 (2)0.011 (2)0.0008 (17)0.003 (2)
C10.035 (2)0.036 (3)0.0254 (19)0.0034 (18)0.0028 (16)0.0055 (18)
O10.0363 (16)0.074 (2)0.0470 (19)0.0164 (17)0.0024 (13)0.0104 (17)
C110.054 (3)0.045 (3)0.033 (2)0.015 (2)0.0106 (18)0.001 (2)
N0.0308 (18)0.042 (2)0.0297 (18)0.0003 (17)0.0018 (14)0.0033 (17)
C50.032 (2)0.039 (3)0.031 (2)0.0032 (19)0.0054 (15)0.0030 (19)
O20.0366 (18)0.066 (2)0.0530 (19)0.0062 (15)0.0047 (13)0.0157 (18)
C40.031 (2)0.029 (2)0.027 (2)0.0010 (17)0.0027 (15)0.0020 (17)
C20.031 (2)0.037 (3)0.030 (2)0.0020 (18)0.0052 (16)0.0032 (18)
C100.029 (2)0.035 (3)0.0239 (18)0.0014 (18)0.0032 (15)0.0006 (19)
C60.028 (2)0.040 (3)0.040 (2)0.0018 (19)0.0046 (17)0.005 (2)
C80.049 (3)0.059 (3)0.032 (2)0.010 (2)0.0054 (17)0.012 (2)
C30.024 (2)0.032 (2)0.029 (2)0.0016 (17)0.0005 (13)0.0016 (18)
C120.057 (3)0.049 (3)0.037 (2)0.012 (2)0.0012 (19)0.013 (2)
Geometric parameters (Å, º) top
Br1—C11.880 (3)N—O21.210 (4)
Br2—C71.890 (4)N—C31.477 (4)
C7—C81.361 (6)C5—C61.380 (5)
C7—C121.361 (6)C5—C41.395 (5)
C9—C101.378 (5)C5—H50.9300
C9—C81.382 (5)C4—C31.390 (5)
C9—H90.9300C4—C101.484 (5)
C1—C21.368 (5)C2—C31.372 (5)
C1—C61.380 (5)C2—H20.9300
O1—N1.212 (4)C6—H60.9300
C11—C101.369 (5)C8—H80.9300
C11—C121.377 (5)C12—H120.9300
C11—H110.9300
C8—C7—C12120.6 (4)C5—C4—C10118.2 (3)
C8—C7—Br2119.5 (3)C1—C2—C3119.5 (3)
C12—C7—Br2119.8 (3)C1—C2—H2120.2
C10—C9—C8120.7 (4)C3—C2—H2120.2
C10—C9—H9119.6C11—C10—C9118.0 (3)
C8—C9—H9119.6C11—C10—C4119.8 (3)
C2—C1—C6120.3 (3)C9—C10—C4122.0 (4)
C2—C1—Br1120.1 (3)C1—C6—C5119.0 (3)
C6—C1—Br1119.7 (3)C1—C6—H6120.5
C10—C11—C12121.7 (4)C5—C6—H6120.5
C10—C11—H11119.2C7—C8—C9119.7 (4)
C12—C11—H11119.2C7—C8—H8120.1
O2—N—O1123.8 (3)C9—C8—H8120.1
O2—N—C3118.7 (3)C2—C3—C4123.1 (3)
O1—N—C3117.5 (3)C2—C3—N115.8 (3)
C6—C5—C4122.7 (3)C4—C3—N121.1 (3)
C6—C5—H5118.6C7—C12—C11119.2 (4)
C4—C5—H5118.6C7—C12—H12120.4
C3—C4—C5115.4 (3)C11—C12—H12120.4
C3—C4—C10126.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br2i0.932.893.798 (3)165
C9—H9···O2ii0.932.573.454 (5)159
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H7Br2NO2
Mr357.01
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)15.8761 (14), 7.4350 (7), 20.7517 (13)
V3)2449.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)6.61
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.089, 0.138
No. of measured, independent and
observed [I > 2σ(I)] reflections
13009, 2607, 1521
Rint0.045
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.00
No. of reflections2607
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.70

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br2i0.932.893.798 (3)165
C9—H9···O2ii0.932.573.454 (5)159
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

GV thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2011). The authors also thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single crystal X-ray data collection.

References

First citationAkhter, Z., Akhter, T., Bolte, M., Baig, M. A. & Siddiqi, H. M. (2009). Acta Cryst. E65, o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlouin, N., Michaud, A. & Leclerc, M. (2007). Adv. Mater. 19, 2295–2300.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDierschke, F., Grimsdale, A. C. & Mullen, K. (2003). Synthesis, pp. 2470–2472.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o966–o967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajnikant, Watkin, D. & Tranter, G. (1995). Acta Cryst. C51, 2161–2163.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, G. A. (1986). Acta Cryst. C42, 1411–1413.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404–9411.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds