Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the new tin(IV) and copper(II) complexes, cis-dichlorido-trans-dimethyl-cis-bis­(N,N',N''-tricyclo­hexyl­phospho­ric triam­ide-[kappa]O)tin(IV), [Sn(CH3)2Cl2(C18H36N3OP)2], (I), and trans-diaqua­bis­(N,N',N''-tricyclo­hexyl­phospho­ric triamide-[kappa]O)copper(II) dinitrate-N,N',N''-tricyclo­hexyl­phospho­ric triamide (1/2), [Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP, (II), the N,N',N''-tricyclo­hexyl­phospho­ric triamide (PTA) ligands exist as hydrogen-bonded dimers via P=O...H-N inter­actions around the metal center. The asymmetric unit in (I) consists of one complete complex mol­ecule located on a general position. The SnIV coordination geometry is octa­hedral with two cis hydrogen-bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a [Cu(PTA)2(H2O)2]2+ dication on a special position (site symmetry \overline{1} for the Cu atom), one nitrate anion and one free PTA mol­ecule, both on general positions. The complex adopts a square-planar trans-[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water mol­ecules. Each of the noncoordinated PTA mol­ecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water mol­ecule; the phosphoryl O atom acts as a double-H-atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen-bonded mol­ecules in (II) adopt a slightly distorted tetra­hedral environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011101403X/sq3282sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011101403X/sq3282Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011101403X/sq3282IIsup3.hkl
Contains datablock II

CCDC references: 829696; 829697

Comment top

The PO···H—N hydrogen bond exists in the structures of phosphoramide compounds containing the P(O)NH moiety. In the process of coordination to a metal cation (M), one would anticipate that this interaction would be replaced with a PO···M bond (Gholivand et al., 2006). Here we discuss two cases where this type of hydrogen bond remains in a coordinated phosphoric triamide ligand in two new complexes and its possible role in the coordination manner of the ligand.

Organotin(IV) complexes, particularly those with organophosphorus ligands, have attracted attention because of their versatile biological properties (Gholivand et al., 2010). Similar to the organophosphorus ligands, the phosphoramides are suitable for reacting with organotin(IV) compounds. In this series, a few organotin(IV)–phosphoramide compounds have been reported with some phosphoramide ligands. A search of the Cambridge Structural Database (CSD, Version 5.32, November 2010 update; Allen, 2002) shows that in all reported dialkyltin(IV) dihalide tris(alkylamido)phosphate compounds, the phosphoramide ligands adopt a trans arrangement. We present here the first structure of an organotin(IV) tris(alkylamido)phosphate complex with two phosphoric triamide ligands in cis positions (Fig. 1). The Sn coordination geometry in cis-dichlorido-trans-dimethyl-cis-βis(N,N',N''-tricyclohexylphosphoric triamide-κO)tin(IV), (I), is octahedral with the N,N',N''-tricyclohexylphosphoric triamide (PTA) and chloride ligands cis, but the methyl groups trans (Fig. 1, Table 1). The P atoms in the PTA ligands adopt a slightly distorted tetrahedral environment. The Sn—O—P angles are both a little greater than 140°. These geometric parameters are consistent with those observed in related structures: [(Me2N)3PO]2X2Me2Sn, with X = Br (CSD refcode BDMSAP; Aslanov et al., 1977), Cl (CDMSAP01; Rheingold et al., 1984); [(Me2N)3PO]2X2Et2Sn, with X = I (DUCJAM; Tursina et al., 1985), Br (FILCIM and FILCIM01; Tursina et al., 1987); [(R)2(PhC(O)NH)PO]2Cl2Me2Sn (Gholivand & Shariatinia, 2006), with R = t-BuNH (YERGEI), C4H8N (YERGIM), C5H10N (YERGOS) and (Me)(Cy)N (YERGUY); {(C5H10N)2[(p-F–Ph)C(O)NH]PO}2Cl2Me2Sn (LEHWIF; Gholivand et al., 2006).

The two symmetry-independent PTA ligands in (I) are involved in an intramolecular N2—H2N···O2—P2 hydrogen bond (Table 2) in which the amide group of one ligand (P1) interacts with the phosphoryl O atom of the other ligand. This hydrogen bond may be considered as a factor helping to stabilize the previously unobserved cis geometry. The P2—O2 bond length is a little longer than the P1—O1 bond length, the latter O atom not serving as a hydrogen-bond acceptor. An intramolecular N5—H5N···Cl2 hydrogen bond is also found in the structure. The environment of each N atom in the PTA ligands is almost planar and it does not form any hydrogen bonds as an acceptor, showing its low Lewis-base character. In previously reported phosphoramide compounds and their dialkyl dichloride tin(IV)–phosphoramide complexes (Gholivand et al., 2004, 2006; Gholivand & Shariatinia, 2006), the N—H···O hydrogen bonds which appear in the structures of the free phosphoramide molecules are replaced by N—H···Cl hydrogen bonds in the complexes, as the phosphoryl O atoms are involved in Sn—O covalent bonds in the latter. This fact may be supported by IR spectroscopy in which the N—H stretching frequencies in the tin complexes are higher than in the free molecules as they are involved in weaker N—H···Cl hydrogen bonds.

The two-dimensional hydrogen-bonded network in (I) is produced via some different weak N—H···Cl hydrogen bonds between the complex and three neighbouring complexes in the crystal (Fig. 2). In this case, the Cl1 and Cl2 atoms are, respectively, involved in N6—H6N···Cl1ii and N4—H4N···Cl2ii interactions [symmetry code: (ii) x - 1/2, -y + 1/2, z - 1/2] to build an R22(8) ring (Etter et al., 1990; Bernstein et al., 1995). The Cl2 atom is also involved in an intramolecular N—H···Cl hydrogen bond, which has been noted earlier, while the Cl1 atom co-operates in another intermolecular N3—H3N···Cl1i hydrogen bond [symmetry code: (i) -x + 2, -y, -z + 1] (Table 2).

Copper complexes have been of interest as the interface between biochemistry and coordination chemistry (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). The PTA ligand was also used to prepare a new copper(II) phosphoramidate complex, namely trans-diaquabis(N,N',N''-tricyclohexylphosphoric triamide-κO)copper(II) dinitrate–\<i>N,N',N''-tricyclohexylphosphoric triamide (1/2), (II) (Fig. 3). The asymmetric unit contains one half of a [Cu2(PTA)(H2O)2]2+ dication, one nitrate anion and one free PTA molecule. The CuII ion is located on a crystallographic inversion centre. The complex thus adopts a square-planar trans-[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water molecules. The phosphoryl O atom makes a shorter Cu—O bond than the water O atom (Table 3). The P atoms in the PTA ligands adopt a slightly distorted tetrahedral environment and the Cu—O—P angle is similarly a little under 140°. These geometric parameters are consistent with those in related structures: [Cu4OCl6{(O)P(NHtBu)3}4] (LIDNIW; Fu & Chivers, 2007); [Cu(ONO2)2{(O)P(NHtBu)3}2] (LIDPAQ; Fu & Chivers, 2007) and [CuCl2(NHC4H6O){(O)P[NMe2]3} (YIBZEP; Xie et al., 2007).

Each of the noncoordinated PTA molecules is hydrogen bonded to a neighbouring coordinated PTA via an N2—H2N···O3i hydrogen bond [Table 4; symmetry code: (i) -x + 1, -y + 1, -z + 1] and to an adjacent water molecule via an O2—H2WB···O3 hydrogen bond. The noncoordinated PTA phosphoryl O atom thus acts as a double-H-atom acceptor (Steiner, 2002). Atom O5 of the nitrate anion co-operates in O2—H2WA···O5, N3—H3N···O5 and N4—H4N···O5 hydrogen bonds, respectively, with neighbouring coordinated water, and coordinated and uncoordinated PTA molecules (Fig. 4, Table 4). Moreover, atom O4 of the nitrate anion co-operates in hydrogen-bonding interactions with N1—H1N and N3—H3N groups of the adjacent coordinated PTA. These interactions make a centrosymmetric hydrogen-bonded pentamer containing one dication, two PTA molecules and two nitrate anions. The N5—H5N group of free PTA molecules is involved in two weak hydrogen bonds, viz. N5—H5N···O4ii and N5—H5N···O6ii [symmetry code: (ii) x - 1/2, -y + 1/2, z - 1/2] (Fig. 4). These hydrogen bonds assemble the centrosymmetric pentamers in a two-dimensional arrangement along the (101) plane (Fig. 5).

Related literature top

For related literature, see: Aslanov et al. (1977); Audrieth & Toy (1942); Bernstein et al. (1995); Collinson & Fenton (1996); Etter et al. (1990); Fu & Chivers (2007); Gholivand et al. (2010;) Gholivand & Shariatinia (2006); Gholivand et al. (2004); Gholivand, Shariatinia & Pourayoubi (2006); Hossain et al. (1996); Rheingold et al. (1984); Steiner (2002); Tarafder et al. (2002); Tursina et al. (1985); Tursina et al. (1987); Xie et al. (2007).

Experimental top

N,N',N''-Tricyclohexylphosphoric triamide (PTA) was prepared according to the procedure reported by Audrieth & Toy (1942). IR (KBr, cm-1): 3272 (NH), 2930, 2852, 2667, 1659, 1440, 1296, 1237, 1145, 1111, 1004, 926, 882. For the synthesis of [Sn(CH3)2Cl2(PTA)2], (I), a solution of dimethyltin(IV) dichloride (0.253 g, 1.15 mmol) in chloroform (5 ml) was added dropwise to a solution of PTA (0.787 g, 2.31 mmol) in chloroform (15 ml). The clear solution was stirred for 5 h. Colourless crystals were obtained after a few days in a refrigerator (at 278 K). An effort to prepare the trans complex under reflux conditions (24 h) in CH3OH was not successful and led to the cis complex, which was confirmed by X-ray crystallography (yield: approximately 80%). IR (KBr, cm-1): 3285 (NH), 2921, 2852, 1444, 1301, 1242, 1112, 1023, 936, 792. 31P{1H} NMR (202.45 MHz, DMSO-d6, 300.0 K, H3PO4 external): δ 12.83 (s). 1H NMR (500.13 MHz, DMSO-d6, 300.0 K, TMS): δ 1.02 (s, 6H, CH3), 1.13 (m, 30H), 1.49 (m, 6H), 1.63 (m, 12H), 1.79 (m, 12H), 2.80 (m, 6H, CH), 3.49 (b, 6H, NH). 13C NMR (125.75 MHz, DMSO-d6, 300.0 K, TMS): δ 22.95 (s, CH3), 25.01 (s), 25.23 (s), 35.48 [d, 3J(P,C) = 4.7 Hz], 49.48 (s).

For the synthesis of [Cu(PTA)2(H2O)2](NO3)2.PTA, (II), a solution of copper(II) nitrate trihydrate (0.547 g, 2.269 mmol) in CH3CN (5 ml) was added dropwise to a solution of PTA (1.423 g, 4.173 mmol) in ethanol (10 ml). The resulting clear solution was stirred for 2 h at room temperature. Single crystals were obtained from a mixture of dimethylformamide/ethanol after slow evaporation at room temperature (yield: approximately 30%). IR (KBr, cm-1): 3345, 3273, 2925, 2847, 1650, 1432, 1394, 1232, 1101, 1028, 950, 882, 828. 13C NMR (125.75 MHz, DMSO-d6, 300.0 K, TMS): δ 26.13 (s, CH3), 37.02 (s), 41.96 (b), 49.29 (s.

Refinement top

For (I), N-bonded H atoms were found in difference Fourier maps. C-bonded H-atom positions were calculated, and the C—H distances were normalized at standard values of 0.98–1.00 Å, depending on the hybridization. All the H atoms were treated as riding atoms with their Uiso(H) parameters equal to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(Cj) otherwise. For (II), H atoms on N and O atoms were found in difference Fourier maps and were allowed to refine with DFIX restraints of 0.86 (0.01) for N—H, DFIX 0.84 (0.01) and DANG 1.20 (0.02) restraints for O—H, and isotropic displacement parameters fixed at 1.2Ueq of the parent atom. All other H atoms were placed in calculated positions and included as riding atoms with C—H = 1.00 (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005). Cell refinement: APEX2 (Bruker, 2005) for (I); SAINT (Bruker, 2008) for (II). Data reduction: APEX2 (Bruker, 2005) for (I); SAINT (Bruker 2008) for (II). Program(s) used to solve structure: SHELXTL (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 2008) for (II). Program(s) used to refine structure: SHELXTL (Sheldrick, 2008) for (I); SHELXL97 (Sheldrick, 2008) for (II). For both compounds, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labelling scheme for (I), with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms on C atoms are not shown for clarity. [Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x - 1/2, -y + 1/2, z - 1/2].
[Figure 3] Fig. 3. The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 4] Fig. 4. A view of the centrosymmetric hydrogen-bonded pentamer containing one [Cu(PTA)2(H2O)2]2+ dication (green in the electronic version of the paper), two PTA molecules (red) and two nitrate anions (blue); the two other nitrate anions in the top right and bottom left of the figure, which co-operate in two weak N5—H5N···O4ii and N5—H5N···O6ii hydrogen bonds, assemble neighbouring pentamers in a two-dimensional array. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1/2, -y + 1/2, z - 1/2.]
[Figure 5] Fig. 5. The two-dimensional arrangement of molecules in the structure of (II) viewed along the (101) plane.
(I) cis-dichlorido-trans-dimethyl-cis- bis(N,N',N''-tricyclohexylphosphoric triamide-κO)tin(IV) top
Crystal data top
[Sn(CH3)2Cl2(C18H36N3OP)2]F(000) = 1912
Mr = 902.59Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2689 reflections
a = 12.0882 (6) Åθ = 3–30°
b = 25.1607 (13) ŵ = 0.79 mm1
c = 15.8103 (8) ÅT = 100 K
β = 108.879 (1)°Prism, colorless
V = 4550.0 (4) Å30.35 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12101 independent reflections
Radiation source: fine-focus sealed tube10758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1616
Tmin = 0.772, Tmax = 0.825k = 3434
71686 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.080H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.057P)2 + 0.975P]
where P = (Fo2 + 2Fc2)/3
12101 reflections(Δ/σ)max = 0.002
462 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Sn(CH3)2Cl2(C18H36N3OP)2]V = 4550.0 (4) Å3
Mr = 902.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0882 (6) ŵ = 0.79 mm1
b = 25.1607 (13) ÅT = 100 K
c = 15.8103 (8) Å0.35 × 0.25 × 0.25 mm
β = 108.879 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12101 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
10758 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.825Rint = 0.030
71686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
12101 reflectionsΔρmin = 0.48 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.957050 (8)0.170970 (4)0.484948 (6)0.01205 (4)
Cl11.09417 (3)0.130733 (14)0.62855 (2)0.01794 (8)
Cl20.99698 (3)0.267834 (14)0.54265 (2)0.02001 (8)
P10.89504 (3)0.058809 (15)0.34183 (3)0.01426 (8)
P20.74116 (3)0.243081 (14)0.31248 (2)0.01281 (7)
O10.92165 (10)0.08937 (4)0.42782 (7)0.0181 (2)
O20.83145 (9)0.20095 (4)0.35430 (7)0.0148 (2)
N11.01736 (12)0.04395 (5)0.32345 (9)0.0200 (3)
H1N1.08130.05970.35950.024*
N20.80391 (12)0.09493 (5)0.26441 (9)0.0179 (3)
H2N0.80070.12790.27810.021*
N30.83100 (11)0.00126 (5)0.33571 (9)0.0157 (2)
H3N0.87750.02800.35540.019*
N40.60732 (11)0.22405 (5)0.26440 (8)0.0170 (2)
H4N0.57960.22120.20550.020*
N50.73368 (12)0.28228 (5)0.39318 (9)0.0167 (2)
H5N0.79520.28480.43630.020*
N60.77483 (11)0.26937 (5)0.22959 (9)0.0166 (2)
H6N0.72880.29230.19380.020*
C11.03787 (13)0.00224 (6)0.26502 (10)0.0169 (3)
H1A0.96220.01680.23710.020*
C21.12652 (15)0.03836 (7)0.31941 (10)0.0210 (3)
H2A1.09800.05380.36610.025*
H2B1.20180.02040.34950.025*
C31.14549 (16)0.08276 (7)0.25947 (11)0.0252 (3)
H3A1.20720.10710.29550.030*
H3B1.07240.10350.23540.030*
C41.18104 (16)0.06083 (8)0.18220 (12)0.0265 (4)
H4A1.18610.09030.14220.032*
H4B1.25930.04420.20590.032*
C51.09300 (16)0.01960 (7)0.12890 (11)0.0235 (3)
H5A1.01690.03710.09950.028*
H5B1.12090.00430.08170.028*
C61.07677 (16)0.02497 (7)0.18973 (11)0.0229 (3)
H6A1.15140.04440.21540.027*
H6B1.01740.05040.15420.027*
C70.77644 (14)0.08442 (6)0.16817 (10)0.0177 (3)
H7A0.82280.05270.16140.021*
C80.81350 (17)0.13131 (7)0.12278 (11)0.0255 (4)
H8A0.89830.13770.15130.031*
H8B0.77120.16360.13100.031*
C90.78803 (18)0.12127 (8)0.02296 (12)0.0299 (4)
H9A0.83820.09200.01470.036*
H9B0.80720.15360.00530.036*
C100.65973 (17)0.10680 (8)0.02279 (11)0.0290 (4)
H10A0.60980.13770.02100.035*
H10B0.64700.09790.08620.035*
C110.62548 (16)0.05974 (8)0.02344 (12)0.0288 (4)
H11A0.67140.02820.01780.035*
H11B0.54160.05160.00580.035*
C120.64781 (15)0.07195 (8)0.12247 (11)0.0255 (3)
H12A0.59970.10270.12820.031*
H12B0.62510.04100.15180.031*
C130.71861 (13)0.00316 (6)0.35278 (10)0.0163 (3)
H13A0.67840.03210.33970.020*
C140.63946 (14)0.04458 (6)0.29203 (11)0.0185 (3)
H14A0.67860.07970.30250.022*
H14B0.62500.03470.22870.022*
C150.52328 (14)0.04814 (7)0.31045 (12)0.0234 (3)
H15A0.48170.01370.29580.028*
H15B0.47380.07580.27170.028*
C160.54231 (16)0.06172 (7)0.40814 (12)0.0263 (4)
H16A0.57720.09760.42140.032*
H16B0.46610.06220.41890.032*
C170.62317 (17)0.02111 (7)0.47047 (13)0.0277 (4)
H17A0.58410.01400.46230.033*
H17B0.63880.03220.53340.033*
C180.73878 (15)0.01645 (7)0.45099 (11)0.0215 (3)
H18A0.78730.01170.48920.026*
H18B0.78200.05040.46600.026*
C190.53166 (13)0.20113 (6)0.31108 (10)0.0170 (3)
H19A0.55750.21530.37350.020*
C200.54019 (18)0.14124 (7)0.31609 (16)0.0335 (4)
H20A0.62190.13080.34850.040*
H20B0.51870.12650.25480.040*
C210.45976 (19)0.11788 (8)0.36379 (18)0.0407 (5)
H21A0.46530.07860.36410.049*
H21B0.48540.13020.42660.049*
C220.33386 (18)0.13444 (9)0.31799 (16)0.0384 (5)
H22A0.30540.11870.25740.046*
H22B0.28440.12080.35230.046*
C230.32357 (19)0.19390 (10)0.3111 (2)0.0478 (6)
H23A0.34160.20910.37190.057*
H23B0.24200.20350.27670.057*
C240.40597 (17)0.21836 (9)0.26574 (16)0.0384 (5)
H24A0.38090.20740.20220.046*
H24B0.40110.25760.26770.046*
C250.65681 (15)0.32939 (6)0.37678 (11)0.0179 (3)
H25A0.59430.32450.31780.022*
C260.59773 (17)0.33411 (7)0.44852 (13)0.0273 (4)
H26A0.53580.36150.43030.033*
H26B0.56020.29980.45360.033*
C270.6838 (2)0.34878 (9)0.53889 (13)0.0375 (5)
H27A0.74140.31970.56020.045*
H27B0.64150.35310.58260.045*
C280.7476 (2)0.40024 (9)0.53322 (15)0.0414 (5)
H28A0.80650.40780.59210.050*
H28B0.69100.43000.51830.050*
C290.80812 (17)0.39618 (8)0.46232 (15)0.0351 (4)
H29A0.84400.43090.45690.042*
H29B0.87140.36940.48110.042*
C300.72256 (16)0.38058 (6)0.37215 (12)0.0253 (3)
H30A0.76570.37580.32910.030*
H30B0.66550.40970.34980.030*
C310.89225 (13)0.26720 (6)0.22196 (10)0.0157 (3)
H31A0.92450.23090.24110.019*
C320.97640 (14)0.30741 (6)0.28129 (11)0.0204 (3)
H32A0.98110.30170.34430.024*
H32B0.94660.34380.26400.024*
C331.09816 (15)0.30193 (8)0.27264 (13)0.0286 (4)
H33A1.14920.33030.30810.034*
H33B1.13190.26730.29790.034*
C341.09645 (16)0.30560 (7)0.17582 (14)0.0292 (4)
H34A1.07740.34250.15410.035*
H34B1.17510.29700.17300.035*
C351.00713 (18)0.26766 (8)0.11517 (13)0.0309 (4)
H35A1.03370.23060.13030.037*
H35B1.00210.27410.05230.037*
C360.88575 (16)0.27452 (7)0.12453 (11)0.0232 (3)
H36A0.85540.31040.10380.028*
H36B0.83130.24800.08670.028*
C371.09180 (15)0.17662 (7)0.42692 (12)0.0208 (3)
H37A1.05950.16950.36260.031*
H37B1.15290.15050.45480.031*
H37C1.12540.21240.43650.031*
C380.81486 (15)0.16500 (7)0.53441 (12)0.0208 (3)
H38A0.77900.12980.52030.031*
H38B0.75690.19240.50650.031*
H38C0.84280.17010.59940.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01378 (6)0.01136 (6)0.01058 (6)0.00054 (3)0.00334 (4)0.00005 (3)
Cl10.01958 (17)0.01477 (16)0.01538 (16)0.00142 (13)0.00001 (13)0.00133 (12)
Cl20.02513 (19)0.01428 (16)0.01592 (16)0.00026 (13)0.00014 (14)0.00152 (12)
P10.01785 (18)0.01163 (17)0.01397 (17)0.00104 (13)0.00608 (14)0.00172 (13)
P20.01486 (17)0.01085 (16)0.01156 (16)0.00058 (13)0.00269 (13)0.00095 (12)
O10.0243 (6)0.0148 (5)0.0152 (5)0.0003 (4)0.0064 (4)0.0028 (4)
O20.0184 (5)0.0119 (5)0.0129 (5)0.0016 (4)0.0033 (4)0.0004 (4)
N10.0177 (6)0.0192 (6)0.0241 (7)0.0042 (5)0.0080 (5)0.0081 (5)
N20.0273 (7)0.0119 (6)0.0141 (6)0.0020 (5)0.0062 (5)0.0008 (5)
N30.0165 (6)0.0133 (6)0.0185 (6)0.0003 (5)0.0074 (5)0.0000 (5)
N40.0164 (6)0.0209 (6)0.0119 (6)0.0018 (5)0.0020 (5)0.0017 (5)
N50.0191 (6)0.0141 (6)0.0144 (6)0.0026 (5)0.0019 (5)0.0010 (5)
N60.0176 (6)0.0159 (6)0.0154 (6)0.0017 (5)0.0040 (5)0.0055 (5)
C10.0172 (7)0.0169 (7)0.0178 (7)0.0018 (6)0.0071 (6)0.0030 (5)
C20.0220 (8)0.0260 (8)0.0152 (7)0.0041 (6)0.0065 (6)0.0003 (6)
C30.0288 (9)0.0267 (8)0.0213 (8)0.0098 (7)0.0097 (7)0.0021 (6)
C40.0239 (8)0.0349 (10)0.0232 (8)0.0061 (7)0.0109 (7)0.0013 (7)
C50.0269 (8)0.0275 (8)0.0181 (7)0.0005 (7)0.0101 (6)0.0006 (6)
C60.0274 (8)0.0214 (8)0.0230 (8)0.0025 (6)0.0125 (7)0.0012 (6)
C70.0223 (8)0.0158 (7)0.0148 (7)0.0016 (6)0.0055 (6)0.0012 (5)
C80.0372 (10)0.0230 (8)0.0182 (8)0.0063 (7)0.0117 (7)0.0016 (6)
C90.0420 (11)0.0325 (10)0.0188 (8)0.0032 (8)0.0150 (8)0.0002 (7)
C100.0374 (10)0.0328 (9)0.0165 (7)0.0104 (8)0.0082 (7)0.0012 (7)
C110.0261 (9)0.0338 (10)0.0213 (8)0.0002 (7)0.0005 (7)0.0013 (7)
C120.0241 (8)0.0305 (9)0.0204 (8)0.0026 (7)0.0052 (6)0.0043 (7)
C130.0170 (7)0.0142 (7)0.0191 (7)0.0007 (5)0.0077 (6)0.0019 (5)
C140.0181 (7)0.0180 (7)0.0183 (7)0.0005 (6)0.0044 (6)0.0021 (6)
C150.0176 (7)0.0190 (7)0.0338 (9)0.0003 (6)0.0086 (7)0.0052 (7)
C160.0267 (9)0.0238 (8)0.0351 (9)0.0068 (7)0.0193 (8)0.0084 (7)
C170.0340 (9)0.0269 (9)0.0303 (9)0.0098 (7)0.0216 (8)0.0102 (7)
C180.0247 (8)0.0230 (8)0.0191 (7)0.0058 (6)0.0104 (6)0.0056 (6)
C190.0155 (7)0.0176 (7)0.0181 (7)0.0003 (5)0.0057 (6)0.0002 (5)
C200.0336 (10)0.0175 (8)0.0617 (13)0.0036 (7)0.0322 (10)0.0048 (8)
C210.0406 (12)0.0246 (9)0.0710 (16)0.0035 (8)0.0378 (11)0.0126 (10)
C220.0291 (10)0.0431 (12)0.0499 (12)0.0134 (9)0.0225 (9)0.0058 (10)
C230.0257 (10)0.0455 (13)0.0809 (18)0.0092 (9)0.0293 (11)0.0142 (12)
C240.0210 (9)0.0390 (11)0.0560 (13)0.0088 (8)0.0136 (9)0.0184 (10)
C250.0214 (8)0.0132 (7)0.0193 (7)0.0037 (5)0.0065 (6)0.0010 (5)
C260.0314 (10)0.0235 (8)0.0322 (10)0.0061 (7)0.0178 (8)0.0021 (7)
C270.0558 (14)0.0368 (11)0.0219 (9)0.0133 (10)0.0152 (9)0.0003 (8)
C280.0476 (13)0.0325 (11)0.0342 (11)0.0088 (9)0.0006 (9)0.0143 (9)
C290.0280 (9)0.0187 (8)0.0514 (12)0.0005 (7)0.0030 (9)0.0075 (8)
C300.0320 (9)0.0141 (7)0.0327 (9)0.0033 (6)0.0144 (7)0.0043 (6)
C310.0177 (7)0.0132 (6)0.0168 (7)0.0006 (5)0.0066 (6)0.0008 (5)
C320.0192 (7)0.0179 (7)0.0237 (8)0.0020 (6)0.0065 (6)0.0019 (6)
C330.0195 (8)0.0295 (9)0.0365 (10)0.0012 (7)0.0088 (7)0.0020 (7)
C340.0265 (9)0.0249 (9)0.0433 (11)0.0039 (7)0.0212 (8)0.0078 (8)
C350.0414 (11)0.0292 (9)0.0309 (9)0.0025 (8)0.0238 (8)0.0008 (7)
C360.0311 (9)0.0227 (8)0.0181 (7)0.0024 (7)0.0110 (7)0.0011 (6)
C370.0179 (8)0.0239 (8)0.0217 (8)0.0002 (6)0.0081 (6)0.0015 (6)
C380.0213 (8)0.0233 (8)0.0204 (8)0.0046 (6)0.0102 (6)0.0044 (6)
Geometric parameters (Å, º) top
Sn1—C382.1114 (16)C15—H15A0.9900
Sn1—C372.1171 (16)C15—H15B0.9900
Sn1—O12.2281 (11)C16—C171.532 (2)
Sn1—O22.2608 (10)C16—H16A0.9900
Sn1—Cl12.5479 (4)C16—H16B0.9900
Sn1—Cl22.5923 (4)C17—C181.530 (2)
P1—O11.5032 (11)C17—H17A0.9900
P1—N31.6300 (13)C17—H17B0.9900
P1—N21.6326 (14)C18—H18A0.9900
P1—N11.6397 (14)C18—H18B0.9900
P2—O21.5116 (11)C19—C201.511 (2)
P2—N41.6213 (13)C19—C241.518 (2)
P2—N61.6327 (13)C19—H19A1.0000
P2—N51.6381 (13)C20—C211.528 (3)
N1—C11.4711 (19)C20—H20A0.9900
N1—H1N0.8909C20—H20B0.9900
N2—C71.4725 (19)C21—C221.517 (3)
N2—H2N0.8612C21—H21A0.9900
N3—C131.4725 (19)C21—H21B0.9900
N3—H3N0.9181C22—C231.502 (3)
N4—C191.4665 (19)C22—H22A0.9900
N4—H4N0.8840C22—H22B0.9900
N5—C251.4764 (19)C23—C241.533 (3)
N5—H5N0.8328C23—H23A0.9900
N6—C311.4640 (19)C23—H23B0.9900
N6—H6N0.8713C24—H24A0.9900
C1—C61.526 (2)C24—H24B0.9900
C1—C21.528 (2)C25—C301.528 (2)
C1—H1A1.0000C25—C261.528 (2)
C2—C31.529 (2)C25—H25A1.0000
C2—H2A0.9900C26—C271.516 (3)
C2—H2B0.9900C26—H26A0.9900
C3—C41.524 (2)C26—H26B0.9900
C3—H3A0.9900C27—C281.525 (3)
C3—H3B0.9900C27—H27A0.9900
C4—C51.529 (2)C27—H27B0.9900
C4—H4A0.9900C28—C291.527 (3)
C4—H4B0.9900C28—H28A0.9900
C5—C61.531 (2)C28—H28B0.9900
C5—H5A0.9900C29—C301.517 (3)
C5—H5B0.9900C29—H29A0.9900
C6—H6A0.9900C29—H29B0.9900
C6—H6B0.9900C30—H30A0.9900
C7—C121.520 (2)C30—H30B0.9900
C7—C81.522 (2)C31—C321.523 (2)
C7—H7A1.0000C31—C361.528 (2)
C8—C91.528 (2)C31—H31A1.0000
C8—H8A0.9900C32—C331.528 (2)
C8—H8B0.9900C32—H32A0.9900
C9—C101.528 (3)C32—H32B0.9900
C9—H9A0.9900C33—C341.527 (3)
C9—H9B0.9900C33—H33A0.9900
C10—C111.518 (3)C33—H33B0.9900
C10—H10A0.9900C34—C351.525 (3)
C10—H10B0.9900C34—H34A0.9900
C11—C121.531 (2)C34—H34B0.9900
C11—H11A0.9900C35—C361.531 (3)
C11—H11B0.9900C35—H35A0.9900
C12—H12A0.9900C35—H35B0.9900
C12—H12B0.9900C36—H36A0.9900
C13—C141.526 (2)C36—H36B0.9900
C13—C181.529 (2)C37—H37A0.9800
C13—H13A1.0000C37—H37B0.9800
C14—C151.526 (2)C37—H37C0.9800
C14—H14A0.9900C38—H38A0.9800
C14—H14B0.9900C38—H38B0.9800
C15—C161.525 (3)C38—H38C0.9800
C38—Sn1—C37176.31 (6)C15—C16—H16A109.4
C38—Sn1—O190.69 (6)C17—C16—H16A109.4
C37—Sn1—O187.70 (5)C15—C16—H16B109.4
C38—Sn1—O288.60 (5)C17—C16—H16B109.4
C37—Sn1—O288.00 (5)H16A—C16—H16B108.0
O1—Sn1—O287.31 (4)C18—C17—C16110.85 (14)
C38—Sn1—Cl190.83 (5)C18—C17—H17A109.5
C37—Sn1—Cl192.46 (5)C16—C17—H17A109.5
O1—Sn1—Cl188.82 (3)C18—C17—H17B109.5
O2—Sn1—Cl1176.07 (3)C16—C17—H17B109.5
C38—Sn1—Cl291.01 (5)H17A—C17—H17B108.1
C37—Sn1—Cl290.44 (5)C13—C18—C17111.43 (14)
O1—Sn1—Cl2176.84 (3)C13—C18—H18A109.3
O2—Sn1—Cl290.08 (3)C17—C18—H18A109.3
Cl1—Sn1—Cl293.818 (12)C13—C18—H18B109.3
O1—P1—N3117.82 (7)C17—C18—H18B109.3
O1—P1—N2106.76 (7)H18A—C18—H18B108.0
N3—P1—N2104.93 (7)N4—C19—C20112.06 (13)
O1—P1—N1109.61 (7)N4—C19—C24109.99 (14)
N3—P1—N1103.01 (7)C20—C19—C24110.51 (15)
N2—P1—N1114.98 (7)N4—C19—H19A108.0
O2—P2—N4117.89 (7)C20—C19—H19A108.0
O2—P2—N6107.63 (6)C24—C19—H19A108.0
N4—P2—N6102.32 (7)C19—C20—C21111.48 (15)
O2—P2—N5107.18 (6)C19—C20—H20A109.3
N4—P2—N5104.17 (7)C21—C20—H20A109.3
N6—P2—N5118.18 (7)C19—C20—H20B109.3
P1—O1—Sn1142.63 (7)C21—C20—H20B109.3
P2—O2—Sn1144.10 (6)H20A—C20—H20B108.0
C1—N1—P1128.23 (11)C22—C21—C20111.04 (19)
C1—N1—H1N115.5C22—C21—H21A109.4
P1—N1—H1N115.5C20—C21—H21A109.4
C7—N2—P1123.14 (10)C22—C21—H21B109.4
C7—N2—H2N114.8C20—C21—H21B109.4
P1—N2—H2N114.9H21A—C21—H21B108.0
C13—N3—P1120.32 (10)C23—C22—C21110.79 (17)
C13—N3—H3N112.2C23—C22—H22A109.5
P1—N3—H3N117.8C21—C22—H22A109.5
C19—N4—P2124.77 (10)C23—C22—H22B109.5
C19—N4—H4N114.3C21—C22—H22B109.5
P2—N4—H4N119.9H22A—C22—H22B108.1
C25—N5—P2122.46 (11)C22—C23—C24112.48 (18)
C25—N5—H5N115.3C22—C23—H23A109.1
P2—N5—H5N115.1C24—C23—H23A109.1
C31—N6—P2123.45 (10)C22—C23—H23B109.1
C31—N6—H6N113.8C24—C23—H23B109.1
P2—N6—H6N121.2H23A—C23—H23B107.8
N1—C1—C6112.32 (13)C19—C24—C23111.53 (17)
N1—C1—C2110.71 (13)C19—C24—H24A109.3
C6—C1—C2110.65 (13)C23—C24—H24A109.3
N1—C1—H1A107.7C19—C24—H24B109.3
C6—C1—H1A107.7C23—C24—H24B109.3
C2—C1—H1A107.7H24A—C24—H24B108.0
C1—C2—C3110.98 (13)N5—C25—C30112.18 (14)
C1—C2—H2A109.4N5—C25—C26110.54 (13)
C3—C2—H2A109.4C30—C25—C26110.20 (14)
C1—C2—H2B109.4N5—C25—H25A107.9
C3—C2—H2B109.4C30—C25—H25A107.9
H2A—C2—H2B108.0C26—C25—H25A107.9
C4—C3—C2111.72 (15)C27—C26—C25112.06 (16)
C4—C3—H3A109.3C27—C26—H26A109.2
C2—C3—H3A109.3C25—C26—H26A109.2
C4—C3—H3B109.3C27—C26—H26B109.2
C2—C3—H3B109.3C25—C26—H26B109.2
H3A—C3—H3B107.9H26A—C26—H26B107.9
C3—C4—C5111.16 (14)C26—C27—C28110.94 (17)
C3—C4—H4A109.4C26—C27—H27A109.5
C5—C4—H4A109.4C28—C27—H27A109.5
C3—C4—H4B109.4C26—C27—H27B109.5
C5—C4—H4B109.4C28—C27—H27B109.5
H4A—C4—H4B108.0H27A—C27—H27B108.0
C4—C5—C6111.01 (14)C27—C28—C29110.99 (16)
C4—C5—H5A109.4C27—C28—H28A109.4
C6—C5—H5A109.4C29—C28—H28A109.4
C4—C5—H5B109.4C27—C28—H28B109.4
C6—C5—H5B109.4C29—C28—H28B109.4
H5A—C5—H5B108.0H28A—C28—H28B108.0
C1—C6—C5110.50 (13)C30—C29—C28111.36 (17)
C1—C6—H6A109.6C30—C29—H29A109.4
C5—C6—H6A109.6C28—C29—H29A109.4
C1—C6—H6B109.6C30—C29—H29B109.4
C5—C6—H6B109.6C28—C29—H29B109.4
H6A—C6—H6B108.1H29A—C29—H29B108.0
N2—C7—C12112.47 (13)C29—C30—C25112.35 (15)
N2—C7—C8110.22 (13)C29—C30—H30A109.1
C12—C7—C8110.35 (14)C25—C30—H30A109.1
N2—C7—H7A107.9C29—C30—H30B109.1
C12—C7—H7A107.9C25—C30—H30B109.1
C8—C7—H7A107.9H30A—C30—H30B107.9
C7—C8—C9111.54 (14)N6—C31—C32113.35 (12)
C7—C8—H8A109.3N6—C31—C36110.10 (13)
C9—C8—H8A109.3C32—C31—C36110.30 (13)
C7—C8—H8B109.3N6—C31—H31A107.6
C9—C8—H8B109.3C32—C31—H31A107.6
H8A—C8—H8B108.0C36—C31—H31A107.6
C8—C9—C10111.28 (15)C31—C32—C33110.82 (14)
C8—C9—H9A109.4C31—C32—H32A109.5
C10—C9—H9A109.4C33—C32—H32A109.5
C8—C9—H9B109.4C31—C32—H32B109.5
C10—C9—H9B109.4C33—C32—H32B109.5
H9A—C9—H9B108.0H32A—C32—H32B108.1
C11—C10—C9110.56 (15)C34—C33—C32112.54 (15)
C11—C10—H10A109.5C34—C33—H33A109.1
C9—C10—H10A109.5C32—C33—H33A109.1
C11—C10—H10B109.5C34—C33—H33B109.1
C9—C10—H10B109.5C32—C33—H33B109.1
H10A—C10—H10B108.1H33A—C33—H33B107.8
C10—C11—C12110.52 (15)C35—C34—C33111.69 (15)
C10—C11—H11A109.5C35—C34—H34A109.3
C12—C11—H11A109.5C33—C34—H34A109.3
C10—C11—H11B109.5C35—C34—H34B109.3
C12—C11—H11B109.5C33—C34—H34B109.3
H11A—C11—H11B108.1H34A—C34—H34B107.9
C7—C12—C11110.01 (14)C34—C35—C36111.97 (15)
C7—C12—H12A109.7C34—C35—H35A109.2
C11—C12—H12A109.7C36—C35—H35A109.2
C7—C12—H12B109.7C34—C35—H35B109.2
C11—C12—H12B109.7C36—C35—H35B109.2
H12A—C12—H12B108.2H35A—C35—H35B107.9
N3—C13—C14111.34 (12)C31—C36—C35110.21 (14)
N3—C13—C18110.44 (12)C31—C36—H36A109.6
C14—C13—C18110.56 (13)C35—C36—H36A109.6
N3—C13—H13A108.1C31—C36—H36B109.6
C14—C13—H13A108.1C35—C36—H36B109.6
C18—C13—H13A108.1H36A—C36—H36B108.1
C13—C14—C15110.37 (13)Sn1—C37—H37A109.5
C13—C14—H14A109.6Sn1—C37—H37B109.5
C15—C14—H14A109.6H37A—C37—H37B109.5
C13—C14—H14B109.6Sn1—C37—H37C109.5
C15—C14—H14B109.6H37A—C37—H37C109.5
H14A—C14—H14B108.1H37B—C37—H37C109.5
C16—C15—C14111.08 (14)Sn1—C38—H38A109.5
C16—C15—H15A109.4Sn1—C38—H38B109.5
C14—C15—H15A109.4H38A—C38—H38B109.5
C16—C15—H15B109.4Sn1—C38—H38C109.5
C14—C15—H15B109.4H38A—C38—H38C109.5
H15A—C15—H15B108.0H38B—C38—H38C109.5
C15—C16—C17110.96 (14)
N3—P1—O1—Sn1157.82 (10)C7—C8—C9—C1054.5 (2)
N2—P1—O1—Sn140.22 (13)C8—C9—C10—C1155.0 (2)
N1—P1—O1—Sn184.91 (12)C9—C10—C11—C1257.5 (2)
C38—Sn1—O1—P1122.65 (12)N2—C7—C12—C11178.26 (14)
C37—Sn1—O1—P154.03 (12)C8—C7—C12—C1158.21 (19)
O2—Sn1—O1—P134.08 (12)C10—C11—C12—C759.4 (2)
Cl1—Sn1—O1—P1146.53 (11)P1—N3—C13—C14143.86 (11)
N4—P2—O2—Sn1115.63 (11)P1—N3—C13—C1892.91 (14)
N6—P2—O2—Sn1129.44 (11)N3—C13—C14—C15179.57 (13)
N5—P2—O2—Sn11.35 (13)C18—C13—C14—C1557.26 (17)
C38—Sn1—O2—P256.04 (12)C13—C14—C15—C1657.65 (17)
C37—Sn1—O2—P2125.41 (12)C14—C15—C16—C1756.57 (19)
O1—Sn1—O2—P2146.79 (11)C15—C16—C17—C1855.0 (2)
Cl2—Sn1—O2—P234.97 (11)N3—C13—C18—C17179.85 (13)
O1—P1—N1—C1159.88 (13)C14—C13—C18—C1756.46 (17)
N3—P1—N1—C133.66 (15)C16—C17—C18—C1355.2 (2)
N2—P1—N1—C179.88 (15)P2—N4—C19—C2091.13 (17)
O1—P1—N2—C7166.42 (12)P2—N4—C19—C24145.53 (14)
N3—P1—N2—C767.79 (14)N4—C19—C20—C21179.26 (17)
N1—P1—N2—C744.62 (15)C24—C19—C20—C2156.2 (2)
O1—P1—N3—C1356.39 (13)C19—C20—C21—C2257.1 (3)
N2—P1—N3—C1362.17 (13)C20—C21—C22—C2355.4 (3)
N1—P1—N3—C13177.14 (11)C21—C22—C23—C2454.2 (3)
O2—P2—N4—C1967.05 (14)N4—C19—C24—C23178.41 (18)
N6—P2—N4—C19175.15 (13)C20—C19—C24—C2354.2 (2)
N5—P2—N4—C1951.53 (14)C22—C23—C24—C1954.0 (3)
O2—P2—N5—C25177.92 (12)P2—N5—C25—C3097.87 (15)
N4—P2—N5—C2556.41 (13)P2—N5—C25—C26138.69 (13)
N6—P2—N5—C2556.23 (14)N5—C25—C26—C2769.57 (18)
O2—P2—N6—C3121.62 (14)C30—C25—C26—C2755.00 (19)
N4—P2—N6—C31146.50 (12)C25—C26—C27—C2856.4 (2)
N5—P2—N6—C3199.84 (13)C26—C27—C28—C2955.8 (2)
P1—N1—C1—C6118.00 (15)C27—C28—C29—C3055.0 (2)
P1—N1—C1—C2117.76 (15)C28—C29—C30—C2554.7 (2)
N1—C1—C2—C3178.29 (13)N5—C25—C30—C2969.50 (18)
C6—C1—C2—C356.52 (18)C26—C25—C30—C2954.13 (19)
C1—C2—C3—C455.00 (19)P2—N6—C31—C3278.44 (16)
C2—C3—C4—C554.4 (2)P2—N6—C31—C36157.47 (11)
C3—C4—C5—C655.4 (2)N6—C31—C32—C33178.13 (13)
N1—C1—C6—C5178.06 (13)C36—C31—C32—C3357.89 (18)
C2—C1—C6—C557.66 (18)C31—C32—C33—C3454.3 (2)
C4—C5—C6—C157.14 (19)C32—C33—C34—C3551.4 (2)
P1—N2—C7—C12118.63 (14)C33—C34—C35—C3652.4 (2)
P1—N2—C7—C8117.77 (14)N6—C31—C36—C35175.31 (13)
N2—C7—C8—C9179.05 (14)C32—C31—C36—C3558.86 (18)
C12—C7—C8—C956.1 (2)C34—C35—C36—C3156.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.862.162.9900 (16)161
N3—H3N···Cl1i0.922.613.4403 (13)151
N4—H4N···Cl2ii0.882.463.3296 (12)169
N5—H5N···Cl20.832.513.3135 (15)162
N6—H6N···Cl1ii0.872.533.3736 (14)165
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z1/2.
(II) trans-diaquabis(N,N',N''-tricyclohexylphosphoric triamide-κO)copper(II) dinitrate– N,N',N''-tricyclohexylphosphoric triamide (1/2) top
Crystal data top
[Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OPF(000) = 1726
Mr = 1589.46Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9940 reflections
a = 15.4495 (12) Åθ = 2.4–27.7°
b = 18.6924 (14) ŵ = 0.39 mm1
c = 16.5229 (12) ÅT = 100 K
β = 116.656 (1)°BLOCK, blue
V = 4264.5 (6) Å30.24 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
9496 independent reflections
Radiation source: fine-focus sealed tube7117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2019
Tmin = 0.911, Tmax = 0.932k = 2024
32668 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.8998P]
where P = (Fo2 + 2Fc2)/3
9496 reflections(Δ/σ)max = 0.001
490 parametersΔρmax = 0.47 e Å3
9 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OPV = 4264.5 (6) Å3
Mr = 1589.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.4495 (12) ŵ = 0.39 mm1
b = 18.6924 (14) ÅT = 100 K
c = 16.5229 (12) Å0.24 × 0.20 × 0.18 mm
β = 116.656 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
9496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7117 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.932Rint = 0.054
32668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0439 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
9496 reflectionsΔρmin = 0.51 e Å3
490 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.72928 (3)0.48314 (3)0.60731 (3)0.01544 (12)
Cu10.50000.50000.50000.01461 (9)
N10.72308 (13)0.48817 (10)0.70350 (12)0.0210 (4)
H1N0.7384 (15)0.4514 (8)0.7373 (13)0.025*
N20.80183 (11)0.54005 (10)0.59486 (12)0.0185 (4)
H2N0.7759 (14)0.5807 (7)0.5776 (14)0.022*
N30.77700 (11)0.40442 (10)0.61396 (11)0.0176 (4)
H3N0.7572 (15)0.3724 (9)0.6382 (13)0.021*
O10.63270 (9)0.49886 (8)0.52793 (9)0.0181 (3)
O20.49520 (10)0.39720 (8)0.49926 (10)0.0217 (3)
H2WA0.5343 (11)0.3717 (11)0.5399 (12)0.026*
H2WB0.4438 (9)0.3780 (11)0.4914 (14)0.026*
C10.67392 (14)0.54812 (12)0.72353 (14)0.0194 (4)
H10.65930.58530.67560.023*
C20.57806 (14)0.52547 (12)0.72194 (14)0.0226 (5)
H2A0.59050.48850.76880.027*
H2B0.53540.50430.66220.027*
C30.52728 (15)0.58968 (13)0.73958 (15)0.0265 (5)
H3A0.51030.62490.69000.032*
H3B0.46650.57360.74000.032*
C40.59180 (15)0.62538 (13)0.82980 (15)0.0259 (5)
H4A0.60220.59210.88000.031*
H4B0.55920.66870.83720.031*
C50.68948 (15)0.64602 (13)0.83416 (15)0.0275 (5)
H5A0.73200.66510.89510.033*
H5B0.67970.68430.78950.033*
C60.73896 (14)0.58212 (13)0.81450 (14)0.0260 (5)
H6A0.80000.59810.81440.031*
H6B0.75540.54600.86300.031*
C70.90728 (13)0.54178 (11)0.64915 (13)0.0179 (4)
H70.92830.49370.67790.021*
C80.94072 (14)0.59728 (13)0.72434 (15)0.0274 (5)
H8A0.91120.58680.76530.033*
H8B0.91850.64520.69770.033*
C91.05097 (15)0.59758 (14)0.77882 (15)0.0301 (6)
H9A1.07060.63590.82510.036*
H9B1.07270.55130.81060.036*
C101.09981 (14)0.60982 (13)0.71756 (14)0.0248 (5)
H10A1.08380.65830.69080.030*
H10B1.17100.60670.75380.030*
C111.06614 (14)0.55434 (13)0.64249 (15)0.0270 (5)
H11A1.08770.50630.66920.032*
H11B1.09590.56440.60170.032*
C120.95604 (14)0.55489 (13)0.58800 (14)0.0252 (5)
H12A0.93590.51730.54090.030*
H12B0.93490.60170.55730.030*
C130.80362 (13)0.37606 (12)0.54470 (13)0.0176 (4)
H130.81910.41730.51480.021*
C140.89423 (14)0.32989 (12)0.59125 (14)0.0212 (5)
H14A0.88190.29180.62630.025*
H14B0.94810.35980.63430.025*
C150.92441 (16)0.29565 (13)0.52387 (15)0.0287 (5)
H15A0.94580.33340.49490.034*
H15B0.97980.26310.55660.034*
C160.84140 (17)0.25383 (14)0.45122 (16)0.0335 (6)
H16A0.82560.21220.47920.040*
H16B0.86160.23560.40600.040*
C170.75183 (17)0.30055 (13)0.40399 (15)0.0308 (5)
H17A0.69800.27140.35960.037*
H17B0.76560.33930.37060.037*
C180.72153 (14)0.33312 (13)0.47218 (14)0.0254 (5)
H18A0.66490.36480.44000.030*
H18B0.70190.29440.50140.030*
N70.64717 (11)0.30618 (10)0.71670 (11)0.0204 (4)
O40.72683 (11)0.33345 (9)0.76628 (10)0.0341 (4)
O50.62045 (10)0.30234 (8)0.63222 (9)0.0250 (3)
O60.59451 (11)0.28215 (10)0.74918 (11)0.0351 (4)
P20.34199 (3)0.26886 (3)0.51254 (3)0.01491 (12)
N40.43482 (11)0.21633 (10)0.53106 (11)0.0172 (4)
H4N0.4885 (10)0.2344 (11)0.5690 (11)0.021*
N50.24054 (11)0.22471 (9)0.46403 (11)0.0162 (4)
H5N0.2100 (13)0.2294 (12)0.4075 (7)0.019*
N60.36235 (11)0.28560 (10)0.61669 (11)0.0193 (4)
H6N0.4178 (9)0.2757 (12)0.6580 (11)0.023*
O30.33078 (9)0.33404 (8)0.45548 (9)0.0195 (3)
C190.44400 (13)0.17846 (11)0.45703 (13)0.0164 (4)
H19A0.37920.15840.41510.020*
C200.47768 (14)0.22722 (12)0.40244 (13)0.0208 (5)
H20A0.42890.26520.37310.025*
H20B0.53940.25050.44390.025*
C210.49226 (15)0.18565 (13)0.33017 (14)0.0250 (5)
H21A0.42920.16650.28520.030*
H21B0.51700.21840.29820.030*
C220.56321 (16)0.12408 (13)0.37111 (16)0.0289 (5)
H22A0.62820.14330.41130.035*
H22B0.56810.09650.32220.035*
C230.52963 (16)0.07478 (13)0.42536 (16)0.0305 (5)
H23A0.46810.05140.38380.037*
H23B0.57860.03690.45470.037*
C240.51466 (15)0.11640 (12)0.49758 (14)0.0236 (5)
H24A0.48950.08360.52920.028*
H24B0.57780.13520.54290.028*
C250.21519 (13)0.16361 (11)0.50416 (13)0.0175 (4)
H25A0.25390.16750.57140.021*
C260.23860 (14)0.09151 (11)0.47597 (14)0.0196 (4)
H26A0.30870.08910.49290.024*
H26B0.20240.08630.40940.024*
C270.21154 (14)0.03047 (12)0.52172 (15)0.0234 (5)
H27A0.22380.01580.49970.028*
H27B0.25290.03270.58790.028*
C280.10539 (15)0.03442 (13)0.50235 (17)0.0295 (5)
H28A0.06380.02600.43700.035*
H28B0.09160.00360.53660.035*
C290.08112 (17)0.10690 (13)0.52884 (19)0.0355 (6)
H29A0.11660.11270.59540.043*
H29B0.01090.10910.51130.043*
C300.10829 (15)0.16772 (12)0.48273 (17)0.0269 (5)
H30A0.06790.16480.41640.032*
H30B0.09520.21420.50370.032*
C310.30594 (14)0.33873 (11)0.63868 (14)0.0196 (4)
H31A0.25160.35520.58040.023*
C320.2617 (2)0.30433 (14)0.6949 (2)0.0436 (7)
H32A0.31390.28360.75050.052*
H32B0.21820.26490.65990.052*
C330.2043 (2)0.35869 (15)0.7210 (2)0.0459 (7)
H33A0.14840.37610.66570.055*
H33B0.17910.33510.75980.055*
C340.2663 (2)0.42037 (18)0.77038 (18)0.0536 (8)
H34A0.31960.40350.82800.064*
H34B0.22730.45530.78510.064*
C350.3080 (2)0.45635 (16)0.7139 (3)0.0701 (11)
H35A0.35120.49580.74920.084*
H35B0.25480.47720.65910.084*
C360.3656 (2)0.40315 (16)0.6853 (2)0.0586 (9)
H36A0.38680.42740.64390.070*
H36B0.42420.38760.73950.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0123 (2)0.0165 (3)0.0170 (3)0.00103 (19)0.0062 (2)0.0006 (2)
Cu10.01126 (16)0.0145 (2)0.01600 (17)0.00115 (13)0.00427 (13)0.00030 (14)
N10.0286 (9)0.0169 (11)0.0195 (9)0.0043 (7)0.0125 (8)0.0035 (8)
N20.0132 (8)0.0152 (10)0.0234 (9)0.0007 (7)0.0049 (7)0.0041 (8)
N30.0191 (8)0.0164 (10)0.0212 (9)0.0003 (7)0.0125 (7)0.0024 (8)
O10.0133 (6)0.0197 (9)0.0200 (7)0.0008 (5)0.0062 (6)0.0008 (6)
O20.0155 (7)0.0144 (9)0.0300 (9)0.0015 (6)0.0056 (6)0.0035 (6)
C10.0226 (10)0.0186 (12)0.0184 (10)0.0009 (8)0.0105 (8)0.0008 (9)
C20.0210 (10)0.0260 (13)0.0206 (11)0.0024 (9)0.0092 (9)0.0016 (9)
C30.0197 (10)0.0329 (15)0.0273 (12)0.0012 (9)0.0108 (9)0.0016 (10)
C40.0284 (11)0.0273 (14)0.0274 (12)0.0054 (9)0.0175 (10)0.0008 (10)
C50.0272 (11)0.0294 (15)0.0263 (12)0.0040 (10)0.0122 (10)0.0097 (10)
C60.0198 (10)0.0352 (15)0.0222 (11)0.0003 (9)0.0087 (9)0.0054 (10)
C70.0120 (9)0.0179 (12)0.0201 (10)0.0005 (8)0.0040 (8)0.0022 (9)
C80.0203 (10)0.0349 (15)0.0294 (12)0.0066 (9)0.0135 (9)0.0121 (11)
C90.0221 (11)0.0444 (17)0.0229 (12)0.0099 (10)0.0092 (9)0.0091 (11)
C100.0170 (10)0.0280 (14)0.0274 (12)0.0069 (9)0.0080 (9)0.0021 (10)
C110.0187 (10)0.0356 (15)0.0290 (12)0.0042 (9)0.0128 (9)0.0044 (11)
C120.0196 (10)0.0345 (15)0.0215 (11)0.0065 (9)0.0093 (9)0.0068 (10)
C130.0178 (9)0.0194 (12)0.0171 (10)0.0011 (8)0.0092 (8)0.0001 (9)
C140.0201 (10)0.0233 (13)0.0213 (11)0.0022 (8)0.0101 (9)0.0002 (9)
C150.0320 (12)0.0316 (15)0.0293 (12)0.0078 (10)0.0199 (10)0.0017 (11)
C160.0506 (15)0.0284 (15)0.0296 (13)0.0008 (11)0.0251 (12)0.0059 (11)
C170.0365 (13)0.0326 (15)0.0203 (11)0.0094 (10)0.0100 (10)0.0080 (10)
C180.0205 (10)0.0297 (14)0.0231 (11)0.0038 (9)0.0071 (9)0.0036 (10)
N70.0187 (8)0.0200 (11)0.0182 (9)0.0009 (7)0.0046 (7)0.0027 (8)
O40.0251 (8)0.0372 (11)0.0243 (8)0.0130 (7)0.0028 (7)0.0033 (8)
O50.0272 (8)0.0288 (10)0.0133 (7)0.0003 (6)0.0041 (6)0.0022 (7)
O60.0310 (9)0.0470 (12)0.0315 (9)0.0087 (8)0.0177 (7)0.0045 (8)
P20.0143 (2)0.0147 (3)0.0149 (3)0.00179 (19)0.0058 (2)0.0001 (2)
N40.0131 (8)0.0213 (11)0.0147 (8)0.0010 (7)0.0041 (7)0.0001 (7)
N50.0162 (8)0.0169 (10)0.0128 (8)0.0026 (7)0.0040 (7)0.0019 (7)
N60.0165 (8)0.0221 (11)0.0152 (9)0.0020 (7)0.0036 (7)0.0026 (7)
O30.0185 (7)0.0158 (8)0.0217 (7)0.0017 (6)0.0069 (6)0.0028 (6)
C190.0140 (9)0.0184 (12)0.0160 (10)0.0007 (7)0.0062 (8)0.0008 (8)
C200.0237 (10)0.0204 (13)0.0199 (10)0.0007 (8)0.0111 (9)0.0034 (9)
C210.0278 (11)0.0316 (14)0.0205 (11)0.0039 (9)0.0152 (9)0.0005 (10)
C220.0305 (12)0.0318 (15)0.0318 (13)0.0002 (10)0.0208 (10)0.0045 (11)
C230.0320 (12)0.0254 (14)0.0409 (14)0.0059 (10)0.0224 (11)0.0029 (11)
C240.0244 (11)0.0241 (14)0.0252 (12)0.0068 (9)0.0136 (9)0.0066 (10)
C250.0168 (9)0.0174 (12)0.0188 (10)0.0043 (8)0.0085 (8)0.0011 (9)
C260.0174 (9)0.0189 (12)0.0237 (11)0.0006 (8)0.0101 (8)0.0018 (9)
C270.0223 (10)0.0183 (13)0.0297 (12)0.0034 (9)0.0118 (9)0.0001 (10)
C280.0250 (11)0.0210 (14)0.0461 (15)0.0073 (9)0.0191 (11)0.0016 (11)
C290.0300 (12)0.0290 (15)0.0606 (17)0.0073 (10)0.0321 (12)0.0031 (12)
C300.0217 (11)0.0190 (13)0.0457 (14)0.0009 (9)0.0201 (10)0.0022 (11)
C310.0204 (10)0.0193 (12)0.0176 (10)0.0010 (8)0.0072 (8)0.0016 (9)
C320.0744 (19)0.0278 (16)0.0534 (17)0.0075 (13)0.0506 (16)0.0020 (13)
C330.078 (2)0.0330 (17)0.0531 (17)0.0102 (14)0.0526 (16)0.0050 (14)
C340.0477 (16)0.071 (2)0.0310 (15)0.0277 (15)0.0077 (13)0.0140 (15)
C350.0551 (18)0.0311 (18)0.140 (3)0.0177 (14)0.058 (2)0.045 (2)
C360.0428 (16)0.0385 (19)0.105 (3)0.0191 (13)0.0428 (17)0.0404 (18)
Geometric parameters (Å, º) top
P1—O11.5090 (14)C18—H18B0.9900
P1—N21.6240 (17)N7—O41.241 (2)
P1—N31.6274 (18)N7—O61.242 (2)
P1—N11.6372 (17)N7—O51.268 (2)
Cu1—O1i1.8887 (12)P2—O31.5024 (15)
Cu1—O11.8888 (12)P2—N51.6288 (16)
Cu1—O2i1.9228 (15)P2—N61.6348 (17)
Cu1—O21.9229 (15)P2—N41.6495 (17)
N1—C11.472 (3)N4—C191.474 (2)
N1—H1N0.850 (9)N4—H4N0.853 (9)
N2—C71.466 (2)N5—C251.460 (3)
N2—H2N0.846 (9)N5—H5N0.841 (9)
N3—C131.477 (2)N6—C311.470 (3)
N3—H3N0.851 (9)N6—H6N0.843 (9)
O2—H2WA0.824 (9)C19—C241.526 (3)
O2—H2WB0.827 (9)C19—C201.528 (3)
C1—C61.522 (3)C19—H19A1.0000
C1—C21.529 (3)C20—C211.524 (3)
C1—H11.0000C20—H20A0.9900
C2—C31.532 (3)C20—H20B0.9900
C2—H2A0.9900C21—C221.523 (3)
C2—H2B0.9900C21—H21A0.9900
C3—C41.526 (3)C21—H21B0.9900
C3—H3A0.9900C22—C231.530 (3)
C3—H3B0.9900C22—H22A0.9900
C4—C51.528 (3)C22—H22B0.9900
C4—H4A0.9900C23—C241.526 (3)
C4—H4B0.9900C23—H23A0.9900
C5—C61.530 (3)C23—H23B0.9900
C5—H5A0.9900C24—H24A0.9900
C5—H5B0.9900C24—H24B0.9900
C6—H6A0.9900C25—C261.522 (3)
C6—H6B0.9900C25—C301.528 (3)
C7—C81.520 (3)C25—H25A1.0000
C7—C121.527 (3)C26—C271.527 (3)
C7—H71.0000C26—H26A0.9900
C8—C91.528 (3)C26—H26B0.9900
C8—H8A0.9900C27—C281.525 (3)
C8—H8B0.9900C27—H27A0.9900
C9—C101.527 (3)C27—H27B0.9900
C9—H9A0.9900C28—C291.521 (3)
C9—H9B0.9900C28—H28A0.9900
C10—C111.518 (3)C28—H28B0.9900
C10—H10A0.9900C29—C301.528 (3)
C10—H10B0.9900C29—H29A0.9900
C11—C121.526 (3)C29—H29B0.9900
C11—H11A0.9900C30—H30A0.9900
C11—H11B0.9900C30—H30B0.9900
C12—H12A0.9900C31—C361.502 (3)
C12—H12B0.9900C31—C321.521 (3)
C13—C181.525 (3)C31—H31A1.0000
C13—C141.526 (3)C32—C331.532 (3)
C13—H131.0000C32—H32A0.9900
C14—C151.527 (3)C32—H32B0.9900
C14—H14A0.9900C33—C341.486 (4)
C14—H14B0.9900C33—H33A0.9900
C15—C161.522 (3)C33—H33B0.9900
C15—H15A0.9900C34—C351.510 (5)
C15—H15B0.9900C34—H34A0.9900
C16—C171.522 (3)C34—H34B0.9900
C16—H16A0.9900C35—C361.544 (4)
C16—H16B0.9900C35—H35A0.9900
C17—C181.527 (3)C35—H35B0.9900
C17—H17A0.9900C36—H36A0.9900
C17—H17B0.9900C36—H36B0.9900
C18—H18A0.9900
O1—P1—N2103.41 (8)C13—C18—H18B109.3
O1—P1—N3118.43 (9)C17—C18—H18B109.3
N2—P1—N3106.46 (9)H18A—C18—H18B108.0
O1—P1—N1111.53 (8)O4—N7—O6120.73 (17)
N2—P1—N1115.45 (9)O4—N7—O5119.12 (16)
N3—P1—N1102.03 (9)O6—N7—O5120.15 (16)
O1i—Cu1—O1180.0O3—P2—N5106.71 (8)
O1i—Cu1—O2i91.42 (6)O3—P2—N6114.77 (9)
O1—Cu1—O2i88.58 (6)N5—P2—N6107.65 (8)
O1i—Cu1—O288.58 (6)O3—P2—N4116.43 (8)
O1—Cu1—O291.42 (6)N5—P2—N4110.75 (9)
O2i—Cu1—O2180.0N6—P2—N4100.25 (8)
C1—N1—P1121.50 (14)C19—N4—P2122.08 (13)
C1—N1—H1N119.2 (15)C19—N4—H4N112.1 (14)
P1—N1—H1N118.1 (15)P2—N4—H4N112.2 (15)
C7—N2—P1125.28 (14)C25—N5—P2124.61 (13)
C7—N2—H2N114.5 (15)C25—N5—H5N117.1 (15)
P1—N2—H2N112.4 (15)P2—N5—H5N115.5 (15)
C13—N3—P1123.18 (14)C31—N6—P2122.27 (14)
C13—N3—H3N113.4 (15)C31—N6—H6N116.6 (15)
P1—N3—H3N114.9 (15)P2—N6—H6N117.2 (15)
P1—O1—Cu1139.13 (9)N4—C19—C24108.47 (16)
Cu1—O2—H2WA124.1 (16)N4—C19—C20112.85 (17)
Cu1—O2—H2WB117.8 (16)C24—C19—C20110.27 (15)
H2WA—O2—H2WB100.2 (17)N4—C19—H19A108.4
N1—C1—C6111.17 (17)C24—C19—H19A108.4
N1—C1—C2112.25 (17)C20—C19—H19A108.4
C6—C1—C2109.73 (16)C21—C20—C19111.56 (18)
N1—C1—H1107.8C21—C20—H20A109.3
C6—C1—H1107.8C19—C20—H20A109.3
C2—C1—H1107.8C21—C20—H20B109.3
C1—C2—C3110.77 (18)C19—C20—H20B109.3
C1—C2—H2A109.5H20A—C20—H20B108.0
C3—C2—H2A109.5C22—C21—C20111.56 (18)
C1—C2—H2B109.5C22—C21—H21A109.3
C3—C2—H2B109.5C20—C21—H21A109.3
H2A—C2—H2B108.1C22—C21—H21B109.3
C4—C3—C2111.27 (17)C20—C21—H21B109.3
C4—C3—H3A109.4H21A—C21—H21B108.0
C2—C3—H3A109.4C21—C22—C23110.48 (17)
C4—C3—H3B109.4C21—C22—H22A109.6
C2—C3—H3B109.4C23—C22—H22A109.6
H3A—C3—H3B108.0C21—C22—H22B109.6
C3—C4—C5110.80 (17)C23—C22—H22B109.6
C3—C4—H4A109.5H22A—C22—H22B108.1
C5—C4—H4A109.5C24—C23—C22111.2 (2)
C3—C4—H4B109.5C24—C23—H23A109.4
C5—C4—H4B109.5C22—C23—H23A109.4
H4A—C4—H4B108.1C24—C23—H23B109.4
C4—C5—C6111.71 (19)C22—C23—H23B109.4
C4—C5—H5A109.3H23A—C23—H23B108.0
C6—C5—H5A109.3C19—C24—C23111.94 (17)
C4—C5—H5B109.3C19—C24—H24A109.2
C6—C5—H5B109.3C23—C24—H24A109.2
H5A—C5—H5B107.9C19—C24—H24B109.2
C1—C6—C5111.37 (17)C23—C24—H24B109.2
C1—C6—H6A109.4H24A—C24—H24B107.9
C5—C6—H6A109.4N5—C25—C26113.89 (15)
C1—C6—H6B109.4N5—C25—C30109.74 (17)
C5—C6—H6B109.4C26—C25—C30110.75 (16)
H6A—C6—H6B108.0N5—C25—H25A107.4
N2—C7—C8113.08 (16)C26—C25—H25A107.4
N2—C7—C12109.96 (16)C30—C25—H25A107.4
C8—C7—C12110.10 (17)C25—C26—C27110.78 (16)
N2—C7—H7107.8C25—C26—H26A109.5
C8—C7—H7107.8C27—C26—H26A109.5
C12—C7—H7107.8C25—C26—H26B109.5
C7—C8—C9111.36 (17)C27—C26—H26B109.5
C7—C8—H8A109.4H26A—C26—H26B108.1
C9—C8—H8A109.4C28—C27—C26111.55 (18)
C7—C8—H8B109.4C28—C27—H27A109.3
C9—C8—H8B109.4C26—C27—H27A109.3
H8A—C8—H8B108.0C28—C27—H27B109.3
C10—C9—C8111.21 (18)C26—C27—H27B109.3
C10—C9—H9A109.4H27A—C27—H27B108.0
C8—C9—H9A109.4C29—C28—C27111.30 (18)
C10—C9—H9B109.4C29—C28—H28A109.4
C8—C9—H9B109.4C27—C28—H28A109.4
H9A—C9—H9B108.0C29—C28—H28B109.4
C11—C10—C9110.44 (17)C27—C28—H28B109.4
C11—C10—H10A109.6H28A—C28—H28B108.0
C9—C10—H10A109.6C28—C29—C30111.15 (18)
C11—C10—H10B109.6C28—C29—H29A109.4
C9—C10—H10B109.6C30—C29—H29A109.4
H10A—C10—H10B108.1C28—C29—H29B109.4
C10—C11—C12111.10 (18)C30—C29—H29B109.4
C10—C11—H11A109.4H29A—C29—H29B108.0
C12—C11—H11A109.4C25—C30—C29110.92 (19)
C10—C11—H11B109.4C25—C30—H30A109.5
C12—C11—H11B109.4C29—C30—H30A109.5
H11A—C11—H11B108.0C25—C30—H30B109.5
C11—C12—C7111.02 (17)C29—C30—H30B109.5
C11—C12—H12A109.4H30A—C30—H30B108.0
C7—C12—H12A109.4N6—C31—C36111.88 (17)
C11—C12—H12B109.4N6—C31—C32110.11 (18)
C7—C12—H12B109.4C36—C31—C32111.5 (2)
H12A—C12—H12B108.0N6—C31—H31A107.7
N3—C13—C18112.03 (15)C36—C31—H31A107.7
N3—C13—C14108.88 (16)C32—C31—H31A107.7
C18—C13—C14110.48 (18)C31—C32—C33111.5 (2)
N3—C13—H13108.5C31—C32—H32A109.3
C18—C13—H13108.5C33—C32—H32A109.3
C14—C13—H13108.5C31—C32—H32B109.3
C13—C14—C15112.37 (17)C33—C32—H32B109.3
C13—C14—H14A109.1H32A—C32—H32B108.0
C15—C14—H14A109.1C34—C33—C32111.0 (2)
C13—C14—H14B109.1C34—C33—H33A109.4
C15—C14—H14B109.1C32—C33—H33A109.4
H14A—C14—H14B107.9C34—C33—H33B109.4
C16—C15—C14111.44 (17)C32—C33—H33B109.4
C16—C15—H15A109.3H33A—C33—H33B108.0
C14—C15—H15A109.3C33—C34—C35110.8 (2)
C16—C15—H15B109.3C33—C34—H34A109.5
C14—C15—H15B109.3C35—C34—H34A109.5
H15A—C15—H15B108.0C33—C34—H34B109.5
C15—C16—C17111.1 (2)C35—C34—H34B109.5
C15—C16—H16A109.4H34A—C34—H34B108.1
C17—C16—H16A109.4C34—C35—C36111.6 (3)
C15—C16—H16B109.4C34—C35—H35A109.3
C17—C16—H16B109.4C36—C35—H35A109.3
H16A—C16—H16B108.0C34—C35—H35B109.3
C16—C17—C18111.07 (18)C36—C35—H35B109.3
C16—C17—H17A109.4H35A—C35—H35B108.0
C18—C17—H17A109.4C31—C36—C35111.6 (2)
C16—C17—H17B109.4C31—C36—H36A109.3
C18—C17—H17B109.4C35—C36—H36A109.3
H17A—C17—H17B108.0C31—C36—H36B109.3
C13—C18—C17111.55 (16)C35—C36—H36B109.3
C13—C18—H18A109.3H36A—C36—H36B108.0
C17—C18—H18A109.3
O1—P1—N1—C145.78 (18)C14—C13—C18—C1755.2 (2)
N2—P1—N1—C171.86 (18)C16—C17—C18—C1356.6 (3)
N3—P1—N1—C1173.17 (16)O3—P2—N4—C1963.31 (17)
O1—P1—N2—C7172.83 (16)N5—P2—N4—C1958.81 (17)
N3—P1—N2—C747.33 (19)N6—P2—N4—C19172.27 (15)
N1—P1—N2—C765.08 (19)O3—P2—N5—C25170.52 (15)
O1—P1—N3—C1361.28 (17)N6—P2—N5—C2546.84 (18)
N2—P1—N3—C1354.50 (17)N4—P2—N5—C2561.85 (17)
N1—P1—N3—C13175.90 (15)O3—P2—N6—C3146.27 (18)
N2—P1—O1—Cu1145.01 (13)N5—P2—N6—C3172.36 (18)
N3—P1—O1—Cu197.58 (14)N4—P2—N6—C31171.83 (16)
N1—P1—O1—Cu120.34 (17)P2—N4—C19—C24160.31 (14)
O2i—Cu1—O1—P1106.65 (14)P2—N4—C19—C2077.21 (19)
O2—Cu1—O1—P173.35 (14)N4—C19—C20—C21176.59 (16)
P1—N1—C1—C6128.38 (17)C24—C19—C20—C2155.1 (2)
P1—N1—C1—C2108.29 (18)C19—C20—C21—C2256.3 (2)
N1—C1—C2—C3177.91 (17)C20—C21—C22—C2355.9 (2)
C6—C1—C2—C357.9 (2)C21—C22—C23—C2455.4 (2)
C1—C2—C3—C457.4 (2)N4—C19—C24—C23179.14 (17)
C2—C3—C4—C554.9 (3)C20—C19—C24—C2355.1 (2)
C3—C4—C5—C654.0 (3)C22—C23—C24—C1955.8 (2)
N1—C1—C6—C5178.09 (17)P2—N5—C25—C2694.65 (19)
C2—C1—C6—C557.1 (2)P2—N5—C25—C30140.55 (16)
C4—C5—C6—C155.7 (2)N5—C25—C26—C27179.12 (16)
P1—N2—C7—C899.0 (2)C30—C25—C26—C2756.6 (2)
P1—N2—C7—C12137.46 (17)C25—C26—C27—C2855.7 (2)
N2—C7—C8—C9179.66 (18)C26—C27—C28—C2954.9 (3)
C12—C7—C8—C956.2 (2)C27—C28—C29—C3054.8 (3)
C7—C8—C9—C1056.2 (3)N5—C25—C30—C29176.49 (18)
C8—C9—C10—C1155.7 (3)C26—C25—C30—C2956.9 (2)
C9—C10—C11—C1256.3 (3)C28—C29—C30—C2556.0 (3)
C10—C11—C12—C757.3 (3)P2—N6—C31—C36110.7 (2)
N2—C7—C12—C11178.02 (18)P2—N6—C31—C32124.65 (19)
C8—C7—C12—C1156.7 (2)N6—C31—C32—C33178.6 (2)
P1—N3—C13—C1891.9 (2)C36—C31—C32—C3353.8 (3)
P1—N3—C13—C14145.60 (15)C31—C32—C33—C3456.5 (3)
N3—C13—C14—C15177.51 (17)C32—C33—C34—C3557.7 (3)
C18—C13—C14—C1554.1 (2)C33—C34—C35—C3656.5 (3)
C13—C14—C15—C1654.2 (3)N6—C31—C36—C35176.1 (3)
C14—C15—C16—C1754.6 (3)C32—C31—C36—C3552.3 (4)
C15—C16—C17—C1855.9 (3)C34—C35—C36—C3153.9 (4)
N3—C13—C18—C17176.77 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.85 (1)2.28 (1)3.064 (2)154 (2)
N3—H3N···O50.85 (1)2.45 (1)3.199 (2)148 (2)
N3—H3N···O40.85 (1)2.47 (1)3.232 (2)149 (2)
O2—H2WA···O50.82 (1)1.99 (1)2.811 (2)175 (2)
O2—H2WB···O30.83 (1)1.77 (1)2.5926 (19)170 (2)
N2—H2N···O3i0.85 (1)2.18 (1)2.983 (2)159 (2)
N4—H4N···O50.85 (1)2.23 (1)3.050 (2)163 (2)
N5—H5N···O6ii0.84 (1)2.43 (1)3.244 (2)164 (2)
N5—H5N···O4ii0.84 (1)2.73 (2)3.359 (2)133 (2)
N6—H6N···O60.84 (1)2.46 (1)3.258 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Sn(CH3)2Cl2(C18H36N3OP)2][Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP
Mr902.591589.46
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)12.0882 (6), 25.1607 (13), 15.8103 (8)15.4495 (12), 18.6924 (14), 16.5229 (12)
β (°) 108.879 (1) 116.656 (1)
V3)4550.0 (4)4264.5 (6)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.790.39
Crystal size (mm)0.35 × 0.25 × 0.250.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Multi-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.772, 0.8250.911, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
71686, 12101, 10758 32668, 9496, 7117
Rint0.0300.054
(sin θ/λ)max1)0.6820.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.080, 1.00 0.043, 0.106, 1.04
No. of reflections121019496
No. of parameters462490
No. of restraints09
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.480.47, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2008), SAINT (Bruker 2008), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Selected geometric parameters (Å, º) for (I) top
Sn1—C382.1114 (16)P1—O11.5032 (11)
Sn1—O12.2281 (11)P1—N11.6397 (14)
Sn1—Cl12.5479 (4)P2—O21.5116 (11)
C38—Sn1—C37176.31 (6)O2—P2—N6107.63 (6)
C38—Sn1—O190.69 (6)P1—O1—Sn1142.63 (7)
O1—Sn1—O287.31 (4)P2—O2—Sn1144.10 (6)
C38—Sn1—Cl190.83 (5)C1—N1—P1128.23 (11)
O2—Sn1—Cl1176.07 (3)C7—N2—P1123.14 (10)
O1—P1—N3117.82 (7)C13—N3—P1120.32 (10)
O1—P1—N2106.76 (7)C19—N4—P2124.77 (10)
O2—P2—N4117.89 (7)C25—N5—P2122.46 (11)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.862.162.9900 (16)161
N3—H3N···Cl1i0.922.613.4403 (13)151
N4—H4N···Cl2ii0.882.463.3296 (12)169
N5—H5N···Cl20.832.513.3135 (15)162
N6—H6N···Cl1ii0.872.533.3736 (14)165
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
P1—O11.5090 (14)Cu1—O21.9229 (15)
P1—N21.6240 (17)P2—O31.5024 (15)
P1—N31.6274 (18)P2—N51.6288 (16)
P1—N11.6372 (17)P2—N61.6348 (17)
Cu1—O11.8888 (12)P2—N41.6495 (17)
O1—P1—N2103.41 (8)P1—O1—Cu1139.13 (9)
O1—P1—N3118.43 (9)O3—P2—N5106.71 (8)
N2—P1—N3106.46 (9)O3—P2—N6114.77 (9)
O1—P1—N1111.53 (8)N5—P2—N6107.65 (8)
N2—P1—N1115.45 (9)O3—P2—N4116.43 (8)
N3—P1—N1102.03 (9)N5—P2—N4110.75 (9)
O1—Cu1—O291.42 (6)N6—P2—N4100.25 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.850 (9)2.280 (14)3.064 (2)154 (2)
N3—H3N···O50.851 (9)2.449 (14)3.199 (2)147.6 (19)
N3—H3N···O40.851 (9)2.473 (14)3.232 (2)149.0 (19)
O2—H2WA···O50.824 (9)1.989 (10)2.811 (2)175 (2)
O2—H2WB···O30.827 (9)1.774 (10)2.5926 (19)170 (2)
N2—H2N···O3i0.846 (9)2.178 (12)2.983 (2)159 (2)
N4—H4N···O50.853 (9)2.225 (11)3.050 (2)163 (2)
N5—H5N···O6ii0.841 (9)2.426 (11)3.244 (2)164 (2)
N5—H5N···O4ii0.841 (9)2.727 (17)3.359 (2)133.2 (18)
N6—H6N···O60.843 (9)2.458 (12)3.258 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds