organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Anilino-1,3-di­phenylprop-2-en-1-one

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China, and bSchool of Chemistry and Materials Science, Hebei Normal University, 113 Yuhua Road, Shijiazhuang 050000, Hebei, People's Republic of China
*Correspondence e-mail: zhangliping76518@163.com.cn

(Received 22 May 2008; accepted 2 June 2008; online 21 June 2008)

In the title compound, C21H17NO, the phenyl ring directly linked to the carbonyl group is oriented at an angle of 7.3 (2)° with respect to the aniline ring, and at an angle of 55.6 (2)° with respect to the other phenyl ring. There is an intra­molecular hydrogen bond involving the NH group and the carbonyl O atom. The crystal structure is stabilized by weak C—H⋯π inter­actions, which link the mol­ecules into a herringbone arrangement.

Related literature

For related literature see: Dondoni & Perrone (1993[Dondoni, A. & Perrone, D. (1993). Synthesis, pp. 1162-1176.]); Ferraz et al. (1995[Ferraz, H. M. C., Oliveira, E. O., Payret-Arrua, M. E. & Brandt, C. A. (1995). J. Org. Chem. 60, 7357-7359.]); Michael et al. (2001[Michael, J. P., De Koning, C. B. & Hosken, G. D. (2001). Tetrahedron, 57, 9635-9648.]); Azzaro et al. (1981[Azzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880-881.]); Alberola et al. (1999[Alberola, A., Calvo, L. A., Ortega, A. G., Ruiz, M. C. S. & Yustos, P. (1999). J. Org. Chem. 64 , 9493-9498.]); Chaaban et al. (1979[Chaaban, I., Greenhill, J. V. & Akhtar, P. (1979). J. Chem. Soc. Perkin Trans 1, pp. 1593-1596.]); Augusti & Kascheres (1993[Augusti, R. & Kascheres, C. (1993). J. Org. Chem. 58, 7079-7083.]); Bejan et al. (1998[Bejan, E., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (1998). Eur. J. Org. Chem. pp. 2907-2912.]); Eberlin & Kascheres (1988[Eberlin, M. N. & Kascheres, C. (1988). J. Org. Chem. 53, 2084-2086.]); Greenhill (1977[Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277-294.]); Michael et al. (1999[Michael, J. P., De Koning, C. B., Gravestock, D., Hosken, G. D. & Howard, A. S. (1999). Pure Appl. Chem, 71, 979-988.]); Elassar & El-Khair (2003[Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]); Zhang et al. (2006[Zhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal. 348, 184-190.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17NO

  • Mr = 299.36

  • Monoclinic, P 21 /c

  • a = 15.880 (7) Å

  • b = 6.034 (3) Å

  • c = 18.401 (8) Å

  • β = 114.433 (7)°

  • V = 1605.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.98

  • 7511 measured reflections

  • 2774 independent reflections

  • 1580 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.249

  • S = 1.04

  • 2774 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.94 2.643 (5) 138
C18—H18⋯Cgi 0.93 2.84 3.627 (1) 142
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg is the centroid of the C16–C21 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-enamino ketones are a highly versatile class of intermediates for the synthesis of natural therapeutic and biologically active analogues (Dondoni & Perrone, 1993; Ferraz et al., 1995; Michael et al., 2001; Azzaro et al., 1981). Pyrroles, oxazoles, pyridinones, quinolines, dibenzodiazepines have also been prepared from enaminones (Alberola et al., 1999; Chaaban et al., 1979; Augusti & Kascheres, 1993; Bejan et al., 1998; Eberlin & Kascheres, 1988). It is therefore not surprising that many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Michael et al., 1999; Elassar & El-Khair, 2003). During our development of new environmentally friendly methodologies for the preparation of β-enamino ketones (Zhang et al., 2006), we synthesized the title compound, (I), the structure of which is reported here.

The molecular structure of compound (I) is illustrated in Fig. 1. The geometry of the enamine double bond is Z, with hydrogen bonding of the enamine N—H to the carbonyl oxygen atom (Table 1). Phenyl ring A (C1-C6) forms dihedral angles of 7.3 (2)° and 55.6 (2)° with the aniline ring C (C16-C21) and the phenyl ring B (C10-C15), respectively. As in other β-enamino ketones compound (I) displays electron delocalization, as shown by the comparison of the N1—C9 [1.347 (6)°] and N1—C16 [1.417 (6) Å] bond lengths.

The crystal structure of compound (I) is stabilized by weak C—H···π interactions, which link the molecules into a herringbone chain (Fig. 2). The distance of the H atom to the centroid of the benzene ring is 2.834 (10) Å.

Related literature top

For related literature see: Dondoni & Perrone (1993); Ferraz et al. (1995); Michael et al. (2001); Azzaro et al. (1981); Alberola et al. (1999); Chaaban et al. (1979); Augusti & Kascheres (1993); Bejan et al. (1998); Eberlin & Kascheres (1988); Greenhill (1977); Michael et al. (1999); Elassar & El-Khair (2003); Zhang et al. (2006).

Experimental top

A mixture of the 1,3-diphenylpropane-1,3-dione (5 mmol), aniline (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 6 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc(210 ml). The combined organic layers were dried, concentrated, and then purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (1: 8), giving a yellow-orange solid (yield 68%). Mp 96–97°C; IR (neat, cm-1): ν 3053, 1592, 1568, 1475, 1441, 1323, 1212, 1079, 1053, 1022, 904, 841, 697 1H NMR (CDCl3, 300 MHz): δ 6.09 (s, 1H), 6.78 (d, 2H), 6.96–7.00 (m, 1H), 7.09–7.14 (m, 2H), 7.26–7.50 (m, 8H), 7.96 (d, 2H), 12.90 (br s, 1H, NH). 13C NMR (CDCl3, 75 MHz): δ 97.0, 123.1, 124.2, 127.2, 128.2, 128.5, 128.7, 129.6, 131.3, 135.8, 139.4, 139.8, 161.4, 189.6. ESI-MS: 300 (M+1)+ Elemental Anal. Calcd. for C21H17NO: C, 84.25; H, 5.72; N, 4.68. Found: C, 84.48; H, 5.82; N, 4.45. Single crystals of (I), suitable for X-ray diffraction analysis, were obtained from ethyl acetate-cyclohexane by slow evaporation at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 - 0.97 Å, and Uiso(H) = 1.5Ueq(CH3) or 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atomic numbering scheme and the displacement ellipsoids drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing of compound (I), showing the C—H···π interactions (dashed lines).
(Z)-3-Anilino-1,3-diphenylprop-2-en-1-one top
Crystal data top
C21H17NOF(000) = 632
Mr = 299.36Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1702 reflections
a = 15.880 (7) Åθ = 2.3–23.8°
b = 6.034 (3) ŵ = 0.08 mm1
c = 18.401 (8) ÅT = 294 K
β = 114.433 (7)°Block, yellow
V = 1605.4 (13) Å30.24 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2774 independent reflections
Radiation source: fine-focus sealed tube1580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1718
Tmin = 0.96, Tmax = 0.98k = 77
7511 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.249 w = 1/[σ2(Fo2) + (0.1119P)2 + 1.614P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2774 reflectionsΔρmax = 0.24 e Å3
209 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Crystal data top
C21H17NOV = 1605.4 (13) Å3
Mr = 299.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.880 (7) ŵ = 0.08 mm1
b = 6.034 (3) ÅT = 294 K
c = 18.401 (8) Å0.24 × 0.20 × 0.14 mm
β = 114.433 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2774 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1580 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.052
7511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2774 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2315 (2)0.0638 (5)0.19524 (16)0.0578 (9)
N10.3124 (2)0.1522 (6)0.11657 (19)0.0490 (9)
H10.30210.13320.15850.059*
C10.1066 (3)0.5369 (7)0.0895 (2)0.0511 (11)
H1A0.13890.56460.05820.061*
C20.0442 (3)0.6921 (8)0.0932 (3)0.0616 (13)
H20.03580.82490.06540.074*
C30.0053 (3)0.6511 (10)0.1376 (3)0.0723 (16)
H30.04740.75530.13960.087*
C40.0075 (4)0.4553 (11)0.1792 (3)0.0750 (16)
H40.02670.42620.20870.090*
C50.0711 (3)0.3018 (9)0.1771 (3)0.0586 (13)
H50.08040.17090.20610.070*
C60.1212 (3)0.3424 (7)0.1318 (2)0.0430 (10)
C70.1904 (3)0.1718 (7)0.1323 (2)0.0451 (10)
C80.2038 (3)0.1350 (7)0.0618 (2)0.0435 (10)
H80.17090.22330.01770.052*
C90.2619 (3)0.0218 (7)0.0543 (2)0.0421 (10)
C100.2628 (3)0.0622 (7)0.0250 (2)0.0418 (10)
C110.2382 (3)0.2677 (8)0.0616 (2)0.0521 (12)
H110.22530.38400.03460.063*
C120.2325 (3)0.3011 (8)0.1375 (2)0.0585 (13)
H120.21510.43880.16190.070*
C130.2526 (3)0.1323 (9)0.1769 (3)0.0611 (13)
H130.24910.15540.22810.073*
C140.2776 (4)0.0702 (9)0.1418 (3)0.0690 (15)
H140.29130.18460.16900.083*
C150.2828 (3)0.1064 (8)0.0654 (3)0.0587 (13)
H150.29970.24500.04180.070*
C160.3797 (3)0.3154 (7)0.1242 (2)0.0458 (11)
C170.3834 (3)0.5000 (7)0.1687 (2)0.0536 (12)
H170.34080.51660.19100.064*
C180.4486 (4)0.6602 (8)0.1808 (3)0.0679 (15)
H180.45100.78340.21200.082*
C190.5104 (4)0.6391 (10)0.1473 (3)0.0804 (17)
H190.55390.74970.15440.096*
C200.5083 (3)0.4551 (12)0.1031 (3)0.0783 (17)
H200.55090.44090.08070.094*
C210.4432 (3)0.2894 (9)0.0914 (3)0.0647 (13)
H210.44240.16330.06200.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.077 (2)0.063 (2)0.0374 (15)0.0107 (17)0.0279 (15)0.0051 (15)
N10.062 (2)0.054 (2)0.0368 (17)0.0121 (18)0.0251 (17)0.0093 (16)
C10.056 (3)0.053 (3)0.047 (2)0.005 (2)0.023 (2)0.006 (2)
C20.067 (3)0.053 (3)0.056 (3)0.005 (2)0.016 (2)0.007 (2)
C30.058 (3)0.091 (4)0.064 (3)0.012 (3)0.021 (3)0.023 (3)
C40.069 (3)0.104 (5)0.065 (3)0.013 (3)0.041 (3)0.002 (3)
C50.068 (3)0.066 (3)0.048 (2)0.004 (3)0.031 (2)0.000 (2)
C60.051 (2)0.046 (2)0.0301 (19)0.0043 (19)0.0157 (18)0.0060 (17)
C70.051 (2)0.047 (3)0.040 (2)0.005 (2)0.0211 (19)0.0032 (19)
C80.054 (2)0.047 (2)0.0299 (19)0.002 (2)0.0177 (18)0.0031 (18)
C90.050 (2)0.044 (2)0.0333 (19)0.001 (2)0.0178 (18)0.0006 (18)
C100.047 (2)0.045 (2)0.0315 (19)0.0042 (19)0.0152 (18)0.0012 (17)
C110.070 (3)0.050 (3)0.041 (2)0.006 (2)0.028 (2)0.004 (2)
C120.071 (3)0.061 (3)0.044 (2)0.004 (2)0.024 (2)0.015 (2)
C130.078 (3)0.073 (4)0.038 (2)0.012 (3)0.029 (2)0.003 (2)
C140.104 (4)0.067 (4)0.051 (3)0.009 (3)0.046 (3)0.017 (3)
C150.094 (4)0.046 (3)0.047 (2)0.000 (2)0.040 (3)0.004 (2)
C160.048 (2)0.051 (3)0.033 (2)0.002 (2)0.0113 (18)0.0049 (18)
C170.055 (3)0.049 (3)0.045 (2)0.004 (2)0.008 (2)0.003 (2)
C180.068 (3)0.042 (3)0.068 (3)0.004 (3)0.002 (3)0.002 (2)
C190.068 (4)0.076 (4)0.078 (4)0.024 (3)0.011 (3)0.012 (3)
C200.057 (3)0.114 (5)0.064 (3)0.016 (3)0.025 (3)0.003 (3)
C210.056 (3)0.084 (4)0.056 (3)0.007 (3)0.024 (2)0.006 (3)
Geometric parameters (Å, º) top
O1—C71.252 (5)C10—C111.388 (6)
N1—C91.347 (5)C11—C121.377 (6)
N1—C161.416 (5)C11—H110.9300
N1—H10.8600C12—C131.362 (6)
C1—C61.373 (6)C12—H120.9300
C1—C21.386 (6)C13—C141.362 (7)
C1—H1A0.9300C13—H130.9300
C2—C31.369 (7)C14—C151.391 (6)
C2—H20.9300C14—H140.9300
C3—C41.377 (8)C15—H150.9300
C3—H30.9300C16—C171.369 (6)
C4—C51.382 (7)C16—C211.384 (6)
C4—H40.9300C17—C181.366 (7)
C5—C61.393 (6)C17—H170.9300
C5—H50.9300C18—C191.363 (8)
C6—C71.502 (6)C18—H180.9300
C7—C81.416 (5)C19—C201.369 (8)
C8—C91.368 (6)C19—H190.9300
C8—H80.9300C20—C211.389 (7)
C9—C101.486 (5)C20—H200.9300
C10—C151.372 (6)C21—H210.9300
C9—N1—C16130.5 (3)C12—C11—C10120.6 (4)
C9—N1—H1114.7C12—C11—H11119.7
C16—N1—H1114.7C10—C11—H11119.7
C6—C1—C2120.4 (4)C13—C12—C11119.9 (4)
C6—C1—H1A119.8C13—C12—H12120.0
C2—C1—H1A119.8C11—C12—H12120.0
C3—C2—C1120.4 (5)C12—C13—C14120.3 (4)
C3—C2—H2119.8C12—C13—H13119.8
C1—C2—H2119.8C14—C13—H13119.8
C2—C3—C4119.8 (5)C13—C14—C15120.2 (4)
C2—C3—H3120.1C13—C14—H14119.9
C4—C3—H3120.1C15—C14—H14119.9
C3—C4—C5120.1 (5)C10—C15—C14120.1 (4)
C3—C4—H4120.0C10—C15—H15120.0
C5—C4—H4120.0C14—C15—H15120.0
C4—C5—C6120.3 (5)C17—C16—C21119.7 (4)
C4—C5—H5119.9C17—C16—N1118.0 (4)
C6—C5—H5119.9C21—C16—N1122.3 (4)
C1—C6—C5119.0 (4)C18—C17—C16121.1 (5)
C1—C6—C7122.8 (4)C18—C17—H17119.5
C5—C6—C7118.3 (4)C16—C17—H17119.5
O1—C7—C8123.2 (4)C19—C18—C17119.9 (5)
O1—C7—C6117.5 (3)C19—C18—H18120.0
C8—C7—C6119.3 (4)C17—C18—H18120.0
C9—C8—C7124.4 (4)C18—C19—C20120.0 (5)
C9—C8—H8117.8C18—C19—H19120.0
C7—C8—H8117.8C20—C19—H19120.0
N1—C9—C8120.4 (3)C19—C20—C21120.6 (5)
N1—C9—C10119.7 (4)C19—C20—H20119.7
C8—C9—C10119.6 (3)C21—C20—H20119.7
C15—C10—C11118.8 (4)C16—C21—C20118.7 (5)
C15—C10—C9120.6 (4)C16—C21—H21120.6
C11—C10—C9120.5 (4)C20—C21—H21120.6
C6—C1—C2—C31.5 (7)N1—C9—C10—C1156.6 (6)
C1—C2—C3—C40.4 (7)C8—C9—C10—C11117.8 (5)
C2—C3—C4—C50.9 (8)C15—C10—C11—C120.9 (7)
C3—C4—C5—C61.2 (7)C9—C10—C11—C12175.3 (4)
C2—C1—C6—C51.2 (6)C10—C11—C12—C131.0 (7)
C2—C1—C6—C7177.8 (4)C11—C12—C13—C140.4 (8)
C4—C5—C6—C10.2 (6)C12—C13—C14—C150.1 (8)
C4—C5—C6—C7179.2 (4)C11—C10—C15—C140.3 (7)
C1—C6—C7—O1146.2 (4)C9—C10—C15—C14175.9 (4)
C5—C6—C7—O132.8 (6)C13—C14—C15—C100.2 (8)
C1—C6—C7—C835.9 (6)C9—N1—C16—C17143.8 (4)
C5—C6—C7—C8145.0 (4)C9—N1—C16—C2138.9 (7)
O1—C7—C8—C90.5 (7)C21—C16—C17—C180.4 (6)
C6—C7—C8—C9177.2 (4)N1—C16—C17—C18177.7 (4)
C16—N1—C9—C8176.4 (4)C16—C17—C18—C191.1 (7)
C16—N1—C9—C109.3 (7)C17—C18—C19—C201.6 (8)
C7—C8—C9—N11.0 (6)C18—C19—C20—C210.5 (8)
C7—C8—C9—C10173.4 (4)C17—C16—C21—C201.4 (7)
N1—C9—C10—C15127.2 (5)N1—C16—C21—C20178.6 (4)
C8—C9—C10—C1558.4 (6)C19—C20—C21—C160.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.942.643 (5)138
C18—H18···Cgi0.932.843.627 (1)142
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17NO
Mr299.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)15.880 (7), 6.034 (3), 18.401 (8)
β (°) 114.433 (7)
V3)1605.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
7511, 2774, 1580
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.249, 1.05
No. of reflections2774
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.942.643 (5)138
C18—H18···Cgi0.932.843.627 (1)142
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by Jiangnan University.

References

First citationAlberola, A., Calvo, L. A., Ortega, A. G., Ruiz, M. C. S. & Yustos, P. (1999). J. Org. Chem. 64 , 9493–9498.  Web of Science CSD CrossRef CAS Google Scholar
First citationAugusti, R. & Kascheres, C. (1993). J. Org. Chem. 58, 7079–7083.  CrossRef CAS Web of Science Google Scholar
First citationAzzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880–881.  CrossRef Web of Science Google Scholar
First citationBejan, E., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (1998). Eur. J. Org. Chem. pp. 2907–2912.  CrossRef Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaaban, I., Greenhill, J. V. & Akhtar, P. (1979). J. Chem. Soc. Perkin Trans 1, pp. 1593–1596.  CrossRef Web of Science Google Scholar
First citationDondoni, A. & Perrone, D. (1993). Synthesis, pp. 1162–1176.  CrossRef Google Scholar
First citationEberlin, M. N. & Kascheres, C. (1988). J. Org. Chem. 53, 2084–2086.  CrossRef CAS Web of Science Google Scholar
First citationElassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationFerraz, H. M. C., Oliveira, E. O., Payret-Arrua, M. E. & Brandt, C. A. (1995). J. Org. Chem. 60, 7357–7359.  CrossRef CAS Web of Science Google Scholar
First citationGreenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294.  CrossRef CAS Web of Science Google Scholar
First citationMichael, J. P., De Koning, C. B., Gravestock, D., Hosken, G. D. & Howard, A. S. (1999). Pure Appl. Chem, 71, 979–988.  Web of Science CrossRef CAS Google Scholar
First citationMichael, J. P., De Koning, C. B. & Hosken, G. D. (2001). Tetrahedron, 57, 9635–9648.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal. 348, 184–190.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds