organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­anilinium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: youyoubanzhen@126.com

(Received 22 August 2009; accepted 9 February 2010; online 13 March 2010)

In the crystal structure of the title compound, C7H10N+·NO3, N—H⋯O hydrogen bonds involving the ammonium group and the nitrate O atoms result in the formation of zigzag chains propagating in [100].

Related literature

For dielectric-ferroelectric materials, including organic ligands and metal-organic coordination compounds, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]); Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·NO3

  • Mr = 170.17

  • Monoclinic, P 21 /c

  • a = 5.6468 (11) Å

  • b = 8.7860 (18) Å

  • c = 17.811 (4) Å

  • β = 99.01 (3)°

  • V = 872.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.5, Tmax = 0.5

  • 8641 measured reflections

  • 2011 independent reflections

  • 1432 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 1.01

  • 2011 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.38 3.138 (3) 143
N1—H1A⋯O2i 0.89 2.13 2.975 (2) 158
N1—H1B⋯O1ii 0.89 1.97 2.848 (2) 171
N1—H1C⋯O2iii 0.89 1.95 2.825 (2) 169
Symmetry codes: (i) x, y+1, z; (ii) x-1, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

As a part of systematic investigation of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal–organic coordination compounds (Hang et al., 2009), we have found that 4-methylbenzenaminium nitrate has no dielectric disuniform from 80 K to 445 K, (m.p. 465–468 K). Herein we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a 4-methylbenzenaminium cation and a nitrate anion (Fig. 1).

In the crystal N—H···O hydrogen bonds (Table 1) link the cations and anions to form chains propagating along the a axis (Fig 2).

Related literature top

For dielectric-ferroelectric materials, including organic ligands and metal-organic coordination compounds, see: Hang et al. (2009); Li et al. (2008).

Experimental top

The title compound was obtained by mixing p-toluidine and nitric acid in ethanol, in the stoichiometric ratio 1:1. After a few weeks, colorless crystals were obtained by slow evaporation.

Refinement top

The H atoms were included in calculated postions and treated as riding atoms: N—H = 0.89 Å, aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, with Uiso(H) = k × Ueq(parent N- or C-atom), where k = 1.2 for aromatic H atoms, and 1.5 for amonium and methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
4-Methylanilinium nitrate top
Crystal data top
C7H10N+·NO3F(000) = 360
Mr = 170.17Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3553 reflections
a = 5.6468 (11) Åθ = 3.3–27.6°
b = 8.7860 (18) ŵ = 0.10 mm1
c = 17.811 (4) ÅT = 298 K
β = 99.01 (3)°Prism, colourless
V = 872.8 (3) Å30.60 × 0.40 × 0.40 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2011 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.5, Tmax = 0.5l = 2323
8641 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.2152P]
where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H10N+·NO3V = 872.8 (3) Å3
Mr = 170.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6468 (11) ŵ = 0.10 mm1
b = 8.7860 (18) ÅT = 298 K
c = 17.811 (4) Å0.60 × 0.40 × 0.40 mm
β = 99.01 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2011 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1432 reflections with I > 2σ(I)
Tmin = 0.5, Tmax = 0.5Rint = 0.038
8641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2011 reflectionsΔρmin = 0.26 e Å3
111 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3877 (3)0.91687 (17)0.33271 (9)0.0512 (5)
C10.4679 (3)0.83868 (18)0.40462 (10)0.0434 (5)
C20.6763 (3)0.7554 (2)0.41229 (12)0.0658 (8)
C30.7515 (4)0.6808 (2)0.47979 (14)0.0578 (7)
C40.6214 (4)0.6858 (2)0.53968 (12)0.0607 (7)
C50.4132 (4)0.7703 (2)0.52945 (11)0.0627 (7)
C60.3354 (3)0.8472 (2)0.46280 (11)0.0542 (6)
C70.7061 (5)0.6011 (3)0.61266 (14)0.0920 (10)
O10.9140 (3)0.02956 (19)0.33081 (10)0.0803 (6)
O20.6445 (2)0.17377 (18)0.27222 (9)0.0675 (5)
O30.9986 (3)0.1724 (2)0.24110 (9)0.0737 (6)
N20.8567 (3)0.12615 (18)0.28068 (9)0.0492 (5)
H1A0.495000.987200.325200.0770*
H1B0.246900.961200.334300.0770*
H1C0.372400.849800.294800.0770*
H20.764900.749500.372600.0690*
H30.893600.625500.485400.0790*
H50.322600.775500.568700.0750*
H60.195000.904200.457300.0650*
H7A0.571200.555700.630800.1380*
H7B0.784200.670700.650100.1380*
H7C0.817000.523000.603500.1380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0498 (9)0.0510 (9)0.0537 (9)0.0069 (7)0.0109 (7)0.0010 (7)
C10.0431 (9)0.0401 (9)0.0470 (9)0.0087 (7)0.0073 (7)0.0034 (7)
C20.0571 (12)0.0555 (12)0.0831 (15)0.0059 (9)0.0053 (11)0.0088 (11)
C30.0526 (11)0.0544 (11)0.0700 (13)0.0012 (9)0.0206 (9)0.0022 (9)
C40.0764 (14)0.0453 (10)0.0553 (11)0.0150 (10)0.0054 (10)0.0008 (8)
C50.0785 (14)0.0653 (13)0.0467 (11)0.0118 (11)0.0175 (10)0.0070 (9)
C60.0521 (10)0.0564 (11)0.0555 (11)0.0007 (9)0.0126 (8)0.0059 (9)
C70.128 (2)0.0688 (15)0.0681 (15)0.0148 (15)0.0194 (15)0.0106 (12)
O10.0720 (10)0.0797 (10)0.0930 (12)0.0197 (8)0.0244 (9)0.0394 (9)
O20.0512 (8)0.0811 (10)0.0718 (10)0.0102 (7)0.0143 (7)0.0174 (8)
O30.0618 (9)0.0937 (12)0.0703 (10)0.0148 (8)0.0253 (7)0.0113 (8)
N20.0489 (8)0.0516 (8)0.0478 (8)0.0026 (7)0.0098 (6)0.0004 (7)
Geometric parameters (Å, º) top
O1—N21.238 (2)C4—C51.378 (3)
O2—N21.256 (2)C4—C71.509 (3)
O3—N21.217 (2)C5—C61.377 (3)
N1—C11.461 (2)C2—H20.9300
N1—H1A0.8900C3—H30.9300
N1—H1B0.8900C5—H50.9300
N1—H1C0.8900C6—H60.9300
C1—C61.372 (3)C7—H7A0.9600
C1—C21.374 (2)C7—H7B0.9600
C2—C31.377 (3)C7—H7C0.9600
C3—C41.387 (3)
H1B—N1—H1C109.00C4—C5—C6121.92 (19)
C1—N1—H1B109.00C1—C6—C5119.10 (17)
C1—N1—H1C109.00C3—C2—H2121.00
C1—N1—H1A109.00C1—C2—H2121.00
H1A—N1—H1C109.00C4—C3—H3119.00
H1A—N1—H1B109.00C2—C3—H3119.00
O1—N2—O2116.86 (17)C4—C5—H5119.00
O2—N2—O3121.45 (17)C6—C5—H5119.00
O1—N2—O3121.70 (18)C1—C6—H6120.00
C2—C1—C6120.92 (17)C5—C6—H6120.00
N1—C1—C6120.37 (16)C4—C7—H7C109.00
N1—C1—C2118.71 (17)H7A—C7—H7C109.00
C1—C2—C3118.85 (19)H7B—C7—H7C109.00
C2—C3—C4121.9 (2)H7A—C7—H7B109.00
C3—C4—C5117.31 (19)C4—C7—H7A109.00
C3—C4—C7120.8 (2)C4—C7—H7B109.00
C5—C4—C7121.9 (2)
N1—C1—C2—C3179.58 (16)C2—C3—C4—C50.7 (3)
C6—C1—C2—C30.4 (3)C2—C3—C4—C7179.1 (2)
N1—C1—C6—C5178.92 (16)C3—C4—C5—C60.0 (3)
C2—C1—C6—C50.3 (3)C7—C4—C5—C6179.8 (2)
C1—C2—C3—C40.9 (3)C4—C5—C6—C10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.383.138 (3)143
N1—H1A···O2i0.892.132.975 (2)158
N1—H1B···O1ii0.891.972.848 (2)171
N1—H1C···O2iii0.891.952.825 (2)169
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10N+·NO3
Mr170.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.6468 (11), 8.7860 (18), 17.811 (4)
β (°) 99.01 (3)
V3)872.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.5, 0.5
No. of measured, independent and
observed [I > 2σ(I)] reflections
8641, 2011, 1432
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 1.01
No. of reflections2011
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.383.138 (3)143
N1—H1A···O2i0.892.132.975 (2)158
N1—H1B···O1ii0.891.972.848 (2)171
N1—H1C···O2iii0.891.952.825 (2)169
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds