organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N′-(4-hy­dr­oxy­benzyl­­idene)-3-methyl­benzohydrazide

aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066600, People's Republic of China
*Correspondence e-mail: zhaofu_zhu@163.com

(Received 26 December 2011; accepted 27 December 2011; online 7 January 2012)

The title compound, C15H14N2O3, was prepared by condensing 4-hy­droxy­benzaldehyde and 2-hy­droxy-3-methyl­benzo­hydra­zide in methanol. The two benzene rings make a dihedral angle of 19.03 (11)°. An intra­molecular O—H⋯O hydrogen bond is observed. The crystal structure is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯O inter­actions, which lead to the formation of a three-dimensional network.

Related literature

For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Zhi et al. (2011[Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.]); Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Orthorhombic, P 21 21 21

  • a = 7.3872 (17) Å

  • b = 13.012 (2) Å

  • c = 13.592 (2) Å

  • V = 1306.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 6296 measured reflections

  • 2663 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.103

  • S = 0.99

  • 2663 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.86 2.575 (2) 146
O1—H1⋯O2i 0.82 2.00 2.809 (2) 167
N2—H2A⋯O1ii 0.86 2.36 3.067 (2) 139
C3—H3A⋯O2i 0.93 2.51 3.208 (2) 132
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, the crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). As an extension of work on such compounds, we report herein on the synthesis and crystal structure of the title compound.

In the title molecule, Fig. 1, there is an intramolecular O3—H3···O2 hydrogen bond (Table 1). The benzene rings, (C1—C6) and (C9—C14), make a dihedral angle of 19.03 (11)°. All the geometrical parameters are within normal ranges and are comparable with those in similar compounds, mentioned above.

In the crystal, molecules are linked via O—H···O and N—H···O hydrogen bonds and C-H···O interactions, leading to the formation of a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For the crystal structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010).

Experimental top

4-Hydroxybenzaldehyde (122.1 mg, 1.0 mmol) and 2-hydroxy-3-methylbenzohydrazide (166.2 mg, 1.0 mmol) were mixed in methanol (60 ml). The mixture was refluxed for 30 min, then cooled to room temperature, yielding a colourless solution. Colourless crystals were formed when the solution was left to evaporate in air for several days.

Refinement top

All the H atoms were placed in calculated positions and refined as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,N,C), where k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms. In the absence of significant anomalous scattering effects the Flack parameter of 2.5 (15) for 1092 Friedel pairs, has no meaning.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular O—H···O hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The O-H···O and N-H···O hydrogen bonds are drawn as dashed lines.
2-Hydroxy-N'-(4-hydroxybenzylidene)-3-methylbenzohydrazide top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.374 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1375 reflections
a = 7.3872 (17) Åθ = 2.6–24.5°
b = 13.012 (2) ŵ = 0.10 mm1
c = 13.592 (2) ÅT = 298 K
V = 1306.5 (4) Å3Block, colourless
Z = 40.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2663 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.981, Tmax = 0.984k = 1316
6296 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
2663 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H14N2O3V = 1306.5 (4) Å3
Mr = 270.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3872 (17) ŵ = 0.10 mm1
b = 13.012 (2) ÅT = 298 K
c = 13.592 (2) Å0.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1953 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.032
6296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.99Δρmax = 0.13 e Å3
2663 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0995 (3)0.79013 (12)0.51891 (12)0.0453 (5)
N20.1159 (3)0.72214 (12)0.44083 (12)0.0455 (5)
H2A0.14040.74370.38250.055*
O10.1126 (2)1.18743 (10)0.79368 (10)0.0516 (4)
H10.05441.16720.84120.077*
O20.0499 (2)0.59172 (10)0.54350 (10)0.0523 (5)
O30.1334 (3)0.40715 (11)0.49251 (11)0.0600 (5)
H30.10160.45280.53030.090*
C10.1268 (3)0.96163 (14)0.57681 (14)0.0376 (5)
C20.0866 (3)0.93585 (16)0.67358 (15)0.0430 (6)
H20.06080.86790.68940.052*
C30.0846 (3)1.00949 (16)0.74632 (14)0.0433 (6)
H3A0.06020.99080.81100.052*
C40.1188 (3)1.11133 (14)0.72333 (15)0.0395 (5)
C50.1604 (3)1.13823 (17)0.62779 (15)0.0479 (6)
H50.18561.20630.61210.057*
C60.1646 (3)1.06390 (16)0.55602 (16)0.0457 (6)
H60.19351.08260.49190.055*
C70.1324 (3)0.88408 (15)0.49972 (15)0.0424 (5)
H70.16040.90340.43560.051*
C80.0922 (3)0.62132 (15)0.45912 (15)0.0410 (5)
C90.1136 (3)0.54807 (15)0.37750 (14)0.0393 (5)
C100.1344 (3)0.44378 (16)0.39901 (15)0.0437 (5)
C110.1573 (3)0.37050 (17)0.32441 (17)0.0487 (6)
C120.1510 (3)0.40437 (19)0.22839 (17)0.0541 (6)
H120.16340.35690.17770.065*
C130.1266 (3)0.50748 (19)0.20530 (17)0.0537 (6)
H130.12150.52810.13990.064*
C140.1101 (3)0.57847 (17)0.27877 (15)0.0465 (5)
H140.09640.64760.26300.056*
C150.1874 (4)0.26079 (17)0.35184 (19)0.0692 (8)
H15A0.20380.22060.29330.104*
H15B0.08420.23570.38750.104*
H15C0.29340.25550.39240.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0612 (13)0.0413 (10)0.0334 (10)0.0007 (9)0.0050 (9)0.0060 (7)
N20.0655 (13)0.0413 (10)0.0297 (9)0.0004 (9)0.0056 (10)0.0025 (8)
O10.0721 (12)0.0415 (8)0.0411 (8)0.0051 (8)0.0055 (8)0.0065 (7)
O20.0801 (12)0.0455 (9)0.0312 (8)0.0016 (8)0.0081 (8)0.0011 (7)
O30.0948 (13)0.0435 (9)0.0416 (9)0.0010 (10)0.0016 (10)0.0033 (7)
C10.0427 (12)0.0367 (11)0.0335 (11)0.0039 (10)0.0002 (10)0.0008 (9)
C20.0518 (14)0.0346 (11)0.0427 (12)0.0004 (10)0.0029 (11)0.0039 (10)
C30.0576 (16)0.0410 (12)0.0313 (11)0.0001 (10)0.0038 (11)0.0010 (9)
C40.0436 (13)0.0366 (11)0.0383 (12)0.0026 (10)0.0018 (11)0.0053 (9)
C50.0598 (15)0.0362 (11)0.0475 (14)0.0068 (10)0.0091 (12)0.0031 (10)
C60.0579 (15)0.0453 (13)0.0339 (11)0.0019 (11)0.0046 (12)0.0053 (10)
C70.0469 (13)0.0434 (13)0.0368 (12)0.0037 (11)0.0051 (11)0.0005 (10)
C80.0458 (13)0.0425 (12)0.0347 (12)0.0010 (10)0.0004 (11)0.0019 (9)
C90.0429 (12)0.0411 (11)0.0340 (11)0.0024 (10)0.0009 (11)0.0042 (9)
C100.0491 (14)0.0453 (12)0.0365 (12)0.0060 (11)0.0005 (11)0.0023 (10)
C110.0458 (14)0.0508 (14)0.0495 (14)0.0061 (11)0.0031 (11)0.0102 (11)
C120.0519 (15)0.0624 (16)0.0481 (14)0.0065 (12)0.0039 (12)0.0237 (12)
C130.0602 (16)0.0687 (16)0.0322 (12)0.0023 (14)0.0010 (12)0.0033 (11)
C140.0520 (14)0.0515 (13)0.0360 (12)0.0003 (11)0.0003 (11)0.0011 (10)
C150.083 (2)0.0445 (14)0.0800 (19)0.0051 (13)0.0022 (16)0.0157 (13)
Geometric parameters (Å, º) top
N1—C71.273 (2)C5—H50.9300
N1—N21.387 (2)C6—H60.9300
N2—C81.347 (2)C7—H70.9300
N2—H2A0.8600C8—C91.471 (3)
O1—C41.377 (2)C9—C101.397 (3)
O1—H10.8200C9—C141.399 (3)
O2—C81.249 (2)C10—C111.402 (3)
O3—C101.357 (2)C11—C121.378 (3)
O3—H30.8200C11—C151.492 (3)
C1—C61.389 (3)C12—C131.390 (3)
C1—C21.389 (3)C12—H120.9300
C1—C71.455 (3)C13—C141.366 (3)
C2—C31.377 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.385 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.380 (3)C15—H15C0.9600
C5—C61.374 (3)
C7—N1—N2116.04 (18)O2—C8—N2120.15 (18)
C8—N2—N1117.96 (17)O2—C8—C9121.28 (18)
C8—N2—H2A121.0N2—C8—C9118.56 (18)
N1—N2—H2A121.0C10—C9—C14118.51 (19)
C4—O1—H1109.5C10—C9—C8118.92 (18)
C10—O3—H3109.5C14—C9—C8122.55 (18)
C6—C1—C2117.84 (18)O3—C10—C9122.45 (19)
C6—C1—C7120.81 (18)O3—C10—C11116.04 (19)
C2—C1—C7121.34 (18)C9—C10—C11121.5 (2)
C3—C2—C1120.93 (18)C12—C11—C10117.6 (2)
C3—C2—H2119.5C12—C11—C15123.2 (2)
C1—C2—H2119.5C10—C11—C15119.2 (2)
C2—C3—C4120.13 (19)C11—C12—C13121.8 (2)
C2—C3—H3A119.9C11—C12—H12119.1
C4—C3—H3A119.9C13—C12—H12119.1
O1—C4—C5118.58 (18)C14—C13—C12120.0 (2)
O1—C4—C3121.69 (18)C14—C13—H13120.0
C5—C4—C3119.73 (18)C12—C13—H13120.0
C6—C5—C4119.64 (19)C13—C14—C9120.6 (2)
C6—C5—H5120.2C13—C14—H14119.7
C4—C5—H5120.2C9—C14—H14119.7
C5—C6—C1121.70 (19)C11—C15—H15A109.5
C5—C6—H6119.1C11—C15—H15B109.5
C1—C6—H6119.1H15A—C15—H15B109.5
N1—C7—C1120.85 (19)C11—C15—H15C109.5
N1—C7—H7119.6H15A—C15—H15C109.5
C1—C7—H7119.6H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.862.575 (2)146
O1—H1···O2i0.822.002.809 (2)167
N2—H2A···O1ii0.862.363.067 (2)139
C3—H3A···O2i0.932.513.208 (2)132
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.3872 (17), 13.012 (2), 13.592 (2)
V3)1306.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6296, 2663, 1953
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 0.99
No. of reflections2663
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.862.575 (2)146
O1—H1···O2i0.822.002.809 (2)167
N2—H2A···O1ii0.862.363.067 (2)139
C3—H3A···O2i0.932.513.208 (2)132
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+2, z1/2.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds