research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1,4-di­aza­bi­cyclo­[2.2.2]octan-1-ium 4-nitro­benzoate dihydrate and 1,4-di­aza­bi­cyclo­[2.2.2]octane-1,4-diium bis­­(4-nitro­benzoate): the influence of solvent upon the stoichiometry of the formed salt

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: zana@um.edu.my, edward.tiekink@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 May 2014; accepted 18 May 2014; online 23 June 2014)

The 1:1 co-crystallization of 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) with 4-nitro­benzoic acid in ethanol–water (3/1) gave the salt dihydrate C6H13N2+·C7H4NO4·2H2O, (1), whereas from methanol, the salt C6H14N22+·2C7H4NO4, (2), was isolated. In (1), the cation and anion are linked by a strong N—H⋯O hydrogen bond, and the carboxyl­ate anion is close to planar [dihedral angle between terminal residues = 6.83 (9)°]. In (2), a three-ion aggregate is assembled by two N—H⋯O hydrogen bonds, and the carboxyl­ate anions are again close to planar [dihedral angles between terminal residues = 1.7 (3) and 5.9 (3)°]. Through the inter­vention of solvent water mol­ecules, which self-assemble into helical supra­molecular chains along the b axis, the three-dimensional architecture in (1) is stabilized by water–DABCO O—H⋯N and water–carboxyl­ate O—H⋯O hydrogen bonds, with additional stability afforded by C—H⋯O inter­actions. The global crystal structure comprises alternating layers of water mol­ecules and ion pairs stacked along the c axis. In the crystal of (2), the three-ion aggregates are assembled into a three-dimensional architecture by a large number of methyl­ene–carboxyl­ate/nitro C—H⋯O inter­actions as well as ππ contacts between inversion-related benzene rings [inter-centroid distances = 3.5644 (16) and 3.6527 (16) Å]. The cations and anions assemble into alternating layers along the c axis.

1. Chemical context

The formation of co-crystals or salts is dependent on the difference in pKa of the inter­acting species (Childs et al., 2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). Thus, when the Δ(pKa) [= pKa(base) − pKa(acid)] value is greater than three, a salt is anti­cipated. In this context, it is not surprising that a search of the Cambridge Structural Database (CSD, version 53.5, last update November 2013; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) showed that nearly 90% of the 57 multi-component crystals, containing species derived from highly basic 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) and a carb­oxy­lic acid, contained at least a mono-protonated form of DABCO. It was in the context of on-going studies of co-crystallization experiments (Broker & Tiekink, 2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]; Arman & Tiekink, 2013[Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289-294.]; Arman et al., 2014[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295-302.]) between nitro­gen-containing mol­ecules and carb­oxy­lic acids, that the title salts were isolated. The co-crystallization experiments yielding the title salts produced unexpected outcomes in that while (1) formed as a 1:1 salt dihydrate from the 1:1 co-crystallization of DABCO and 4-nitro­benzoic acid in ethanol/water (3/1) solution, a 1:2 salt (2) was isolated from the 1:1 co-crystallization of DABCO and 4-nitro­benzoic acid in methanol solution. The mol­ecular and crystal structures of (1) and (2) are described herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (1) comprises a 1,4-di­aza­bicyclo­[2.2.2]octan-1-ium mono-cation, a 4-nitro­benzoate anion and two water mol­ecules of hydration (Fig. 1[link]). The most notable feature in the cation is the elongation of the N2—C bond lengths [1.4951 (16)–1.5007 (15) Å] compared to the N3—C bond lengths [1.4635 (17)–1.4773 (17) Å], consistent with protonation at the N2 atom. In the anion, the near equivalence of the C1—O1,O2 bond lengths of 1.2625 (15) and 1.2495 (16) Å, respectively, is again consistent with proton transfer; the longer bond involves atom O1 which forms a strong N—H⋯O hydrogen bond (Table 1[link]). The dihedral angles between the central ring and the carboxyl­ate and nitro groups are 8.68 (8) and 3.80 (5)°, respectively, and the dihedral angle between the terminal groups is 6.83 (9)°, consistent with an approximately planar mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.89 (1) 1.76 (1) 2.6431 (14) 173 (1)
O1W—H1W⋯N3 0.86 (2) 1.95 (2) 2.7974 (15) 172 (2)
O1W—H2W⋯O2Wi 0.86 (2) 1.91 (1) 2.7500 (15) 165 (2)
O2W—H3W⋯O1W 0.85 (2) 1.87 (2) 2.7218 (15) 180 (2)
O2W—H4W⋯O2ii 0.86 (1) 1.87 (1) 2.7182 (15) 171 (2)
C10—H10A⋯O3iii 0.99 2.49 3.4253 (17) 158
C12—H12A⋯O2Wiv 0.99 2.49 3.3711 (16) 147
C12—H12B⋯O2v 0.99 2.57 3.4818 (16) 153
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) x+1, y-1, z; (v) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structures of the four independent constituents of (1), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

The asymmetric unit of (2) comprises a 1,4-di­aza­bicyclo­[2.2.2]octane-1,4-diium di-cation and two 4-nitro­benzoate anions (Fig. 2[link]). In the dication, the N3—C [1.483 (3)–1.487 (3) Å] and N4—C [1.486 (3)–1.487 (3) Å] bond lengths are experimentally equivalent and consistent with diprotonation. In the anions, the disparity of the C1—O1, O2 bond lengths, i.e. 1.281 (3) and 1.228 (3) Å, is slightly greater than that in C8—O5, O6 of 1.273 (3) and 1.231 (3) Å, respectively. In each case the longer bond forms a strong N—H⋯O hydrogen bond (Table 2[link]). In order to confirm the location of the acidic hydrogen atoms, an unrestrained refinement was conducted, see Refinement for details. While there was some elongation in the N—H bond lengths, unrestrained refinement confirmed protonation at both nitro­gen atoms. In the O1-containing anion, the dihedral angles between the central ring and the carboxyl­ate and nitro groups are 7.0 (3) and 8.7 (2)°, respectively, and the dihedral angle between the terminal groups is 1.7 (3)°. The comparable angles for the O5-containing anion are 2.2 (3), 7.4 (2) and 5.9 (3)°, respectively. As discussed below in Supra­molecular features, the ions participate in strong N—H⋯O hydrogen bonds, forming a three-ion aggregate (Fig. 2[link]) in which the dihedral angle between the benzene rings is 9.26 (14)°.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.88 (2) 1.66 (2) 2.539 (3) 173 (2)
N4—H4N⋯O5 0.89 (2) 1.65 (2) 2.542 (3) 175 (3)
C15—H15A⋯O6i 0.99 2.42 3.193 (3) 134
C16—H16A⋯O4ii 0.99 2.42 3.375 (3) 161
C17—H17A⋯O7iii 0.99 2.42 3.338 (3) 153
C17—H17B⋯O6i 0.99 2.42 3.313 (3) 149
C20—H20A⋯O2iv 0.99 2.41 3.043 (3) 121
C20—H20B⋯O8v 0.99 2.42 3.339 (3) 154
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z-1; (iii) x-1, y, z+1; (iv) -x+1, -y+2, -z+1; (v) -x+2, -y+2, -z.
[Figure 2]
Figure 2
The mol­ecular structures of the three independent constituents of (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 2[link] for details).

3. Supra­molecular features

In (1), the cation and anion are linked by a strong N2—H⋯O1 hydrogen bond (Fig. 1[link] and Table 1[link]). The two ion aggregates inter-digitate in columns aligned along the b axis. Adjacent columns stack along the a axis to form layers in the ab plane. The layers are inter­spersed by layers of water mol­ecules which self-assemble into helical chains along the b axis, where each independent water mol­ecule donates and accepts a water-O—H⋯O(water) hydrogen bond (Table 1[link]). This leads to the formation of a three-dimensional structure (Fig. 3[link]).

[Figure 3]
Figure 3
Unit-cell contents shown in projection down the a axis for (1). The O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds are shown as orange, blue and green dashed lines, respectively (see Table 1[link] for details).

Thus, links between layers are of the type water-O1W—H⋯N3 and water-OW2—H⋯O2(carboxyl­ate). Additional stability to the supra­molecular assembly is afforded by methyl­ene-C—H⋯O2(carboxyl­ate) and O2W(water) inter­actions; it is noteworthy that both of the former inter­actions involve hydrogen atoms derived from the same methyl­ene-C12 atom (Table 1[link]). A methyl­ene-C—H⋯O3(nitro) inter­action is also formed; the nitro-O4 atom does not form a significant inter­action in this scenario. Although there is an alignment of benzene rings, the closest ππ contact is 3.7376 (7) Å, occurring between centrosymmetrically related rings [symmetry operation: 2-x, 1-y, 1-z].

In (2), the di-cation is linked to two anions via strong N—H⋯O hydrogen bonds (Fig. 4[link] and Table 2[link]). Globally, the three ion aggregates assemble into layers in the ab plane that stack along the c axis. A large number of C—H⋯O inter­actions occur, remarkably featuring a narrow range of H⋯O separations, i.e. 2.41–2.42 Å (Table 2[link]). All inter­actions involve methyl­ene-H atoms as donors. The carboxyl­ate-O2 and O4 atoms and all nitro but O3 atoms are acceptors; both methyl­ene-H atoms of methyl­ene-C17 and C20 participate in C—H⋯O inter­actions. The result of these inter­actions is the formation of a three-dimensional architecture (Fig. 4[link]). Additional stability to the supra­molecular assembly is afforded by ππ inter­actions between inversion-related rings, i.e. inter-centroid distances = 3.5644 (16) Å for inter­actions between the C2–C8 rings (symmetry code: −x + 1, −y + 2, −z + 2) and 3.6527 (16) Å between C9–C14 rings (symmetry code: −x + 2, −y + 1, −z). An alternate description of the global crystal packing is based on alternating of layers of cations and layers of anions along the c axis (Fig. 5[link]).

[Figure 4]
Figure 4
Unit-cell contents shown in projection down the a axis for (2). The N—H⋯O and C—H⋯O hydrogen bonds are shown as blue and green dashed lines, respectively (see Table 2[link] for details).
[Figure 5]
Figure 5
Unit-cell contents shown in projection down the b axis for (2). The N—H⋯O and C—H⋯O hydrogen bonds are shown as blue and green dashed lines, respectively (see Table 2[link] for details).

4. Database survey

As mentioned in the Chemical context, there are 57 species in the crystallographic literature containing DABCO or its mono- or diprotonated forms and a carb­oxy­lic acid or carboxyl­ate anion. In fact, co-crystals are rare, being around 10% of all structures. Co-crystals are formed with several di­carb­oxy­lic acids where the functional groups are separated by long chains of over four carbon atoms (Braga et al., 2003[Braga, D., Maini, L., de Sanctis, G., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. 9, 5538-5548.]; Moon & Park, 2012[Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o2344.]), with phosphono­acetic acid (Bowes et al., 2003[Bowes, K. F., Ferguson, G., Lough, A. J., Zakaria, C. M. & Glidewell, C. (2003). Acta Cryst. B59, 87-99.]) and with isophthalic acid (Marivel et al., 2010[Marivel, S., Braga, D., Grepioni, F. & Lampronti, G. I. (2010). CrystEngComm, 12, 2107-2112.]). While the majority of the remaining structures contain species derived from a di­carb­oxy­lic acid, there are 13 examples of structures containing species derived from a mono-carb­oxy­lic acid which are more directly suitable for comparison with (1) and (2). Further, in each case the original carb­oxy­lic acid was connected to an aromatic ring. Of the sub-set of 13 structures, three are similar to (1), having the mono-protonated form of DABCO. The carboxyl­ate counter-ions are 2,4-di­nitro­benzoate (Rosli et al., 2006[Rosli, M. M., Fun, H.-K., Lee, B. S. & Chantrapromma, S. (2006). Acta Cryst. E62, o4575-o4577.]), 3,5-di­hydroxy­benzoate (Burchell et al., 2001a[Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001a). Acta Cryst. B57, 329-338.]) and 6-hy­droxy-2-naphtho­ate (Jacobs et al., 2010[Jacobs, A., Nassimbeni, L. R., Ramon, G. & Sebogisi, B. K. (2010). CrystEngComm, 12, 3065-3070.]); the latter two structures were characterized as mono- and sesqui-hydrates, respectively. Analogues of (2) were found in seven examples, namely in both polymorphs of benzoate, and in 2-hy­droxy­benzoate and 2-acet­oxy­benzoate (Skovsgaard & Bond, 2009[Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.]), 2-chloro­benzoate (Skovsgaard & Bond, 2008[Skovsgaard, S. & Bond, A. D. (2008). Acta Cryst. E64, o1416.]), 2-hy­droxy­benzoate (Skovsgaard & Bond, 2008[Skovsgaard, S. & Bond, A. D. (2008). Acta Cryst. E64, o1416.]), and in polymorphic hydrates of 3,5-di­nitro­benzoate (Burchell et al., 2001b[Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001b). Acta Cryst. B57, 201-212.]; Chantrapromma & Fun, 2004[Chantrapromma, S. & Fun, H.-K. (2004). Acta Cryst. E60, o1250-o1252.]). Finally, there are three intriguing examples where a mono-protonated DABCO cation is present along with a carboxyl­ate anion and the neutral form of the original carb­oxy­lic acid. These contain the following carb­oxy­lic acids: 1-hy­droxy-2-naphthoic acid and 3-hy­droxy-2-naphthoic acid (Jacobs et al., 2010[Jacobs, A., Nassimbeni, L. R., Ramon, G. & Sebogisi, B. K. (2010). CrystEngComm, 12, 3065-3070.]) and 2-amino­benzoic acid (Arman et al., 2011[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.]). In light of the foregoing structural diversity, in retrospect perhaps it is not so surprising that solvent can influence product formation, especially when water is involved.

5. Synthesis and crystallization

1,4-Di­aza­bicyclo­[2.2.2]octane (Merck; 0.10 g, 0.0009 mol), was mixed with 4-nitro­benzoic acid (Merck; 0.15 g, 0.0009 mol) in a solution containing ethanol (30 ml) and water (10 ml). The solution was heated for 2 h at 350 K. The mixture was then left for slow evaporation and colourless crystals of (1) formed after 4 days. In a similar experiment, 1,4-di­aza­bicyclo­[2.2.2]octane (0.298 g, 0.00265 mol) was mixed with 4-nitro­benzoic acid (0.444 g, 0.00265 mol) in a solution of methanol (50 ml). The solution was heated for 2 h at 345 K. The mixture was then left for slow evaporation and colourless crystals of (2) formed after 4 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The N-bound H-atoms were located in a difference Fourier map but were refined with a distance restraint: N—H = 0.88 (1) Å with Uiso(H) = 1.2Ueq(N). For (1), the water-bound H atoms were refined with distance restraints: O—H = 0.84 (1) and H⋯H = 1.39 (2) Å with Uiso(H) =1.5Ueq(O). For (2), the maximum and minimum residual electron density peaks of 0.60 and 0.58 e Å−3, respectively, were located 0.81 and 0.10 Å from atoms O5 and H4N, respectively. In order to confirm the location of the N-bound H atoms, in a separate refinement these were refined without distance restraints. For (1), the N2—H2N bond length was 0.948 (17) Å. For (2), the N3—H3N and N4—H4N bond lengths were 0.93 (4) and 1.08 (3) Å, respectively. In the refinement of (1), one reflection, i.e. (180), was omitted from the refinement owing to poor agreement. For the same reasons, the following reflections were omitted from the final refinement of (2): (550), ([\overline{2}]06), (136), (139), (2410), (331), (224) and (662).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C6H13N2+·C7H4NO4·2H2O C6H14N22+·2C7H4NO4
Mr 315.33 446.42
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 6.5982 (1), 6.6074 (1), 34.4574 (6) 9.1036 (4), 9.5027 (3), 12.0736 (3)
α, β, γ (°) 90, 94.809 (1), 90 73.982 (3), 83.624 (3), 88.661 (3)
V3) 1496.95 (4) 997.68 (6)
Z 4 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.94 0.99
Crystal size (mm) 0.30 × 0.30 × 0.20 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Agilent SuperNova Dual with an Atlas detector Agilent SuperNova Dual with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.888, 1.000 0.991, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11203, 3072, 2949 17849, 4101, 3775
Rint 0.015 0.046
(sin θ/λ)max−1) 0.626 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.04 0.074, 0.229, 1.12
No. of reflections 3072 4101
No. of parameters 215 295
No. of restraints 7 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.30 0.60, −0.58
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate top
Crystal data top
C6H13N2+·C7H4NO4·2H2OF(000) = 672
Mr = 315.33Dx = 1.399 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7046 reflections
a = 6.5982 (1) Åθ = 3.9–76.3°
b = 6.6074 (1) ŵ = 0.94 mm1
c = 34.4574 (6) ÅT = 100 K
β = 94.809 (1)°Prism, colourless
V = 1496.95 (4) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3072 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2949 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 75.0°, θmin = 5.2°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 85
Tmin = 0.888, Tmax = 1.000l = 4342
11203 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.8811P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3072 reflectionsΔρmax = 0.40 e Å3
215 parametersΔρmin = 0.30 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (6)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63866 (13)0.34327 (15)0.59514 (3)0.0233 (2)
O20.94425 (14)0.33794 (16)0.62902 (3)0.0261 (2)
O31.11387 (14)0.20664 (15)0.42606 (3)0.0234 (2)
O41.40402 (14)0.17440 (16)0.45978 (3)0.0262 (2)
N11.21908 (16)0.20014 (15)0.45723 (3)0.0175 (2)
C10.82971 (19)0.32425 (18)0.59836 (4)0.0178 (3)
C20.93105 (18)0.28490 (18)0.56096 (3)0.0153 (2)
C31.13841 (18)0.24078 (18)0.56251 (3)0.0162 (3)
H31.21490.23180.58710.019*
C41.23420 (18)0.20989 (18)0.52871 (4)0.0163 (2)
H41.37510.17860.52970.020*
C51.11798 (18)0.22606 (17)0.49335 (3)0.0149 (2)
C60.91145 (18)0.26736 (17)0.49062 (3)0.0155 (2)
H60.83540.27520.46600.019*
C70.81863 (17)0.29702 (18)0.52492 (3)0.0156 (2)
H70.67720.32580.52380.019*
N20.48292 (15)0.59677 (17)0.64400 (3)0.0178 (2)
H2N0.535 (2)0.503 (2)0.6291 (4)0.021*
N30.33337 (16)0.86385 (17)0.68589 (3)0.0207 (2)
C80.31552 (19)0.7058 (2)0.62050 (4)0.0213 (3)
H8A0.21680.60740.60820.026*
H8B0.37200.78630.59970.026*
C90.2099 (2)0.8456 (2)0.64826 (4)0.0309 (3)
H9A0.19030.98110.63630.037*
H9B0.07440.79000.65270.037*
C100.64491 (19)0.7447 (2)0.65768 (4)0.0212 (3)
H10A0.71210.79880.63520.025*
H10B0.74910.67770.67560.025*
C110.5423 (2)0.9174 (2)0.67881 (5)0.0325 (3)
H11A0.62120.94560.70390.039*
H11B0.54161.04180.66280.039*
C120.39871 (18)0.49677 (19)0.67830 (4)0.0199 (3)
H12A0.50380.41080.69230.024*
H12B0.28100.41050.66950.024*
C130.3323 (2)0.6654 (2)0.70520 (4)0.0257 (3)
H13A0.19380.63610.71270.031*
H13B0.42570.66880.72920.031*
O1W0.19593 (16)1.12932 (16)0.74123 (3)0.0268 (2)
H1W0.243 (3)1.058 (3)0.7232 (4)0.040*
H2W0.151 (3)1.039 (2)0.7565 (4)0.040*
O2W0.12706 (15)1.33213 (17)0.70557 (3)0.0289 (2)
H3W0.026 (2)1.268 (3)0.7167 (5)0.043*
H4W0.117 (3)1.328 (3)0.6810 (3)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (4)0.0299 (5)0.0231 (5)0.0006 (4)0.0055 (3)0.0078 (4)
O20.0235 (5)0.0391 (6)0.0158 (4)0.0014 (4)0.0025 (4)0.0027 (4)
O30.0271 (5)0.0281 (5)0.0153 (4)0.0000 (4)0.0033 (4)0.0001 (4)
O40.0181 (5)0.0355 (6)0.0262 (5)0.0027 (4)0.0087 (4)0.0009 (4)
N10.0200 (5)0.0147 (5)0.0185 (5)0.0011 (4)0.0058 (4)0.0004 (4)
C10.0190 (6)0.0167 (6)0.0181 (6)0.0009 (5)0.0042 (5)0.0018 (5)
C20.0170 (6)0.0122 (5)0.0171 (6)0.0017 (4)0.0034 (4)0.0006 (4)
C30.0165 (6)0.0154 (6)0.0165 (6)0.0012 (4)0.0004 (4)0.0003 (4)
C40.0137 (5)0.0144 (5)0.0209 (6)0.0006 (4)0.0026 (4)0.0007 (4)
C50.0178 (6)0.0116 (5)0.0159 (6)0.0020 (4)0.0053 (4)0.0006 (4)
C60.0174 (6)0.0124 (5)0.0164 (5)0.0022 (4)0.0002 (4)0.0002 (4)
C70.0135 (5)0.0133 (5)0.0200 (6)0.0016 (4)0.0021 (4)0.0005 (4)
N20.0148 (5)0.0219 (5)0.0171 (5)0.0002 (4)0.0033 (4)0.0034 (4)
N30.0212 (5)0.0228 (6)0.0187 (5)0.0016 (4)0.0044 (4)0.0023 (4)
C80.0200 (6)0.0270 (7)0.0167 (6)0.0018 (5)0.0005 (5)0.0011 (5)
C90.0331 (7)0.0375 (8)0.0217 (7)0.0148 (6)0.0002 (6)0.0017 (6)
C100.0153 (6)0.0274 (7)0.0215 (6)0.0047 (5)0.0041 (5)0.0018 (5)
C110.0276 (7)0.0300 (7)0.0416 (8)0.0100 (6)0.0126 (6)0.0138 (7)
C120.0174 (6)0.0207 (6)0.0219 (6)0.0009 (5)0.0039 (5)0.0027 (5)
C130.0299 (7)0.0274 (7)0.0210 (6)0.0011 (5)0.0104 (5)0.0017 (5)
O1W0.0311 (5)0.0285 (5)0.0210 (5)0.0053 (4)0.0026 (4)0.0024 (4)
O2W0.0258 (5)0.0420 (6)0.0191 (5)0.0084 (4)0.0041 (4)0.0005 (4)
Geometric parameters (Å, º) top
O1—C11.2625 (15)N3—C131.4706 (17)
O2—C11.2495 (16)N3—C91.4773 (17)
O3—N11.2298 (14)C8—C91.5381 (18)
O4—N11.2279 (14)C8—H8A0.9900
N1—C51.4704 (15)C8—H8B0.9900
C1—C21.5231 (16)C9—H9A0.9900
C2—C71.3943 (17)C9—H9B0.9900
C2—C31.3956 (16)C10—C111.5408 (19)
C3—C41.3857 (17)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
C4—C51.3884 (17)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C5—C61.3852 (17)C12—C131.5365 (18)
C6—C71.3900 (16)C12—H12A0.9900
C6—H60.9500C12—H12B0.9900
C7—H70.9500C13—H13A0.9900
N2—C101.4951 (16)C13—H13B0.9900
N2—C81.4982 (16)O1W—H1W0.861 (9)
N2—C121.5007 (15)O1W—H2W0.866 (9)
N2—H2N0.892 (9)O2W—H3W0.852 (9)
N3—C111.4635 (17)O2W—H4W0.856 (9)
O4—N1—O3123.50 (10)N2—C8—H8B110.2
O4—N1—C5118.32 (10)C9—C8—H8B110.2
O3—N1—C5118.18 (10)H8A—C8—H8B108.5
O2—C1—O1126.58 (11)N3—C9—C8110.47 (11)
O2—C1—C2116.76 (11)N3—C9—H9A109.6
O1—C1—C2116.65 (11)C8—C9—H9A109.6
C7—C2—C3119.51 (11)N3—C9—H9B109.6
C7—C2—C1120.35 (11)C8—C9—H9B109.6
C3—C2—C1120.13 (11)H9A—C9—H9B108.1
C4—C3—C2120.90 (11)N2—C10—C11107.60 (10)
C4—C3—H3119.6N2—C10—H10A110.2
C2—C3—H3119.6C11—C10—H10A110.2
C3—C4—C5117.96 (11)N2—C10—H10B110.2
C3—C4—H4121.0C11—C10—H10B110.2
C5—C4—H4121.0H10A—C10—H10B108.5
C6—C5—C4122.86 (11)N3—C11—C10110.91 (11)
C6—C5—N1118.62 (11)N3—C11—H11A109.5
C4—C5—N1118.52 (10)C10—C11—H11A109.5
C5—C6—C7118.10 (11)N3—C11—H11B109.5
C5—C6—H6120.9C10—C11—H11B109.5
C7—C6—H6120.9H11A—C11—H11B108.0
C6—C7—C2120.66 (11)N2—C12—C13107.39 (10)
C6—C7—H7119.7N2—C12—H12A110.2
C2—C7—H7119.7C13—C12—H12A110.2
C10—N2—C8109.35 (10)N2—C12—H12B110.2
C10—N2—C12109.99 (9)C13—C12—H12B110.2
C8—N2—C12109.42 (9)H12A—C12—H12B108.5
C10—N2—H2N109.7 (10)N3—C13—C12111.17 (10)
C8—N2—H2N109.0 (10)N3—C13—H13A109.4
C12—N2—H2N109.4 (11)C12—C13—H13A109.4
C11—N3—C13109.35 (11)N3—C13—H13B109.4
C11—N3—C9109.36 (11)C12—C13—H13B109.4
C13—N3—C9107.53 (11)H13A—C13—H13B108.0
N2—C8—C9107.72 (10)H1W—O1W—H2W103.0 (15)
N2—C8—H8A110.2H3W—O2W—H4W107.8 (16)
C9—C8—H8A110.2
O2—C1—C2—C7170.56 (11)C1—C2—C7—C6178.03 (11)
O1—C1—C2—C78.23 (17)C10—N2—C8—C967.76 (13)
O2—C1—C2—C38.02 (17)C12—N2—C8—C952.77 (14)
O1—C1—C2—C3173.19 (11)C11—N3—C9—C850.98 (16)
C7—C2—C3—C40.32 (18)C13—N3—C9—C867.65 (14)
C1—C2—C3—C4178.27 (11)N2—C8—C9—N313.17 (16)
C2—C3—C4—C50.59 (18)C8—N2—C10—C1153.58 (13)
C3—C4—C5—C61.34 (18)C12—N2—C10—C1166.60 (13)
C3—C4—C5—N1178.05 (10)C13—N3—C11—C1051.74 (15)
O4—N1—C5—C6176.15 (11)C9—N3—C11—C1065.75 (15)
O3—N1—C5—C63.43 (16)N2—C10—C11—N311.63 (16)
O4—N1—C5—C43.27 (16)C10—N2—C12—C1353.46 (13)
O3—N1—C5—C4177.15 (10)C8—N2—C12—C1366.68 (13)
C4—C5—C6—C71.12 (18)C11—N3—C13—C1265.51 (14)
N1—C5—C6—C7178.28 (10)C9—N3—C13—C1253.13 (14)
C5—C6—C7—C20.14 (17)N2—C12—C13—N311.20 (14)
C3—C2—C7—C60.56 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.89 (1)1.76 (1)2.6431 (14)173 (1)
O1W—H1W···N30.86 (2)1.95 (2)2.7974 (15)172 (2)
O1W—H2W···O2Wi0.86 (2)1.91 (1)2.7500 (15)165 (2)
O2W—H3W···O1W0.85 (2)1.87 (2)2.7218 (15)180 (2)
O2W—H4W···O2ii0.86 (1)1.87 (1)2.7182 (15)171 (2)
C10—H10A···O3iii0.992.493.4253 (17)158
C12—H12A···O2Wiv0.992.493.3711 (16)147
C12—H12B···O2v0.992.573.4818 (16)153
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y1, z; (v) x1, y, z.
(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate) top
Crystal data top
C6H14N22+·2C7H4NO4Z = 2
Mr = 446.42F(000) = 468
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.1036 (4) ÅCell parameters from 10186 reflections
b = 9.5027 (3) Åθ = 3.8–76.8°
c = 12.0736 (3) ŵ = 0.99 mm1
α = 73.982 (3)°T = 100 K
β = 83.624 (3)°Prism, colourless
γ = 88.661 (3)°0.40 × 0.40 × 0.20 mm
V = 997.68 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4101 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3775 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 75.0°, θmin = 3.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1111
Tmin = 0.991, Tmax = 1.000l = 1515
17849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.1192P)2 + 1.3867P]
where P = (Fo2 + 2Fc2)/3
4101 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.60 e Å3
2 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6213 (2)0.7377 (2)0.82692 (16)0.0320 (5)
O20.4577 (2)0.9073 (2)0.75460 (15)0.0301 (4)
O30.3598 (2)0.7520 (2)1.38056 (16)0.0365 (5)
O40.2049 (2)0.9218 (2)1.31087 (17)0.0343 (5)
N10.3033 (3)0.8347 (2)1.29939 (18)0.0278 (5)
C10.5159 (3)0.8269 (3)0.8358 (2)0.0230 (5)
C20.4601 (3)0.8288 (3)0.9588 (2)0.0225 (5)
C30.3361 (3)0.9096 (3)0.9783 (2)0.0239 (5)
H3A0.28730.96460.91480.029*
C40.2829 (3)0.9105 (3)1.0906 (2)0.0245 (5)
H4A0.19760.96491.10510.029*
C50.3578 (3)0.8300 (3)1.1807 (2)0.0244 (5)
C60.4829 (3)0.7496 (3)1.1642 (2)0.0269 (5)
H60.53200.69581.22800.032*
C70.5343 (3)0.7498 (3)1.0515 (2)0.0250 (5)
H70.62020.69611.03740.030*
O50.8758 (2)0.7357 (2)0.20757 (15)0.0345 (5)
O61.0354 (2)0.5601 (2)0.27470 (17)0.0385 (5)
O71.3135 (2)0.6129 (2)0.29233 (18)0.0368 (5)
O81.1731 (2)0.7994 (2)0.35307 (16)0.0347 (5)
N21.2191 (2)0.7014 (3)0.27572 (19)0.0287 (5)
C80.9814 (3)0.6492 (3)0.1953 (2)0.0256 (5)
C91.0424 (3)0.6604 (3)0.0705 (2)0.0233 (5)
C101.1613 (3)0.5752 (3)0.0471 (2)0.0253 (5)
H101.20300.50750.10900.030*
C111.2196 (3)0.5889 (3)0.0670 (2)0.0264 (5)
H111.30100.53110.08410.032*
C121.1562 (3)0.6885 (3)0.1550 (2)0.0252 (5)
C131.0376 (3)0.7750 (3)0.1345 (2)0.0259 (5)
H130.99630.84260.19670.031*
C140.9806 (3)0.7597 (3)0.0201 (2)0.0255 (5)
H140.89890.81740.00340.031*
N30.6982 (2)0.7378 (2)0.61824 (18)0.0254 (5)
H3N0.665 (3)0.734 (4)0.6902 (12)0.030*
N40.7971 (2)0.7223 (2)0.41892 (18)0.0261 (5)
H4N0.830 (3)0.728 (4)0.3454 (12)0.031*
C150.8607 (3)0.7624 (3)0.6003 (2)0.0274 (5)
H15A0.90720.69840.66630.033*
H15B0.88320.86550.59540.033*
C160.9224 (3)0.7273 (3)0.4870 (2)0.0310 (6)
H16A0.99460.80350.44180.037*
H16B0.97330.63170.50470.037*
C170.6672 (3)0.5903 (3)0.6066 (2)0.0269 (5)
H17A0.56160.56480.63170.032*
H17B0.72760.51630.65640.032*
C180.7046 (3)0.5908 (3)0.4791 (2)0.0299 (6)
H18A0.75920.50090.47440.036*
H18B0.61270.59350.44180.036*
C190.6263 (3)0.8510 (3)0.5300 (2)0.0304 (6)
H19A0.63280.94770.54530.036*
H19B0.52060.82610.53340.036*
C200.7063 (3)0.8562 (3)0.4098 (2)0.0318 (6)
H20A0.63300.86140.35410.038*
H20B0.77040.94440.38140.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (10)0.0397 (11)0.0185 (9)0.0127 (8)0.0025 (7)0.0077 (7)
O20.0355 (10)0.0357 (10)0.0175 (8)0.0069 (8)0.0028 (7)0.0053 (7)
O30.0476 (12)0.0394 (11)0.0182 (9)0.0023 (9)0.0009 (8)0.0022 (8)
O40.0375 (11)0.0371 (10)0.0264 (9)0.0021 (8)0.0072 (8)0.0096 (8)
N10.0331 (12)0.0299 (11)0.0189 (10)0.0031 (9)0.0022 (8)0.0060 (8)
C10.0243 (11)0.0254 (12)0.0183 (11)0.0019 (9)0.0008 (9)0.0047 (9)
C20.0255 (12)0.0223 (11)0.0190 (11)0.0027 (9)0.0012 (9)0.0045 (9)
C30.0255 (12)0.0255 (12)0.0198 (11)0.0014 (9)0.0041 (9)0.0041 (9)
C40.0249 (12)0.0250 (12)0.0229 (12)0.0006 (9)0.0010 (9)0.0066 (9)
C50.0300 (12)0.0256 (12)0.0162 (11)0.0037 (10)0.0026 (9)0.0050 (9)
C60.0317 (13)0.0275 (12)0.0187 (11)0.0016 (10)0.0043 (10)0.0013 (9)
C70.0257 (12)0.0250 (12)0.0222 (12)0.0019 (9)0.0003 (9)0.0040 (9)
O50.0401 (11)0.0445 (11)0.0163 (9)0.0144 (9)0.0005 (7)0.0062 (8)
O60.0454 (12)0.0458 (12)0.0193 (9)0.0158 (9)0.0035 (8)0.0019 (8)
O70.0349 (10)0.0484 (12)0.0294 (10)0.0019 (9)0.0053 (8)0.0180 (9)
O80.0352 (10)0.0478 (12)0.0194 (9)0.0030 (9)0.0015 (7)0.0068 (8)
N20.0256 (11)0.0382 (12)0.0230 (11)0.0036 (9)0.0010 (8)0.0105 (9)
C80.0264 (12)0.0291 (12)0.0192 (12)0.0002 (10)0.0015 (9)0.0037 (9)
C90.0247 (12)0.0265 (12)0.0184 (11)0.0009 (9)0.0018 (9)0.0057 (9)
C100.0258 (12)0.0245 (12)0.0235 (12)0.0003 (9)0.0039 (10)0.0026 (9)
C110.0247 (12)0.0264 (12)0.0275 (13)0.0005 (9)0.0013 (10)0.0080 (10)
C120.0255 (12)0.0298 (12)0.0204 (12)0.0048 (10)0.0015 (9)0.0081 (10)
C130.0272 (12)0.0312 (13)0.0180 (11)0.0008 (10)0.0035 (9)0.0043 (9)
C140.0243 (12)0.0294 (12)0.0215 (12)0.0036 (9)0.0013 (9)0.0056 (10)
N30.0270 (11)0.0308 (11)0.0176 (10)0.0066 (9)0.0021 (8)0.0061 (8)
N40.0290 (11)0.0304 (11)0.0169 (10)0.0033 (9)0.0004 (8)0.0045 (8)
C150.0289 (13)0.0309 (13)0.0228 (12)0.0008 (10)0.0052 (10)0.0072 (10)
C160.0258 (12)0.0425 (15)0.0232 (12)0.0004 (11)0.0003 (10)0.0075 (11)
C170.0280 (12)0.0312 (13)0.0188 (12)0.0005 (10)0.0002 (9)0.0033 (9)
C180.0365 (14)0.0306 (13)0.0217 (12)0.0009 (11)0.0018 (10)0.0062 (10)
C190.0341 (14)0.0339 (14)0.0214 (12)0.0121 (11)0.0040 (10)0.0056 (10)
C200.0408 (15)0.0317 (13)0.0195 (12)0.0090 (11)0.0038 (10)0.0018 (10)
Geometric parameters (Å, º) top
O1—C11.281 (3)C12—C131.384 (4)
O2—C11.228 (3)C13—C141.390 (3)
O3—N11.229 (3)C13—H130.9500
O4—N11.228 (3)C14—H140.9500
N1—C51.475 (3)N3—C171.483 (3)
C1—C21.520 (3)N3—C151.485 (3)
C2—C31.386 (3)N3—C191.487 (3)
C2—C71.398 (3)N3—H3N0.879 (10)
C3—C41.390 (3)N4—C201.486 (3)
C3—H3A0.9500N4—C161.487 (3)
C4—C51.384 (4)N4—C181.487 (3)
C4—H4A0.9500N4—H4N0.890 (10)
C5—C61.383 (4)C15—C161.539 (3)
C6—C71.388 (3)C15—H15A0.9900
C6—H60.9500C15—H15B0.9900
C7—H70.9500C16—H16A0.9900
O5—C81.273 (3)C16—H16B0.9900
O6—C81.231 (3)C17—C181.538 (3)
O7—N21.228 (3)C17—H17A0.9900
O8—N21.226 (3)C17—H17B0.9900
N2—C121.479 (3)C18—H18A0.9900
C8—C91.523 (3)C18—H18B0.9900
C9—C101.387 (3)C19—C201.538 (3)
C9—C141.395 (3)C19—H19A0.9900
C10—C111.393 (4)C19—H19B0.9900
C10—H100.9500C20—H20A0.9900
C11—C121.382 (4)C20—H20B0.9900
C11—H110.9500
O4—N1—O3124.0 (2)C17—N3—C15108.68 (19)
O4—N1—C5117.9 (2)C17—N3—C19109.7 (2)
O3—N1—C5118.0 (2)C15—N3—C19109.7 (2)
O2—C1—O1125.6 (2)C17—N3—H3N105 (2)
O2—C1—C2119.0 (2)C15—N3—H3N110 (2)
O1—C1—C2115.4 (2)C19—N3—H3N114 (2)
C3—C2—C7120.3 (2)C20—N4—C16109.6 (2)
C3—C2—C1119.7 (2)C20—N4—C18109.5 (2)
C7—C2—C1120.0 (2)C16—N4—C18108.9 (2)
C2—C3—C4120.2 (2)C20—N4—H4N103 (2)
C2—C3—H3A119.9C16—N4—H4N111 (2)
C4—C3—H3A119.9C18—N4—H4N115 (2)
C5—C4—C3118.2 (2)N3—C15—C16108.8 (2)
C5—C4—H4A120.9N3—C15—H15A109.9
C3—C4—H4A120.9C16—C15—H15A109.9
C6—C5—C4123.2 (2)N3—C15—H15B109.9
C6—C5—N1118.9 (2)C16—C15—H15B109.9
C4—C5—N1117.9 (2)H15A—C15—H15B108.3
C5—C6—C7117.9 (2)N4—C16—C15108.4 (2)
C5—C6—H6121.1N4—C16—H16A110.0
C7—C6—H6121.1C15—C16—H16A110.0
C6—C7—C2120.3 (2)N4—C16—H16B110.0
C6—C7—H7119.8C15—C16—H16B110.0
C2—C7—H7119.8H16A—C16—H16B108.4
O8—N2—O7124.1 (2)N3—C17—C18109.0 (2)
O8—N2—C12118.0 (2)N3—C17—H17A109.9
O7—N2—C12118.0 (2)C18—C17—H17A109.9
O6—C8—O5125.5 (2)N3—C17—H17B109.9
O6—C8—C9119.2 (2)C18—C17—H17B109.9
O5—C8—C9115.3 (2)H17A—C17—H17B108.3
C10—C9—C14120.2 (2)N4—C18—C17108.3 (2)
C10—C9—C8120.2 (2)N4—C18—H18A110.0
C14—C9—C8119.6 (2)C17—C18—H18A110.0
C9—C10—C11120.0 (2)N4—C18—H18B110.0
C9—C10—H10120.0C17—C18—H18B110.0
C11—C10—H10120.0H18A—C18—H18B108.4
C12—C11—C10118.5 (2)N3—C19—C20108.2 (2)
C12—C11—H11120.8N3—C19—H19A110.1
C10—C11—H11120.8C20—C19—H19A110.1
C11—C12—C13122.9 (2)N3—C19—H19B110.1
C11—C12—N2117.8 (2)C20—C19—H19B110.1
C13—C12—N2119.3 (2)H19A—C19—H19B108.4
C12—C13—C14117.9 (2)N4—C20—C19109.0 (2)
C12—C13—H13121.1N4—C20—H20A109.9
C14—C13—H13121.1C19—C20—H20A109.9
C13—C14—C9120.5 (2)N4—C20—H20B109.9
C13—C14—H14119.7C19—C20—H20B109.9
C9—C14—H14119.7H20A—C20—H20B108.3
O2—C1—C2—C36.3 (4)C10—C11—C12—N2179.8 (2)
O1—C1—C2—C3173.0 (2)O8—N2—C12—C11172.9 (2)
O2—C1—C2—C7173.4 (2)O7—N2—C12—C117.4 (3)
O1—C1—C2—C77.3 (3)O8—N2—C12—C137.4 (3)
C7—C2—C3—C41.2 (4)O7—N2—C12—C13172.3 (2)
C1—C2—C3—C4179.1 (2)C11—C12—C13—C140.1 (4)
C2—C3—C4—C50.5 (4)N2—C12—C13—C14179.7 (2)
C3—C4—C5—C60.3 (4)C12—C13—C14—C90.2 (4)
C3—C4—C5—N1178.4 (2)C10—C9—C14—C130.2 (4)
O4—N1—C5—C6170.3 (2)C8—C9—C14—C13178.0 (2)
O3—N1—C5—C69.1 (4)C17—N3—C15—C1650.7 (3)
O4—N1—C5—C47.9 (3)C19—N3—C15—C1669.2 (3)
O3—N1—C5—C4172.7 (2)C20—N4—C16—C1550.2 (3)
C4—C5—C6—C70.3 (4)C18—N4—C16—C1569.6 (3)
N1—C5—C6—C7178.4 (2)N3—C15—C16—N415.8 (3)
C5—C6—C7—C20.4 (4)C15—N3—C17—C1869.4 (2)
C3—C2—C7—C61.1 (4)C19—N3—C17—C1850.5 (3)
C1—C2—C7—C6179.2 (2)C20—N4—C18—C1768.8 (3)
O6—C8—C9—C102.6 (4)C16—N4—C18—C1751.1 (3)
O5—C8—C9—C10177.5 (2)N3—C17—C18—N415.8 (3)
O6—C8—C9—C14179.2 (2)C17—N3—C19—C2068.8 (3)
O5—C8—C9—C140.7 (4)C15—N3—C19—C2050.6 (3)
C14—C9—C10—C110.1 (4)C16—N4—C20—C1968.9 (3)
C8—C9—C10—C11178.1 (2)C18—N4—C20—C1950.5 (3)
C9—C10—C11—C120.0 (4)N3—C19—C20—N415.6 (3)
C10—C11—C12—C130.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.88 (2)1.66 (2)2.539 (3)173 (2)
N4—H4N···O50.89 (2)1.65 (2)2.542 (3)175 (3)
C15—H15A···O6i0.992.423.193 (3)134
C16—H16A···O4ii0.992.423.375 (3)161
C17—H17A···O7iii0.992.423.338 (3)153
C17—H17B···O6i0.992.423.313 (3)149
C20—H20A···O2iv0.992.413.043 (3)121
C20—H20B···O8v0.992.423.339 (3)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z1; (iii) x1, y, z+1; (iv) x+1, y+2, z+1; (v) x+2, y+2, z.
 

Acknowledgements

Intensity data were provided by the University of Malaya Crystallographic Laboratory. This research is supported by the University of Malaya Research Grant Scheme (RG125/AFC10R).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295–302.  CAS Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J., Zakaria, C. M. & Glidewell, C. (2003). Acta Cryst. B59, 87–99.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Maini, L., de Sanctis, G., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. 9, 5538–5548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001a). Acta Cryst. B57, 329–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001b). Acta Cryst. B57, 201–212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S. & Fun, H.-K. (2004). Acta Cryst. E60, o1250–o1252.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJacobs, A., Nassimbeni, L. R., Ramon, G. & Sebogisi, B. K. (2010). CrystEngComm, 12, 3065–3070.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarivel, S., Braga, D., Grepioni, F. & Lampronti, G. I. (2010). CrystEngComm, 12, 2107–2112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o2344.  CSD CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Fun, H.-K., Lee, B. S. & Chantrapromma, S. (2006). Acta Cryst. E62, o4575–o4577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2008). Acta Cryst. E64, o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds