Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
1,1'-[(Ethane-1,2-diyldi­oxy)di-o-phenyl­ene]bis­(indoline-2,3-dione), C32H24N2O6, L or (I), adopts a trans conformation with the two terminal indoline-2,3-dione groups located on opposite sides of the central ether bridge, as required by a centre of inversion located at the mid-point of the ethane C-C bond. However, in the discrete binuclear AgI metallocycle complex salt bis­{[mu]-1,1'-[(ethane-1,2-diyldi­oxy)di-o-phenyl­ene]bis­(indoline-2,3-dione)}disilver(I) bis­(hexa­fluor­ido­antimonate), [Ag2(C32H24N2O6)2][SbF6]2, (II), synthesized by combination of L with AgSbF6, L adopts a gauche conformation to bind AgI via the two indolinedione O atoms and two C atoms from the phen­oxy ring. One dione O atom from the opposite side of the ether bridge completes the irregular coordination environment of each AgI atom. The complex is on a centre of inversion located between the AgI atoms. In the solid state, these binuclear [Ag2L2]2+ metallocycles stack together via inter­molecular [pi]-[pi] inter­actions to generate a one-dimensional chain motif, with the [SbF6]- counter-ions, which are disordered, located between the chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110054697/sq3280sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110054697/sq3280Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110054697/sq3280IIsup3.hkl
Contains datablock II

CCDC references: 817032; 817033

Comment top

The design and construction of molecular architectures based on transition metals and organic spacers is currently attracting significant attention (Leininger et al., 2000; Moulton & Zaworotko, 2001; Kitagawa et al., 2004). Over the past decade, numerous supramolecular networks based on metal-containing molecular building blocks linked through weak intermolecular interactions have been successfully achieved (Liu et al., 2006; Reger et al., 2009). Compared with hydrogen bond-driven networks, supramolecular networks driven by ππ stacking have received less attention. The ππ interaction undoubtedly plays an important role in determining the arrangement of discrete molecular complexes in the solid state (Khavasi & Fard, 2010).

In order to investigate further how ππ interactions participate in the arrangement of molecular complexes in self-assembled aggregates, we synthesized a new ethylene glycol ether bridging ligand, 1,1'-[(ethane-1,2-diyldioxy)di-o-phenylene]bis(indoline-2,3-dione), L or (I), in which two large aromatic indoline-2,3-dione groups are introduced. The combination of (I) with AgSbF6 afforded [Ag2L2][SbF6]2, (II), which features a ππ stacking driven one-dimensional chain consisting of novel dinuclear [Ag2L2]2+ complexes.

The molecule of compound (I) is on a centre of inversion located at the midpoint of the central C16—C16i bond [symmetry code: (i) -x, -y + 1, -z] (Fig. 1) and consequently adopts a trans conformation in the solid state, with the two terminal indoline-2,3-dione groups located on opposite sides of the central bridging ether group. The results are similar to previously reported ethylene glycol ether bridging molecules, which typically adopt trans conformations in the free state (Han & Zhen, 2005). In addition, the terminal indoline-2,3-dione group is nearly perpendicular to the adjacent phenoxy arene ring. The corresponding dihedral angle is 83.28 (5)°. In the crystal structure, the molecules of (I) are arranged in chains running along the a axis, with ππ interactions [3.655 (1) Å] between adjacent parallel indoline-2,3-dione groups (Fig. 2).

In (II), two L ligands connect to each of two AgI centres, leading to a discrete binuclear AgI metallocycle complex, [Ag2L2]2+, with a centre of inversion located between the AgI atoms [Ag1···Ag1i distance 4.749 (1) Å; symmetry code: (i) -x, -y + 1, -z + 1] (Fig. 3). Each AgI centre lies in a five-coordinated environment defined by three O-atom donors (O2i, O5 and O6) from two ligands and two π-donor C atoms from a phenoxy arene ring. The Ag—O [2.372 (4)–2.577 (4) Å] and Ag—C [2.458 (6) and 2.572 (6) Å] distances are consistent with what we have previously observed in related complexes (Dong et al., 2006). In the metallacycle formed by each AgI atom and its primary coordinating L ligand, an open rectangular-like loop of dimensions ca 4.74 (1) × 7.60 (4) Å is found.

Compared with (I), the torsion angle of the central ether group, O3—C16—C17—O4, has changed from 180 to 76.1 (5)° in (II). Thus, L adopts a trans conformation about its central core in the free state, (I), but a gauche conformation after coordinating to the AgI centre in (II). The freedom of rotation around the central C—C single bond gives rise to varied conformations which may be frozen by metal-directed interactions. It is well known that flexible ethylene glycol ether bridging ligands with two terminal coordination donors can adopt different conformations under different conditions. For example, we have reported previously a study of a flexible ethylene glycol ether bridging ligand adopting different conformations at different temperatures (Dong et al., 2007). The relationship of the indoline-2,3-dione rings to the adjacent phenoxy rings is similar to that observed in the free ligand, as the corresponding dihedral angles are 89.1 (1) and 81.9 (1)°.

In the solid state, the dinuclear complexes of (II) are linked to each other through ππ interactions between indoline-2,3-dione groups from two different [Ag2L2]2+ units [centroid-to-centroid distance 3.825 (5) Å], resulting in one-dimensional chains along the crystallographic c axis (Fig. 4). These ππ interaction-driven one-dimensional chains are stacked in an –AA– parallel fashion in the b direction. Although there appear to be ππ interactions between arene rings in different chains, the corresponding centroid-to-centroid distance is 5.503 (8) Å, which is far too long for such interactions. The uncoordinated SbF6- counterions, which are rotationally disordered, are located in the spaces between the chains (Fig. 4).

In summary, the flexible ligand L with terminal indoline-2,3-dione groups can be used as a polydentate or chelating ligand to coordinate transition metal ions. A novel one-dimensional supramolecular chain was obtained successfully based on such coordination. This study demonstrates that ππ interactions play an important role in constructing aggregate supramolecular compounds. We are currently extending this result by preparing new ligands of this type with different substituted functional groups. We anticipate this approach to be useful for constructing novel superamolecular complexes.

Related literature top

For related literature, see: Dong et al. (2006, 2007); Han & Zhen (2005); Khavasi & Fard (2010); Kitagawa et al. (2004); Leininger et al. (2000); Liu et al. (2006); Moulton & Zaworotko (2001); Reger et al. (2009).

Experimental top

K2CO3 (6.91 g, 50 mmol) was added with stirring to a solution of 1,2-bis(2-bromomethylphenoxy)ethane (2.00 g, 5 mmol) and indoline-2,3-dione (1.47 g, 10 mmol) in anhydrous CH3CN (50 ml). The mixture was stirred for 12 h at ambient temperature and monitored by thin-layer chromatography (TLC). After removal of the solvent under vacuum, the residue was purified on silica gel by column chromatography using CH2Cl2:MeOH (30:1 v/v) as eluent to afford (I) as a red crystalline solid (1.09 g, 2.05 mmol; yield 41%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 1737 (s), 1615 (s), 1471 (s), 1351 (s), 1256 (m), 1119 (w), 1055 (w), 752 (s), 630 (m), 469 (m); 1H NMR (300 MHz, CDCl3, 298 K, TMS, δ, p.p.m.): 7.51 (d, 2H, o-C6H4), 7.31 (m, 2H, m-C6H4), 7.28 (m, 2H, p-C6H4), 7.23–6.98 (aabb, 8H, –C6H4), 6.78 (d, 2H, m-C6H4), 4.91 (s, 4H, –CH2–), 4.42 (s, 4H, –CH2–). Elemental analysis, calculated for C32H24N2O6: C 72.18, H 4.51, N 5.26, O 18.05%; found: C 72.19, H 4.50, N 5.25, O 18.06%.

A solution of AgSbF6 (6.46 mg, 0.019 mmol) in benzene (5 ml) was layered on a solution of (I) (10.0 mg, 0.019 mmol) in CH2Cl2 (7 ml). The system was left for about one week at room temperature and red crystals of (II) were obtained (7.90 mg, yield 48%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 1712 (s), 1611 (s), 1491 (s), 1343 (s), 1245 (m), 1119 (w), 1062 (w), 759 (s), 662 (s), 472 (m).

Refinement top

The H atoms in both structures were placed in idealized positions and treated as riding, with C—H = 0.93 (aromatic), 0.97 (CH2) and, in (II), 0.98 Å (CH with C coordinated to Ag), and with Uiso(H) = 1.2Ueq(C). The [SbF6]- anion was statistically disordered over two orientations, with site-occupation factors set at 0.50:0.50. The Sb1—F3/Sb1—F3', Sb1—F6/Sb1—F6' and Sb1—F4/Sb1—F4' pairs of bond lengths were restrained to be the same within a standard deviation of 0.01 Å. Atom F2' was constrained to have the same anisotropic displacement parameters as atom F2.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x, -y + 1, -z.]
[Figure 2] Fig. 2. The packing of (I), showing one-dimensional chains driven by ππ interactions (dashed lines).
[Figure 3] Fig. 3. The molecular structure of the [Ag2L2]2+ cations in (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y + 1, -z + 1.]
[Figure 4] Fig. 4. The one-dimensional chains of [Ag2L2]2+ cations in (II), driven by intermolecular ππ interactions (dashed lines). Both orientations of the rotationally disordered [SbF6]- counterions, located in the space between the chains, are shown.
(I) 1,1'-[(Ethane-1,2-diyldioxy)di-o-phenylene]bis(indoline-2,3-dione) top
Crystal data top
C32H24N2O6F(000) = 556
Mr = 532.53Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 857 reflections
a = 4.8272 (17) Åθ = 2.6–20.9°
b = 14.194 (5) ŵ = 0.10 mm1
c = 18.883 (7) ÅT = 298 K
β = 91.472 (7)°Bar, red
V = 1293.4 (8) Å30.55 × 0.14 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1506 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ϕ and ω scansh = 55
6683 measured reflectionsk = 1717
2398 independent reflectionsl = 2217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.1059P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C32H24N2O6V = 1293.4 (8) Å3
Mr = 532.53Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.8272 (17) ŵ = 0.10 mm1
b = 14.194 (5) ÅT = 298 K
c = 18.883 (7) Å0.55 × 0.14 × 0.04 mm
β = 91.472 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1506 reflections with I > 2σ(I)
6683 measured reflectionsRint = 0.046
2398 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2398 reflectionsΔρmin = 0.13 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0460 (6)0.34667 (18)0.22697 (14)0.0505 (7)
C20.1003 (6)0.2714 (2)0.25147 (15)0.0648 (8)
H20.07920.21130.23280.078*
C30.2851 (7)0.2899 (3)0.30652 (17)0.0831 (11)
H30.38590.24030.32520.100*
C40.3202 (8)0.3788 (3)0.33323 (18)0.0871 (11)
H40.44660.38860.36880.105*
C50.1735 (8)0.4526 (3)0.30853 (18)0.0816 (11)
H50.19650.51280.32690.098*
C60.0111 (6)0.4361 (2)0.25532 (15)0.0604 (8)
C70.1959 (7)0.4991 (2)0.21878 (16)0.0711 (9)
C80.3527 (7)0.4360 (2)0.16718 (16)0.0621 (8)
C90.3228 (6)0.26742 (19)0.13121 (14)0.0562 (8)
H9A0.37340.21570.16260.067*
H9B0.48570.28400.10490.067*
C100.1012 (6)0.23380 (17)0.07975 (13)0.0471 (7)
C110.0150 (6)0.14134 (19)0.07931 (15)0.0593 (8)
H110.09340.09970.11210.071*
C120.1832 (7)0.1087 (2)0.03189 (18)0.0701 (9)
H120.23720.04590.03290.084*
C130.3014 (7)0.1690 (2)0.01692 (17)0.0683 (9)
H130.43790.14730.04850.082*
C140.2181 (6)0.2615 (2)0.01915 (14)0.0606 (8)
H140.29560.30200.05290.073*
C150.0193 (6)0.29457 (17)0.02871 (14)0.0480 (7)
C160.0569 (7)0.45357 (16)0.01211 (15)0.0606 (8)
H16A0.25580.45130.00610.073*
H16B0.01900.44330.06170.073*
N10.2453 (5)0.34815 (14)0.17423 (11)0.0510 (6)
O10.2339 (6)0.58289 (16)0.22527 (15)0.1163 (10)
O20.5383 (5)0.46048 (15)0.12861 (13)0.0868 (8)
O30.0785 (4)0.38421 (12)0.03087 (10)0.0592 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (18)0.0577 (17)0.0443 (15)0.0053 (14)0.0080 (14)0.0005 (13)
C20.066 (2)0.0686 (19)0.0592 (18)0.0006 (17)0.0003 (17)0.0024 (15)
C30.071 (2)0.119 (3)0.060 (2)0.013 (2)0.0062 (18)0.010 (2)
C40.073 (3)0.131 (3)0.058 (2)0.014 (2)0.0031 (19)0.021 (2)
C50.080 (3)0.100 (3)0.065 (2)0.026 (2)0.007 (2)0.022 (2)
C60.060 (2)0.0674 (19)0.0529 (18)0.0106 (16)0.0094 (16)0.0108 (15)
C70.085 (3)0.0549 (19)0.072 (2)0.0029 (18)0.0220 (19)0.0064 (16)
C80.067 (2)0.066 (2)0.0534 (19)0.0078 (17)0.0093 (17)0.0048 (15)
C90.0537 (18)0.0578 (17)0.0570 (17)0.0100 (14)0.0017 (14)0.0022 (13)
C100.0478 (17)0.0470 (15)0.0472 (15)0.0074 (13)0.0134 (13)0.0017 (12)
C110.068 (2)0.0515 (17)0.0592 (18)0.0094 (15)0.0079 (17)0.0028 (14)
C120.087 (3)0.0508 (18)0.073 (2)0.0077 (17)0.018 (2)0.0077 (16)
C130.072 (2)0.072 (2)0.060 (2)0.0107 (17)0.0041 (17)0.0183 (17)
C140.069 (2)0.0665 (19)0.0462 (16)0.0011 (16)0.0016 (15)0.0010 (14)
C150.0511 (18)0.0454 (15)0.0482 (16)0.0033 (13)0.0133 (14)0.0020 (12)
C160.068 (2)0.0561 (17)0.0573 (18)0.0048 (15)0.0027 (16)0.0124 (14)
N10.0551 (15)0.0532 (14)0.0447 (13)0.0005 (11)0.0030 (12)0.0013 (10)
O10.152 (3)0.0580 (16)0.138 (3)0.0148 (16)0.016 (2)0.0214 (14)
O20.0849 (18)0.0991 (18)0.0763 (15)0.0311 (14)0.0021 (14)0.0117 (13)
O30.0627 (14)0.0505 (11)0.0639 (13)0.0010 (9)0.0089 (10)0.0117 (9)
Geometric parameters (Å, º) top
C1—C21.368 (4)C9—H9A0.9700
C1—C61.390 (3)C9—H9B0.9700
C1—N11.402 (3)C10—C111.377 (4)
C2—C31.412 (4)C10—C151.408 (3)
C2—H20.9300C11—C121.374 (4)
C3—C41.372 (5)C11—H110.9300
C3—H30.9300C12—C131.371 (4)
C4—C51.353 (5)C12—H120.9300
C4—H40.9300C13—C141.373 (4)
C5—C61.380 (5)C13—H130.9300
C5—H50.9300C14—C151.383 (4)
C6—C71.450 (4)C14—H140.9300
C7—O11.209 (3)C15—O31.357 (3)
C7—C81.537 (4)C16—O31.424 (3)
C8—O21.219 (4)C16—C16i1.495 (5)
C8—N11.358 (3)C16—H16A0.9700
C9—N11.459 (3)C16—H16B0.9700
C9—C101.504 (4)
C2—C1—C6121.0 (3)H9A—C9—H9B107.5
C2—C1—N1128.4 (3)C11—C10—C15117.4 (3)
C6—C1—N1110.6 (2)C11—C10—C9121.1 (2)
C1—C2—C3116.5 (3)C15—C10—C9121.5 (2)
C1—C2—H2121.8C12—C11—C10122.0 (3)
C3—C2—H2121.8C12—C11—H11119.0
C4—C3—C2121.9 (3)C10—C11—H11119.0
C4—C3—H3119.1C13—C12—C11119.9 (3)
C2—C3—H3119.1C13—C12—H12120.0
C5—C4—C3121.0 (4)C11—C12—H12120.0
C5—C4—H4119.5C12—C13—C14120.0 (3)
C3—C4—H4119.5C12—C13—H13120.0
C4—C5—C6118.2 (3)C14—C13—H13120.0
C4—C5—H5120.9C13—C14—C15120.2 (3)
C6—C5—H5120.9C13—C14—H14119.9
C5—C6—C1121.5 (3)C15—C14—H14119.9
C5—C6—C7131.2 (3)O3—C15—C14124.9 (2)
C1—C6—C7107.3 (3)O3—C15—C10114.6 (2)
O1—C7—C6130.7 (3)C14—C15—C10120.4 (2)
O1—C7—C8124.2 (3)O3—C16—C16i106.0 (3)
C6—C7—C8105.1 (3)O3—C16—H16A110.5
O2—C8—N1127.5 (3)C16i—C16—H16A110.5
O2—C8—C7126.4 (3)O3—C16—H16B110.5
N1—C8—C7106.1 (3)C16i—C16—H16B110.5
N1—C9—C10114.9 (2)H16A—C16—H16B108.7
N1—C9—H9A108.6C8—N1—C1110.7 (2)
C10—C9—H9A108.6C8—N1—C9124.2 (2)
N1—C9—H9B108.6C1—N1—C9125.0 (2)
C10—C9—H9B108.6C15—O3—C16118.5 (2)
C6—C1—C2—C30.2 (4)C10—C11—C12—C130.0 (4)
N1—C1—C2—C3178.7 (3)C11—C12—C13—C141.1 (5)
C1—C2—C3—C41.2 (5)C12—C13—C14—C151.4 (4)
C2—C3—C4—C51.3 (5)C13—C14—C15—O3179.6 (3)
C3—C4—C5—C60.5 (5)C13—C14—C15—C100.5 (4)
C4—C5—C6—C10.5 (5)C11—C10—C15—O3178.6 (2)
C4—C5—C6—C7179.6 (3)C9—C10—C15—O30.7 (3)
C2—C1—C6—C50.6 (4)C11—C10—C15—C140.6 (4)
N1—C1—C6—C5179.7 (3)C9—C10—C15—C14178.5 (2)
C2—C1—C6—C7179.4 (3)O2—C8—N1—C1176.4 (3)
N1—C1—C6—C70.4 (3)C7—C8—N1—C12.8 (3)
C5—C6—C7—O10.7 (6)O2—C8—N1—C95.1 (5)
C1—C6—C7—O1179.2 (3)C7—C8—N1—C9175.7 (2)
C5—C6—C7—C8178.1 (3)C2—C1—N1—C8177.3 (3)
C1—C6—C7—C82.0 (3)C6—C1—N1—C81.6 (3)
O1—C7—C8—O22.6 (5)C2—C1—N1—C94.2 (4)
C6—C7—C8—O2176.2 (3)C6—C1—N1—C9176.9 (2)
O1—C7—C8—N1178.2 (3)C10—C9—N1—C8110.2 (3)
C6—C7—C8—N12.9 (3)C10—C9—N1—C168.1 (3)
N1—C9—C10—C11125.7 (3)C14—C15—O3—C169.3 (4)
N1—C9—C10—C1556.5 (3)C10—C15—O3—C16171.6 (2)
C15—C10—C11—C120.8 (4)C16i—C16—O3—C15168.8 (3)
C9—C10—C11—C12178.7 (3)
Symmetry code: (i) x, y+1, z.
(II) bis{µ-1,1'-[(ethane-1,2-diyldioxy)di-o-phenylene]bis(indoline- 2,3-dione)}disilver(I) bis(hexafluoridoantimonate) top
Crystal data top
[Ag2(C32H24N2O6)2][SbF6]2Z = 1
Mr = 1752.30F(000) = 860
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.193 (2) ÅCell parameters from 2230 reflections
b = 11.594 (3) Åθ = 2.5–22.0°
c = 14.220 (3) ŵ = 1.61 mm1
α = 111.121 (3)°T = 298 K
β = 91.073 (3)°Block, red
γ = 100.819 (3)°0.30 × 0.17 × 0.10 mm
V = 1533.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5593 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1012
Tmin = 0.645, Tmax = 0.856k = 1314
8087 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0582P)2 + 1.8707P]
where P = (Fo2 + 2Fc2)/3
5593 reflections(Δ/σ)max = 0.001
481 parametersΔρmax = 1.07 e Å3
3 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Ag2(C32H24N2O6)2][SbF6]2γ = 100.819 (3)°
Mr = 1752.30V = 1533.0 (6) Å3
Triclinic, P1Z = 1
a = 10.193 (2) ÅMo Kα radiation
b = 11.594 (3) ŵ = 1.61 mm1
c = 14.220 (3) ÅT = 298 K
α = 111.121 (3)°0.30 × 0.17 × 0.10 mm
β = 91.073 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4279 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.856Rint = 0.024
8087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 1.07 e Å3
5593 reflectionsΔρmin = 1.02 e Å3
481 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.20269 (7)0.35357 (5)0.42128 (4)0.0796 (2)
C10.3205 (6)0.4053 (6)0.4483 (4)0.0485 (13)
C20.3631 (5)0.2907 (5)0.3880 (4)0.0462 (13)
C30.4572 (6)0.2677 (6)0.3178 (5)0.0564 (15)
H30.50810.33340.30290.068*
C40.4733 (6)0.1456 (7)0.2707 (5)0.0652 (18)
H40.53430.12790.22230.078*
C50.3994 (7)0.0490 (7)0.2948 (6)0.072 (2)
H50.41290.03280.26280.086*
C60.3050 (6)0.0708 (6)0.3658 (5)0.0637 (17)
H60.25580.00540.38180.076*
C70.2882 (6)0.1932 (5)0.4109 (4)0.0490 (13)
C80.2091 (6)0.3630 (5)0.5067 (4)0.0474 (13)
C90.1080 (6)0.1641 (6)0.5282 (4)0.0538 (15)
H9A0.14020.19030.59890.065*
H9B0.11140.07570.49500.065*
C100.0341 (6)0.1780 (5)0.5215 (4)0.0489 (13)
C110.1097 (6)0.1270 (5)0.4280 (4)0.0457 (13)
C120.2450 (6)0.1377 (6)0.4212 (5)0.0545 (15)
H120.30590.07170.36590.065*
C130.3004 (7)0.2012 (6)0.5085 (6)0.0663 (18)
H130.39810.18070.50840.080*
C140.2259 (8)0.2535 (7)0.6004 (6)0.079 (2)
H140.26330.29790.65820.095*
C150.0950 (7)0.2398 (6)0.6064 (5)0.0670 (18)
H150.04580.27290.66940.080*
C160.1128 (6)0.0250 (6)0.2483 (4)0.0520 (14)
H16A0.15300.09080.24030.062*
H16B0.18310.04910.23670.062*
C170.0094 (6)0.0064 (5)0.1752 (4)0.0512 (14)
H17A0.04730.05370.19520.061*
H17B0.05250.05760.10780.061*
C180.1676 (5)0.1032 (5)0.1116 (4)0.0424 (12)
C190.1988 (6)0.0095 (5)0.0491 (4)0.0516 (14)
H190.15000.08630.04810.062*
C200.3029 (7)0.0071 (6)0.0117 (5)0.0622 (17)
H200.32660.08220.05130.075*
C210.3712 (7)0.1053 (7)0.0139 (5)0.0643 (17)
H210.43880.10640.05670.077*
C220.3393 (6)0.2162 (6)0.0475 (5)0.0540 (15)
H220.38710.29240.04650.065*
C230.2377 (5)0.2176 (5)0.1108 (4)0.0429 (12)
C240.2107 (6)0.3421 (5)0.1799 (4)0.0499 (14)
H24A0.23660.35390.24930.060*
H24B0.26660.40950.16480.060*
C250.0144 (6)0.3522 (5)0.2435 (4)0.0460 (13)
C260.1544 (6)0.3407 (5)0.1955 (4)0.0483 (13)
C270.1344 (5)0.3430 (5)0.0945 (4)0.0458 (13)
C280.0010 (5)0.3467 (4)0.0833 (4)0.0407 (12)
C290.0543 (6)0.3441 (5)0.0062 (4)0.0500 (14)
H290.14500.34660.01410.060*
C300.0357 (7)0.3376 (6)0.0835 (5)0.0612 (17)
H300.00370.33500.14490.073*
C310.1695 (8)0.3348 (6)0.0733 (5)0.0680 (19)
H310.22590.33080.12710.082*
C320.2207 (6)0.3381 (5)0.0165 (5)0.0574 (15)
H320.31130.33700.02440.069*
N10.1959 (4)0.2378 (4)0.4823 (3)0.0442 (10)
N20.0707 (4)0.3528 (4)0.1717 (3)0.0439 (10)
O10.3549 (5)0.5140 (4)0.4556 (3)0.0641 (11)
O20.1461 (5)0.4326 (4)0.5649 (3)0.0619 (11)
O30.0450 (4)0.0677 (4)0.3484 (3)0.0510 (9)
O40.0687 (4)0.1091 (3)0.1757 (3)0.0493 (9)
O50.0114 (4)0.3543 (4)0.3278 (3)0.0572 (11)
O60.2563 (4)0.3242 (4)0.2363 (3)0.0633 (11)
Sb10.58932 (4)0.65652 (4)0.22306 (3)0.05775 (17)
F10.5908 (17)0.557 (2)0.0941 (13)0.173 (9)0.50
F20.553 (3)0.773 (3)0.1718 (17)0.213 (8)0.50
F30.7705 (10)0.7206 (18)0.225 (2)0.141 (8)0.50
F40.5995 (16)0.777 (2)0.3467 (10)0.154 (8)0.50
F50.625 (2)0.551 (3)0.273 (3)0.224 (10)0.50
F60.4088 (10)0.645 (3)0.212 (3)0.170 (12)0.50
F3'0.7694 (8)0.6482 (18)0.2339 (17)0.132 (8)0.50
F4'0.606 (3)0.8212 (9)0.258 (3)0.267 (16)0.50
F1'0.5596 (15)0.4808 (10)0.176 (2)0.154 (7)0.50
F5'0.5852 (15)0.656 (4)0.3504 (12)0.191 (12)0.50
F2'0.601 (3)0.642 (3)0.0948 (17)0.213 (8)0.50
F6'0.4072 (7)0.615 (2)0.219 (2)0.112 (7)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.1191 (5)0.0646 (3)0.0787 (4)0.0429 (3)0.0489 (4)0.0407 (3)
C10.050 (3)0.051 (3)0.049 (3)0.011 (3)0.001 (3)0.025 (3)
C20.040 (3)0.049 (3)0.051 (3)0.011 (3)0.001 (2)0.019 (3)
C30.041 (3)0.074 (4)0.057 (4)0.013 (3)0.006 (3)0.027 (3)
C40.047 (4)0.094 (5)0.058 (4)0.031 (4)0.011 (3)0.023 (4)
C50.057 (4)0.065 (4)0.083 (5)0.027 (4)0.001 (4)0.008 (4)
C60.053 (4)0.049 (4)0.083 (5)0.009 (3)0.002 (3)0.018 (3)
C70.048 (3)0.052 (3)0.044 (3)0.013 (3)0.004 (3)0.013 (3)
C80.048 (3)0.048 (3)0.044 (3)0.015 (3)0.000 (3)0.013 (3)
C90.060 (4)0.059 (4)0.048 (3)0.008 (3)0.000 (3)0.029 (3)
C100.054 (3)0.050 (3)0.049 (3)0.011 (3)0.008 (3)0.026 (3)
C110.053 (3)0.040 (3)0.048 (3)0.007 (3)0.010 (3)0.021 (3)
C120.044 (3)0.062 (4)0.065 (4)0.012 (3)0.008 (3)0.032 (3)
C130.053 (4)0.074 (4)0.085 (5)0.019 (3)0.028 (4)0.041 (4)
C140.090 (6)0.081 (5)0.075 (5)0.034 (4)0.045 (4)0.029 (4)
C150.075 (5)0.078 (5)0.046 (4)0.015 (4)0.016 (3)0.020 (3)
C160.051 (3)0.051 (3)0.050 (3)0.002 (3)0.001 (3)0.021 (3)
C170.064 (4)0.042 (3)0.039 (3)0.005 (3)0.006 (3)0.008 (2)
C180.043 (3)0.050 (3)0.035 (3)0.015 (3)0.007 (2)0.014 (2)
C190.058 (4)0.044 (3)0.052 (3)0.013 (3)0.012 (3)0.015 (3)
C200.069 (4)0.063 (4)0.055 (4)0.029 (3)0.016 (3)0.013 (3)
C210.054 (4)0.081 (5)0.064 (4)0.027 (4)0.022 (3)0.027 (4)
C220.044 (3)0.062 (4)0.061 (4)0.013 (3)0.011 (3)0.028 (3)
C230.037 (3)0.046 (3)0.048 (3)0.013 (2)0.005 (2)0.018 (3)
C240.046 (3)0.047 (3)0.055 (3)0.010 (3)0.002 (3)0.016 (3)
C250.055 (3)0.037 (3)0.048 (3)0.017 (3)0.013 (3)0.015 (3)
C260.050 (3)0.040 (3)0.055 (3)0.017 (3)0.014 (3)0.013 (3)
C270.044 (3)0.041 (3)0.053 (3)0.013 (2)0.005 (3)0.016 (3)
C280.050 (3)0.029 (3)0.045 (3)0.012 (2)0.005 (2)0.014 (2)
C290.062 (4)0.043 (3)0.051 (3)0.020 (3)0.016 (3)0.020 (3)
C300.085 (5)0.057 (4)0.052 (4)0.028 (4)0.014 (3)0.025 (3)
C310.090 (5)0.060 (4)0.055 (4)0.020 (4)0.011 (4)0.022 (3)
C320.049 (3)0.053 (4)0.070 (4)0.018 (3)0.001 (3)0.020 (3)
N10.045 (3)0.044 (3)0.046 (3)0.009 (2)0.004 (2)0.020 (2)
N20.043 (3)0.044 (2)0.048 (3)0.015 (2)0.008 (2)0.017 (2)
O10.071 (3)0.054 (3)0.073 (3)0.014 (2)0.014 (2)0.029 (2)
O20.078 (3)0.058 (3)0.056 (3)0.025 (2)0.022 (2)0.023 (2)
O30.049 (2)0.061 (2)0.045 (2)0.0156 (19)0.0097 (18)0.0187 (19)
O40.059 (2)0.038 (2)0.048 (2)0.0104 (18)0.0190 (18)0.0109 (17)
O50.076 (3)0.061 (3)0.046 (2)0.034 (2)0.019 (2)0.023 (2)
O60.051 (3)0.069 (3)0.076 (3)0.023 (2)0.026 (2)0.029 (2)
Sb10.0471 (3)0.0648 (3)0.0586 (3)0.0053 (2)0.00704 (19)0.0227 (2)
F10.147 (12)0.180 (16)0.106 (10)0.095 (13)0.045 (9)0.074 (11)
F20.284 (19)0.28 (2)0.189 (15)0.124 (16)0.108 (13)0.180 (16)
F30.070 (8)0.155 (17)0.145 (12)0.032 (8)0.042 (8)0.019 (14)
F40.103 (11)0.217 (18)0.073 (9)0.058 (13)0.005 (7)0.039 (10)
F50.25 (3)0.22 (2)0.32 (3)0.11 (2)0.05 (2)0.21 (3)
F60.145 (17)0.23 (3)0.132 (17)0.112 (16)0.017 (13)0.036 (17)
F3'0.045 (6)0.181 (19)0.114 (11)0.009 (7)0.007 (6)0.005 (14)
F4'0.28 (3)0.042 (6)0.46 (4)0.027 (10)0.20 (3)0.061 (15)
F1'0.119 (11)0.057 (6)0.25 (2)0.018 (6)0.017 (12)0.018 (9)
F5'0.083 (8)0.41 (4)0.079 (9)0.004 (17)0.001 (7)0.121 (17)
F2'0.284 (19)0.28 (2)0.189 (15)0.124 (16)0.108 (13)0.180 (16)
F6'0.028 (5)0.116 (10)0.176 (19)0.009 (6)0.011 (8)0.046 (10)
Geometric parameters (Å, º) top
Ag1—O2i2.372 (4)C18—C231.387 (7)
Ag1—C122.458 (6)C18—C191.389 (7)
Ag1—O62.562 (5)C19—C201.384 (8)
Ag1—C132.572 (6)C19—H190.9300
Ag1—O52.577 (4)C20—C211.368 (9)
C1—O11.209 (7)C20—H200.9300
C1—C21.448 (8)C21—C221.372 (9)
C1—C81.529 (8)C21—H210.9300
C2—C71.385 (8)C22—C231.384 (7)
C2—C31.389 (8)C22—H220.9300
C3—C41.374 (9)C23—C241.504 (7)
C3—H30.9300C24—N21.462 (7)
C4—C51.382 (10)C24—H24A0.9700
C4—H40.9300C24—H24B0.9700
C5—C61.398 (9)C25—O51.213 (7)
C5—H50.9300C25—N21.353 (7)
C6—C71.378 (8)C25—C261.532 (8)
C6—H60.9300C26—O61.217 (7)
C7—N11.422 (7)C26—C271.464 (8)
C8—O21.217 (7)C27—C321.381 (8)
C8—N11.344 (7)C27—C281.386 (7)
C9—N11.448 (7)C28—C291.386 (7)
C9—C101.492 (8)C28—N21.406 (7)
C9—H9A0.9700C29—C301.390 (9)
C9—H9B0.9700C29—H290.9300
C10—C151.389 (8)C30—C311.369 (9)
C10—C111.391 (8)C30—H300.9300
C11—O31.351 (6)C31—C321.380 (9)
C11—C121.412 (8)C31—H310.9300
C12—C131.387 (9)C32—H320.9300
C12—H120.9800O2—Ag1i2.372 (4)
C13—C141.368 (10)Sb1—F51.702 (15)
C13—H130.9800Sb1—F4'1.765 (9)
C14—C151.378 (10)Sb1—F2'1.777 (18)
C14—H140.9300Sb1—F11.784 (12)
C15—H150.9300Sb1—F41.793 (9)
C16—O31.441 (7)Sb1—F5'1.816 (12)
C16—C171.496 (8)Sb1—F61.819 (9)
C16—H16A0.9700Sb1—F6'1.824 (6)
C16—H16B0.9700Sb1—F21.84 (2)
C17—O41.421 (6)Sb1—F31.854 (8)
C17—H17A0.9700Sb1—F1'1.862 (11)
C17—H17B0.9700Sb1—F3'1.863 (8)
C18—O41.367 (6)
O2i—Ag1—C12174.39 (18)O5—C25—C26125.7 (5)
O2i—Ag1—O680.32 (14)N2—C25—C26106.3 (5)
C12—Ag1—O6104.62 (18)O6—C26—C27131.2 (6)
O2i—Ag1—C13145.85 (19)O6—C26—C25123.1 (5)
C12—Ag1—C1331.9 (2)C27—C26—C25105.5 (5)
O6—Ag1—C13126.5 (2)C32—C27—C28120.8 (5)
O2i—Ag1—O578.73 (14)C32—C27—C26133.1 (6)
C12—Ag1—O5100.40 (16)C28—C27—C26106.1 (5)
O6—Ag1—O568.87 (13)C29—C28—C27121.6 (5)
C13—Ag1—O5127.52 (17)C29—C28—N2126.9 (5)
O1—C1—C2132.5 (6)C27—C28—N2111.5 (5)
O1—C1—C8122.4 (5)C28—C29—C30116.1 (6)
C2—C1—C8105.1 (5)C28—C29—H29122.0
C7—C2—C3120.9 (5)C30—C29—H29122.0
C7—C2—C1106.9 (5)C31—C30—C29123.0 (6)
C3—C2—C1132.2 (5)C31—C30—H30118.5
C4—C3—C2118.4 (6)C29—C30—H30118.5
C4—C3—H3120.8C30—C31—C32120.2 (6)
C2—C3—H3120.8C30—C31—H31119.9
C3—C4—C5120.4 (6)C32—C31—H31119.9
C3—C4—H4119.8C31—C32—C27118.4 (6)
C5—C4—H4119.8C31—C32—H32120.8
C4—C5—C6121.8 (6)C27—C32—H32120.8
C4—C5—H5119.1C8—N1—C7109.2 (5)
C6—C5—H5119.1C8—N1—C9124.4 (5)
C7—C6—C5117.1 (6)C7—N1—C9126.3 (5)
C7—C6—H6121.5C25—N2—C28110.4 (5)
C5—C6—H6121.5C25—N2—C24124.3 (5)
C6—C7—C2121.3 (6)C28—N2—C24124.6 (5)
C6—C7—N1127.4 (6)C8—O2—Ag1i114.6 (4)
C2—C7—N1111.2 (5)C11—O3—C16118.0 (4)
O2—C8—N1127.4 (5)C18—O4—C17118.1 (4)
O2—C8—C1125.0 (5)C25—O5—Ag1109.9 (4)
N1—C8—C1107.6 (5)C26—O6—Ag1111.3 (4)
N1—C9—C10113.0 (5)F5—Sb1—F4'139.3 (16)
N1—C9—H9A109.0F5—Sb1—F2'125.2 (12)
C10—C9—H9A109.0F4'—Sb1—F2'89.5 (14)
N1—C9—H9B109.0F5—Sb1—F195.7 (12)
C10—C9—H9B109.0F4'—Sb1—F1121.0 (15)
H9A—C9—H9B107.8F2'—Sb1—F131.5 (8)
C15—C10—C11118.2 (6)F5—Sb1—F491.6 (12)
C15—C10—C9122.0 (6)F4'—Sb1—F450.5 (10)
C11—C10—C9119.7 (5)F2'—Sb1—F4139.9 (12)
O3—C11—C10115.4 (5)F1—Sb1—F4171.0 (13)
O3—C11—C12124.5 (5)F5—Sb1—F5'48.3 (11)
C10—C11—C12120.1 (5)F4'—Sb1—F5'96.3 (14)
C13—C12—C11119.2 (6)F2'—Sb1—F5'173.5 (13)
C13—C12—Ag178.6 (4)F1—Sb1—F5'142.6 (14)
C11—C12—Ag197.3 (4)F4—Sb1—F5'45.8 (9)
C13—C12—H12117.5F5—Sb1—F6109.5 (14)
C11—C12—H12117.5F4'—Sb1—F686.9 (14)
Ag1—C12—H12117.5F2'—Sb1—F692.1 (14)
C14—C13—C12121.0 (6)F1—Sb1—F693.5 (12)
C14—C13—Ag1101.9 (5)F4—Sb1—F689.1 (11)
C12—C13—Ag169.5 (4)F5'—Sb1—F691.1 (12)
C14—C13—H13117.5F5—Sb1—F6'97.0 (11)
C12—C13—H13117.5F4'—Sb1—F6'97.8 (11)
Ag1—C13—H13117.5F2'—Sb1—F6'98.4 (12)
C13—C14—C15119.2 (6)F1—Sb1—F6'93.2 (11)
C13—C14—H14120.4F4—Sb1—F6'91.2 (11)
C15—C14—H14120.4F5'—Sb1—F6'83.7 (10)
C14—C15—C10122.2 (7)F6—Sb1—F6'12.6 (17)
C14—C15—H15118.9F5—Sb1—F2178.8 (14)
C10—C15—H15118.9F4'—Sb1—F239.5 (12)
O3—C16—C17106.8 (5)F2'—Sb1—F255.7 (9)
O3—C16—H16A110.4F1—Sb1—F285.4 (10)
C17—C16—H16A110.4F4—Sb1—F287.3 (10)
O3—C16—H16B110.4F5'—Sb1—F2130.8 (13)
C17—C16—H16B110.4F6—Sb1—F271.0 (13)
H16A—C16—H16B108.6F6'—Sb1—F283.5 (11)
O4—C17—C16107.9 (4)F5—Sb1—F391.1 (11)
O4—C17—H17A110.1F4'—Sb1—F374.3 (10)
C16—C17—H17A110.1F2'—Sb1—F378.7 (12)
O4—C17—H17B110.1F1—Sb1—F388.4 (11)
C16—C17—H17B110.1F4—Sb1—F386.1 (10)
H17A—C17—H17B108.4F5'—Sb1—F3100.0 (10)
O4—C18—C23116.5 (5)F6—Sb1—F3159.1 (12)
O4—C18—C19123.3 (5)F6'—Sb1—F3171.6 (10)
C23—C18—C19120.2 (5)F2—Sb1—F388.4 (11)
C20—C19—C18119.7 (6)F5—Sb1—F1'46.0 (9)
C20—C19—H19120.2F4'—Sb1—F1'174.4 (15)
C18—C19—H19120.2F2'—Sb1—F1'86.7 (10)
C21—C20—C19120.3 (6)F1—Sb1—F1'55.3 (8)
C21—C20—H20119.8F4—Sb1—F1'133.4 (12)
C19—C20—H20119.8F5'—Sb1—F1'87.7 (12)
C20—C21—C22119.6 (6)F6—Sb1—F1'89.0 (12)
C20—C21—H21120.2F6'—Sb1—F1'78.6 (9)
C22—C21—H21120.2F2—Sb1—F1'135.2 (11)
C21—C22—C23121.6 (6)F3—Sb1—F1'108.9 (8)
C21—C22—H22119.2F5—Sb1—F3'64.2 (10)
C23—C22—H22119.2F4'—Sb1—F3'99.9 (11)
C22—C23—C18118.5 (5)F2'—Sb1—F3'89.6 (11)
C22—C23—C24119.5 (5)F1—Sb1—F3'84.5 (8)
C18—C23—C24122.0 (5)F4—Sb1—F3'93.9 (8)
N2—C24—C23114.0 (4)F5'—Sb1—F3'86.5 (10)
N2—C24—H24A108.8F6—Sb1—F3'173.0 (12)
C23—C24—H24A108.8F6'—Sb1—F3'160.6 (10)
N2—C24—H24B108.8F2—Sb1—F3'115.5 (11)
C23—C24—H24B108.8F3—Sb1—F3'27.8 (8)
H24A—C24—H24B107.7F1'—Sb1—F3'84.3 (7)
O5—C25—N2127.9 (6)
O1—C1—C2—C7180.0 (6)C19—C18—C23—C24177.7 (5)
C8—C1—C2—C71.7 (6)C22—C23—C24—N2127.6 (6)
O1—C1—C2—C30.6 (11)C18—C23—C24—N255.4 (7)
C8—C1—C2—C3177.7 (6)O5—C25—C26—O64.8 (9)
C7—C2—C3—C40.6 (9)N2—C25—C26—O6172.1 (5)
C1—C2—C3—C4178.7 (6)O5—C25—C26—C27179.7 (5)
C2—C3—C4—C51.4 (9)N2—C25—C26—C273.3 (6)
C3—C4—C5—C61.0 (10)O6—C26—C27—C326.1 (11)
C4—C5—C6—C70.2 (10)C25—C26—C27—C32178.9 (6)
C5—C6—C7—C21.0 (9)O6—C26—C27—C28171.3 (6)
C5—C6—C7—N1177.8 (6)C25—C26—C27—C283.6 (6)
C3—C2—C7—C60.6 (9)C32—C27—C28—C290.7 (8)
C1—C2—C7—C6179.9 (5)C26—C27—C28—C29177.1 (5)
C3—C2—C7—N1178.3 (5)C32—C27—C28—N2179.4 (5)
C1—C2—C7—N11.1 (6)C26—C27—C28—N22.8 (6)
O1—C1—C8—O20.4 (9)C27—C28—C29—C300.0 (8)
C2—C1—C8—O2178.9 (5)N2—C28—C29—C30179.9 (5)
O1—C1—C8—N1179.8 (5)C28—C29—C30—C310.5 (9)
C2—C1—C8—N11.7 (6)C29—C30—C31—C320.2 (10)
N1—C9—C10—C15111.3 (6)C30—C31—C32—C270.5 (9)
N1—C9—C10—C1169.4 (7)C28—C27—C32—C311.0 (9)
C15—C10—C11—O3179.8 (5)C26—C27—C32—C31176.2 (6)
C9—C10—C11—O30.4 (7)O2—C8—N1—C7179.6 (6)
C15—C10—C11—C120.5 (8)C1—C8—N1—C71.1 (6)
C9—C10—C11—C12178.9 (5)O2—C8—N1—C94.6 (9)
O3—C11—C12—C13179.9 (5)C1—C8—N1—C9174.8 (5)
C10—C11—C12—C131.0 (8)C6—C7—N1—C8178.9 (6)
O3—C11—C12—Ag198.9 (5)C2—C7—N1—C80.0 (6)
C10—C11—C12—Ag181.9 (5)C6—C7—N1—C95.4 (9)
O2i—Ag1—C12—C1370.6 (18)C2—C7—N1—C9175.8 (5)
O6—Ag1—C12—C13138.1 (4)C10—C9—N1—C854.9 (7)
O5—Ag1—C12—C13151.2 (4)C10—C9—N1—C7130.0 (6)
O2i—Ag1—C12—C1147.8 (19)O5—C25—N2—C28178.6 (5)
O6—Ag1—C12—C11103.5 (4)C26—C25—N2—C281.7 (5)
C13—Ag1—C12—C11118.4 (6)O5—C25—N2—C247.2 (9)
O5—Ag1—C12—C1132.8 (4)C26—C25—N2—C24169.7 (4)
C11—C12—C13—C140.2 (10)C29—C28—N2—C25179.3 (5)
Ag1—C12—C13—C1491.9 (7)C27—C28—N2—C250.6 (6)
C11—C12—C13—Ag192.1 (5)C29—C28—N2—C247.9 (8)
O2i—Ag1—C13—C1451.6 (6)C27—C28—N2—C24172.0 (5)
C12—Ag1—C13—C14118.9 (6)C23—C24—N2—C25108.7 (6)
O6—Ag1—C13—C14172.4 (4)C23—C24—N2—C2861.5 (7)
O5—Ag1—C13—C1482.2 (5)N1—C8—O2—Ag1i178.3 (4)
O2i—Ag1—C13—C12170.5 (3)C1—C8—O2—Ag1i2.4 (7)
O6—Ag1—C13—C1253.5 (5)C10—C11—O3—C16173.4 (5)
O5—Ag1—C13—C1236.7 (5)C12—C11—O3—C167.4 (8)
C12—C13—C14—C151.7 (11)C17—C16—O3—C11166.1 (4)
Ag1—C13—C14—C1574.9 (7)C23—C18—O4—C17177.1 (5)
C13—C14—C15—C102.2 (11)C19—C18—O4—C172.7 (8)
C11—C10—C15—C141.1 (10)C16—C17—O4—C18178.0 (5)
C9—C10—C15—C14179.5 (6)N2—C25—O5—Ag1179.4 (4)
O3—C16—C17—O476.1 (6)C26—C25—O5—Ag14.3 (6)
O4—C18—C19—C20178.3 (5)O2i—Ag1—O5—C2577.5 (4)
C23—C18—C19—C201.9 (9)C12—Ag1—O5—C25108.1 (4)
C18—C19—C20—C212.9 (10)O6—Ag1—O5—C256.4 (3)
C19—C20—C21—C222.4 (10)C13—Ag1—O5—C25126.9 (4)
C20—C21—C22—C231.1 (10)C27—C26—O6—Ag1175.1 (5)
C21—C22—C23—C180.2 (9)C25—C26—O6—Ag110.7 (6)
C21—C22—C23—C24177.3 (6)O2i—Ag1—O6—C2672.8 (4)
O4—C18—C23—C22179.6 (5)C12—Ag1—O6—C26104.5 (4)
C19—C18—C23—C220.6 (8)C13—Ag1—O6—C26130.5 (4)
O4—C18—C23—C242.5 (8)O5—Ag1—O6—C268.8 (4)
Symmetry code: (i) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC32H24N2O6[Ag2(C32H24N2O6)2][SbF6]2
Mr532.531752.30
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)298298
a, b, c (Å)4.8272 (17), 14.194 (5), 18.883 (7)10.193 (2), 11.594 (3), 14.220 (3)
α, β, γ (°)90, 91.472 (7), 90111.121 (3), 91.073 (3), 100.819 (3)
V3)1293.4 (8)1533.0 (6)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.101.61
Crystal size (mm)0.55 × 0.14 × 0.040.30 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.645, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
6683, 2398, 1506 8087, 5593, 4279
Rint0.0460.024
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.160, 1.05 0.053, 0.134, 1.03
No. of reflections23985593
No. of parameters181481
No. of restraints03
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.131.07, 1.02

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds