Download citation
Download citation
link to html
Two isostructural uranyl complexes have been crystallized with different bipyridyl cations to yield the compounds hemi(4,4'-bipyridinium) tris­(5-chloro­thio­phene-2-carboxyl­ato)dioxidouranate(VI) monohydrate, (C10H10N2)0.5[U(C5H2ClO2S)3O2]·H2O, (I), and hemi[4,4'-(ethane-1,2-di­yl)­di­pyri­din­ium] tris­(5-chloro­thio­phene-2-carboxyl­ato)­dioxido­uran­ate(VI) monohydrate, (C12H14N2)0.5[U(C5H2ClO2S)3O2]·H2O, (II). In the [UO2X3]- complexes (X is 5-chloro­thio­phene-2-carboxyl­ate), the uranyl O atoms occupy the two axial positions and the equatorial positions are occupied by six O atoms of the three X ions so that each U atom is eight coordinated in a puckered hexa­gonal-bipyramidal structure. In both com­pounds, the metal centres are linked by classical O-H...O and N-H...O hydrogen bonds involving the coordinated ligands, the diprotonated organic linker cation (which rests on a centre of inversion at the mid-point of the central C-C bond) and water mol­ecules. The crystal structures are further stabilized by weak C-H...O and [pi]-[pi] stacking inter­actions, forming similar three-dimensional supra­molecular architectures, forming a two-dimensional network parallel to the (100) plane in (I) and a three-dimensional network in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111004227/sq3279sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111004227/sq3279Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111004227/sq3279IIsup3.hkl
Contains datablock II

CCDC references: 791807; 791808

Comment top

Uranium chelation has been an ongoing area of study (Szigethy & Raymond, 2009) in large part due to the metal's role as the feedstock material for most nuclear power sources. Simple ligands that can effectively chelate and remove actinides from the environment or in vivo are of interest in this context. Systematic pairing of aromatic pyridyl-functionalized linkers with carboxylic and polycarboxylic acids of varying lengths and their influence on the three-dimensional architecture of uranyl-containing polymers have been extensively studied (Borkowski & Cahill, 2006). The uranyl ion (UO22+), a particularly stable form of oxidized uranium that is involved in nuclear fuel processing, has a high affinity for oxygen donors and a wide variety of resulting architectures are obtained in so-called uranyl–organic frameworks (UOFs) (Thuery & Masci, 2008). The UO22+ cation maintains its linearity to within a couple of degrees in all of its coordination complexes, relegating coordinative variation to a square, pentagonal or hexagonal equatorial plane of coordinated carboxylate groups perpendicular to the OUO unit (Frisch & Cahill, 2005; Szigethy & Raymond, 2009). The combination of 5-chlorothiophene-2-carboxylic acid, a bipyridyl species and UO22+ has resulted in the synthesis of two new compounds containing the same uranyl complex with different organic linker cations, hemi(4,4'-bipyridinium) tris(5-chlorothiophene-2-carboxylato)dioxidouranate(VI) monohydrate, (C10H10N2)0.5[U(C5H2ClOO2S)3O2].H2O, (I), and hemi[4,4'-(ethane-1,2-diyl)dipyridinium] tris(5-chlorothiophene-2-carboxylato)dioxidouranate(VI)monohydrate, (C12H14N2)0.5[U(C5H2ClO2S)3O2].H2O, (II).

Both (I) and (II) contain the same anionic coordination complex. The coordination of the single crystallographically unique U site consists of a central near-linear UO22+ cation [OUO angle 178.81 (17)°] with six oxygen atoms from three bidentate 5-chlorothiophene-2-carboxylate ions in the equatorial plane, leading to an overall hexagonal bipyramidal coordination (Fig. 1). The short U—O axial bond lengths [1.756 (3) and 1.754 (3) Å] in (I) are in good agreement with the reported average uranyl bond length of 1.759 (4) Å (Thuery & Masci, 2008; Sasikumar & Muthiah, 2010; Thuéry, 2008; Masci & Thuéry, 2008). The U—O equatorial bond distances [2.437 (3)–2.515 (3) Å] are longer than the axial distances and the O—U—O bite angles of the bidentate carboxylate groups in the equatorial plane range from 51.87 (11) to 53.22 (10)°, as compared to the ideal 60° for a regular hexagonal arrangement. The bipyridinium cation is relatively flat with a C20—C16—C16a—C17a torsion angle of 1.6 (7)° [symmetry code: (a) -x, 1 - y, -z ].

In (I) two anionic [UO2X3]- units are linked by a protonated 4,4'-bipyridinium cation (located on a centre of inversion) as well as water molecules via N—H···O and O—H···O hydrogen bonds (Fig. 2). The water molecule acts as a hydrogen-bond acceptor from the protonated N atom of 4,4'-bipyridinium (O1W···H1—N1) while one H atom is involved in a bifurcated hydrogen bond with O atoms from two different coordinated carboxylates (O1W—H1W···O6i and O1W—H1W···O7i) [symmetry code: (i) x, -y + 1/2, z - 1/2] and the other is hydrogen bonded to a uranyl oxygen (O1W—H2W···O1) (Fig. 2). The ππ stacking is observed between nearly parallel coordinated 5-chlorothiophene rings of adjacent complexes (S1, C2, C3, C4, C5) and (S2, C7, C8, C9, C10)b [symmetry code: (b) x, y, -1 + z] with a centroid–centroid distance of 3.841 (3) Å. Intermolecular hydrogen bonds are found in between C9—H9 of an anionic unit and O4ii [symmetry code: (ii) -x + 1, -y + 1, -z + 2] of the next anionic unit which leads to the formation of a ring. The ring is formed by 16 atoms made up of U1, O5, C6, C7, C8, C9, H9, O4ii, U1ii, O5ii, C6ii, C7ii, C8ii, C9ii, H9ii and O4.

In (II), the same anionic uranyl complexes are paired with protonated 1,2-bis(4-pyridinium)ethane cations that are also situated on inversion centres with a non-coordinated water molecule present as well (Fig. 3). The geometric parameters in the complex are essentially the same as those in (I). As in (I), the metal complexes are linked by N1—H1···O1W and O1W—H2W···O3i hydrogen bonds [symmetry code: (i) -x + 1, y + 1/2, -z + 3/2] involving the protonated 1,2-bis(4-pyridinium)ethane cation, water molecules and carboxylate O atoms (Fig. 4). Unlike the case in (I), only one of the water H atoms is involved in a hydrogen bond in (II). C—H···O interactions [C18—H18···O7iii and C20—H20···O8iv; symmetry codes: (iii) -x + 1, -y + 1, -z + 1 and (iv) -x + 1, -y + 1, -z + 2] connect the bipyridinium cations and the anionic centres. The oxo ion O1ii [symmetry code: (ii) x + 1, y, z] is hydrogen bonded to the bipyridine moiety via C17 and H17. As in (I), ππ stacking interactions occur between nearly parallel 5-chlorothiophene rings (S1, C2, C3, C4, C5) and (S2, C7, C8, C9, C10)c [symmetry code: (c) x, y, 1 + z] with a centroid–centroid distance of 3.928 (4) Å.

We have crystallized the tris(5-chlorothiophene-2-carboxylato)uranyl(VI) complex using two different bipyridinium cations. Although there are reports of several similar [(UO22+)(RCOO-)3] complexes showing the puckered hexagonal bipyramidal geometry (Borkowski & Cahill, 2006), this is the first pair of uranium complexes with the 5-chlorothiophene-2-carboxylate ligand. The similarity of the organic cations results in quite similar crystal packing and intermolecular interactions. In both salts, there are alternating layers of anionic complexes and cations that are parallel to the ac plane and stack along the b axis. The bipyridinium cation of (I) contains two pyridine rings connected directly by a C—C bond, while in the 1,2-bis(4-pyridinium)ethane cation in (II) the pyridine rings are connected by a small alkyl chain which extends the distance between the rings. This leads to small elongations in the a and b unit-cell axes, which is important from a crystal engineering point of view.

Related literature top

For related literature, see: Borkowski & Cahill (2006); Frisch & Cahill (2005); Masci & Thuéry (2008); Sasikumar & Muthiah (2010); Spek (2009); Szigethy & Raymond (2009); Thuéry (2008); Thuery & Masci (2008).

Experimental top

With uranium being a radioactive and chemically toxic element, uranium-containing samples must be handled with suitable care and protection. All starting materials used in these synthetic reactions are available commercially and were used as obtained from the supplier.

For the preparation of (I), dioxouranium (VI) nitrate hexahydrate {[UO2(NO3)2].6H2O; 0.1505 g, Loba Chemie) was dissolved in a methanol–water solution (1:1v/v, 20 ml) and 5-chlorothiophene-2-carboxylic acid (0.0850 g, Hoechst Aktiengesellschaft) was dissolved in acetonitrile (20 ml). Both solutions were stirred separately for 30 min at 313 K. On mixing the two solutions, a pale-yellow solution was obtained. Then 4,4'-bipyridine (0.0442 g, Aldrich) was added directly to the warm solution with stirring and heating was continued for 30 min. The resulting clear, pale-yellow solution was kept undisturbed at room temperature for crystallization. After 30 d, clear, yellow, plate-shaped crystals formed on the surface of the mother liquor. The crystals were isolated, washed with small portions of methanol and dried in air.

For the preparation of (II), the same procedure was used with 1,2-bis(4-pyridyl)ethane in place of 4,4'-bipyridine. Yellow, plate-shaped crystals were obtained. The approximate yield of the crystals for both (I) and (II) is about 52%.

Refinement top

All C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C or N). The water H atoms of (I) and (II) were located in difference Fourier maps and refined using O—H distance restraints of 0.82 Å and H···H restraints of 1.40 [for (I)] and 1.38 Å [for (II)] via DFIX commands with fixed Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the components of (I), showing displacement ellipsoids at the 50% probability level. [Symmetry code: (a) -x, -y + 1, -z.]
[Figure 2] Fig. 2. The diprotonated 4,4'-bipyridinium cation and a pair of water molecules bridging two metal centres via hydrogen bonds (dashed lines) in (I). [Symmetry code: (a) -x, -y + 1, -z.]
[Figure 3] Fig. 3. A view of the components of (II), showing displacement ellipsoids at the 50% probability level. [Symmetry code: (a) -x, -y + 1, -z.]
[Figure 4] Fig. 4. The diprotonated 4,4'-(ethane-1,2-diyl)dipyridinium cation and a pair of water molecules bridging two metal centres via hydrogen bonds (dashed lines) in (II). [Symmetry code: (a) -x, -y + 1, -z.]
(I) hemi(4,4'-bipyridinium) tris(5-chlorothiophene-2-carboxylato)dioxidouranate(VI) monohydrate top
Crystal data top
(C10H10N2)0.5[U(C5H2ClO2S)3O2]·H2OF(000) = 1612.0
Mr = 851.90Dx = 2.080 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.1630 (5) ÅCell parameters from 9658 reflections
b = 17.5777 (6) Åθ = 2.2–27.1°
c = 11.2915 (4) ŵ = 6.54 mm1
β = 104.595 (2)°T = 296 K
V = 2720.34 (16) Å3Plate, yellow
Z = 40.08 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8824 independent reflections
Radiation source: fine-focus sealed tube5253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 31.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2020
Tmin = 0.577, Tmax = 0.698k = 2025
33776 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.918P]
where P = (Fo2 + 2Fc2)/3
8747 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 1.16 e Å3
3 restraintsΔρmin = 1.03 e Å3
Crystal data top
(C10H10N2)0.5[U(C5H2ClO2S)3O2]·H2OV = 2720.34 (16) Å3
Mr = 851.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1630 (5) ŵ = 6.54 mm1
b = 17.5777 (6) ÅT = 296 K
c = 11.2915 (4) Å0.08 × 0.06 × 0.05 mm
β = 104.595 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5253 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.698Rint = 0.042
33776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.16 e Å3
8747 reflectionsΔρmin = 1.03 e Å3
313 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.22068 (1)0.42260 (1)0.67302 (1)0.0406 (1)
Cl10.29668 (19)0.58763 (11)0.02601 (17)0.1245 (9)
Cl20.45307 (19)0.30120 (14)1.39093 (15)0.1466 (10)
Cl30.31280 (12)0.23218 (9)0.67844 (13)0.0788 (6)
S10.24253 (11)0.52405 (8)0.24043 (11)0.0664 (5)
S20.34734 (13)0.33002 (10)1.13378 (13)0.0866 (6)
S30.11079 (10)0.29068 (7)0.71611 (10)0.0550 (4)
O10.2572 (3)0.33319 (18)0.6313 (3)0.0671 (14)
O20.1817 (2)0.51121 (16)0.7141 (3)0.0531 (11)
O30.2041 (2)0.4629 (2)0.4623 (3)0.0599 (13)
O40.3455 (2)0.4863 (2)0.5907 (3)0.0599 (11)
O50.3724 (2)0.43507 (18)0.8391 (3)0.0550 (11)
O60.2509 (2)0.37585 (19)0.8838 (3)0.0616 (11)
O70.0808 (2)0.36017 (18)0.7270 (3)0.0571 (11)
O80.0532 (2)0.39807 (19)0.5374 (3)0.0534 (11)
C10.2894 (4)0.4889 (3)0.4836 (4)0.0507 (16)
C20.3229 (4)0.5220 (3)0.3818 (4)0.0498 (17)
C30.4093 (4)0.5529 (3)0.3782 (6)0.072 (2)
C40.4115 (5)0.5780 (3)0.2594 (7)0.083 (3)
C50.3262 (5)0.5657 (3)0.1791 (5)0.071 (2)
C60.3387 (4)0.4001 (3)0.9163 (4)0.0466 (16)
C70.3957 (3)0.3866 (3)1.0414 (4)0.0460 (16)
C80.4827 (4)0.4136 (3)1.1024 (5)0.0609 (19)
C90.5121 (4)0.3899 (3)1.2253 (4)0.0637 (17)
C100.4478 (5)0.3441 (3)1.2529 (4)0.071 (2)
C110.0233 (3)0.3655 (2)0.6210 (4)0.0430 (16)
C120.0761 (3)0.3363 (2)0.5984 (4)0.0433 (16)
C130.1504 (4)0.3407 (3)0.4966 (4)0.0547 (16)
C140.2368 (4)0.3065 (3)0.5106 (5)0.0655 (19)
C150.2253 (4)0.2779 (3)0.6248 (4)0.0554 (17)
N10.0689 (3)0.3634 (3)0.2272 (4)0.0685 (17)
C160.0134 (3)0.4691 (3)0.0473 (4)0.0500 (18)
C170.0058 (4)0.4788 (3)0.1609 (4)0.0653 (19)
C180.0238 (4)0.4250 (4)0.2494 (5)0.070 (2)
C190.0868 (5)0.3503 (3)0.1184 (5)0.075 (2)
C200.0589 (5)0.4032 (3)0.0271 (5)0.070 (2)
O1W0.1513 (3)0.2639 (2)0.4031 (3)0.0852 (16)
H30.462000.557400.446400.0860*
H40.465400.600100.240100.0990*
H80.520400.445301.066700.0730*
H90.569800.404901.280000.0760*
H130.145000.363900.424600.0660*
H140.294500.303900.449200.0790*
H10.087600.330500.284700.0820*
H170.038900.521800.176700.0780*
H180.012100.432000.326100.0840*
H190.117800.305700.104700.0900*
H200.070800.394300.049000.0840*
H1W0.164 (4)0.2230 (19)0.378 (5)0.1020*
H2W0.190 (4)0.280 (3)0.465 (4)0.1020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0460 (1)0.0456 (1)0.0301 (1)0.0037 (1)0.0092 (1)0.0001 (1)
Cl10.174 (2)0.1443 (17)0.0763 (11)0.0503 (14)0.0708 (13)0.0543 (11)
Cl20.179 (2)0.176 (2)0.0559 (10)0.0633 (18)0.0242 (12)0.0504 (12)
Cl30.0739 (9)0.0956 (11)0.0757 (9)0.0308 (9)0.0353 (8)0.0111 (8)
S10.0740 (10)0.0858 (10)0.0410 (7)0.0052 (8)0.0176 (6)0.0066 (6)
S20.0869 (11)0.1075 (12)0.0505 (8)0.0490 (10)0.0101 (7)0.0249 (8)
S30.0580 (8)0.0654 (8)0.0402 (6)0.0106 (6)0.0096 (5)0.0082 (5)
O10.075 (3)0.057 (2)0.062 (2)0.0116 (18)0.0037 (19)0.0114 (17)
O20.068 (2)0.0491 (18)0.0473 (17)0.0002 (16)0.0241 (16)0.0012 (14)
O30.049 (2)0.098 (3)0.0333 (16)0.0195 (19)0.0116 (14)0.0051 (17)
O40.052 (2)0.091 (2)0.0363 (16)0.0151 (18)0.0102 (15)0.0018 (17)
O50.052 (2)0.071 (2)0.0406 (17)0.0158 (16)0.0091 (15)0.0047 (15)
O60.058 (2)0.077 (2)0.0393 (17)0.0271 (19)0.0073 (15)0.0162 (16)
O70.053 (2)0.077 (2)0.0357 (16)0.0204 (17)0.0006 (14)0.0149 (15)
O80.050 (2)0.072 (2)0.0363 (16)0.0086 (17)0.0071 (14)0.0082 (15)
C10.054 (3)0.064 (3)0.039 (2)0.006 (3)0.021 (2)0.000 (2)
C20.049 (3)0.057 (3)0.048 (3)0.001 (2)0.021 (2)0.003 (2)
C30.054 (3)0.087 (4)0.079 (4)0.002 (3)0.027 (3)0.013 (3)
C40.079 (5)0.087 (4)0.103 (5)0.006 (4)0.063 (4)0.032 (4)
C50.088 (5)0.077 (4)0.060 (3)0.020 (3)0.042 (3)0.018 (3)
C60.050 (3)0.048 (3)0.039 (2)0.007 (2)0.006 (2)0.003 (2)
C70.049 (3)0.050 (3)0.034 (2)0.010 (2)0.0013 (19)0.0006 (19)
C80.052 (3)0.070 (4)0.054 (3)0.009 (3)0.001 (2)0.007 (2)
C90.062 (3)0.065 (3)0.050 (3)0.007 (3)0.012 (2)0.003 (3)
C100.089 (4)0.072 (4)0.040 (3)0.015 (3)0.007 (3)0.008 (2)
C110.046 (3)0.049 (3)0.032 (2)0.004 (2)0.0063 (19)0.0057 (19)
C120.047 (3)0.050 (3)0.032 (2)0.003 (2)0.0082 (19)0.0039 (18)
C130.055 (3)0.069 (3)0.037 (2)0.009 (3)0.006 (2)0.009 (2)
C140.056 (3)0.084 (4)0.053 (3)0.011 (3)0.007 (3)0.000 (3)
C150.055 (3)0.059 (3)0.053 (3)0.013 (2)0.015 (2)0.006 (2)
N10.062 (3)0.087 (3)0.052 (3)0.006 (3)0.006 (2)0.022 (2)
C160.041 (3)0.080 (4)0.028 (2)0.010 (2)0.0068 (18)0.004 (2)
C170.058 (3)0.102 (4)0.043 (3)0.016 (3)0.026 (2)0.015 (3)
C180.059 (3)0.120 (5)0.033 (2)0.002 (3)0.014 (2)0.016 (3)
C190.094 (5)0.077 (4)0.057 (3)0.002 (3)0.024 (3)0.003 (3)
C200.096 (5)0.076 (4)0.041 (3)0.005 (3)0.021 (3)0.003 (3)
O1W0.125 (4)0.057 (2)0.057 (2)0.023 (2)0.008 (2)0.0178 (18)
Geometric parameters (Å, º) top
U1—O11.756 (3)C1—C21.470 (7)
U1—O21.754 (3)C2—C31.349 (8)
U1—O32.437 (3)C3—C41.420 (10)
U1—O42.464 (3)C4—C51.333 (10)
U1—O52.480 (3)C6—C71.459 (6)
U1—O62.451 (3)C7—C81.338 (7)
U1—O72.472 (3)C8—C91.408 (7)
U1—O82.515 (3)C9—C101.311 (8)
Cl1—C51.717 (6)C11—C121.459 (6)
Cl2—C101.716 (5)C12—C131.351 (7)
Cl3—C151.711 (6)C13—C141.408 (8)
S1—C21.712 (5)C14—C151.355 (7)
S1—C51.683 (7)C3—H30.9300
S2—C71.705 (5)C4—H40.9300
S2—C101.712 (6)C8—H80.9300
S3—C121.726 (4)C9—H90.9300
S3—C151.703 (5)C13—H130.9300
O3—C11.257 (6)C14—H140.9300
O4—C11.270 (6)C16—C171.387 (6)
O5—C61.255 (6)C16—C201.372 (8)
O6—C61.278 (6)C16—C16i1.504 (7)
O7—C111.270 (5)C17—C181.363 (8)
O8—C111.265 (5)C19—C201.371 (8)
O1W—H2W0.82 (5)C17—H170.9300
O1W—H1W0.81 (4)C18—H180.9300
N1—C181.313 (8)C19—H190.9300
N1—C191.336 (7)C20—H200.9300
N1—H10.8600
Cl1···C6ii3.623 (6)O1···H2W2.10 (5)
Cl1···Cl3iii3.479 (2)O1W···H11.8300
Cl3···C9iv3.420 (6)O1W···H19viii2.7300
Cl3···Cl1v3.479 (2)O2···H17xi2.6800
Cl1···H8vi3.0800O2···H18xi2.8500
Cl2···H3vii3.1400O2···H13xi2.6700
Cl3···H14viii3.0700O3···H182.8200
S1···O32.901 (4)O4···H32.8800
S1···C163.557 (5)O4···H9vii2.5200
S1···C173.495 (6)O5···H4vi2.7400
S1···C183.577 (6)O5···H8vii2.6500
S2···O62.922 (4)O5···H82.8800
S2···C19ix3.668 (7)O6···H20ix2.8600
S2···O1viii3.137 (4)O6···H1Wviii2.12 (4)
S3···O72.950 (3)O7···H17xi2.4800
S2···H2Wviii3.19 (5)O7···H1Wviii2.33 (5)
O1···O1W2.903 (5)O7···H20ix2.6400
O1···O32.947 (5)O8···H182.3800
O1···O43.051 (5)O8···H132.8400
O1···O53.073 (5)N1···O1W2.683 (6)
O1···O62.971 (5)C2···C14xi3.577 (8)
O1···O72.999 (5)C6···Cl1ix3.623 (6)
O1···O83.038 (5)C8···O5vii3.323 (6)
O1···C13.296 (6)C9···Cl3xii3.420 (6)
O1···C63.347 (6)C9···O4vii3.318 (6)
O1···C113.334 (6)C14···C2xi3.577 (8)
O1···S2x3.137 (4)C16···S13.557 (5)
O1W···O6x2.868 (5)C17···O2xi3.163 (6)
O1W···N12.683 (6)C17···O7xi3.379 (6)
O1W···O12.903 (5)C17···S13.495 (6)
O1W···O7x2.951 (5)C18···O2xi3.241 (7)
O2···O43.024 (4)C18···S13.577 (6)
O2···O73.036 (4)C18···O83.208 (6)
O2···C113.393 (5)C18···O33.106 (7)
O2···O33.059 (5)C19···S2ii3.668 (7)
O2···C63.378 (6)C3···H3vi3.0300
O2···O63.057 (4)C11···H17xi2.9900
O2···C17xi3.163 (6)C17···H20i2.6100
O2···C18xi3.241 (7)C20···H17i2.6000
O2···C13.355 (6)H1···O1W1.8300
O2···O83.069 (4)H1···H2W2.3600
O2···O53.026 (4)H1···H1W2.3000
O3···O42.195 (4)H1W···H12.3000
O3···O12.947 (5)H1W···O7x2.33 (5)
O3···O23.059 (5)H1W···O6x2.12 (4)
O3···C183.106 (7)H2W···O12.10 (5)
O3···S12.901 (4)H2W···S2x3.19 (5)
O3···O82.738 (4)H2W···H19viii2.5700
O4···O23.024 (4)H2W···H12.3600
O4···C9vii3.318 (6)H3···C3vi3.0300
O4···O32.195 (4)H3···Cl2vii3.1400
O4···O52.878 (5)H3···O42.8800
O4···O13.051 (5)H3···H3vi2.4600
O5···O23.026 (4)H4···O5vi2.7400
O5···O62.177 (4)H8···H8vii2.4200
O5···C8vii3.323 (6)H8···O52.8800
O5···O13.073 (5)H8···Cl1vi3.0800
O5···O42.878 (5)H8···O5vii2.6500
O6···O1Wviii2.868 (5)H9···O4vii2.5200
O6···S22.922 (4)H13···O2xi2.6700
O6···O52.177 (4)H13···O82.8400
O6···O12.971 (5)H14···Cl3x3.0700
O6···O72.620 (4)H17···H20i2.0300
O6···O23.057 (4)H17···O7xi2.4800
O7···O82.181 (5)H17···O2xi2.6800
O7···S32.950 (3)H17···C11xi2.9900
O7···C17xi3.379 (6)H17···C20i2.6000
O7···O62.620 (4)H18···O32.8200
O7···O23.036 (4)H18···O2xi2.8500
O7···O1Wviii2.951 (5)H18···O82.3800
O7···O12.999 (5)H19···O1Wx2.7300
O8···C183.208 (6)H19···H2Wx2.5700
O8···O72.181 (5)H20···C17i2.6100
O8···O23.069 (4)H20···H17i2.0300
O8···O32.738 (4)H20···O6ii2.8600
O8···O13.038 (5)H20···O7ii2.6400
O1—U1—O2178.81 (17)S1—C5—C4113.7 (5)
O1—U1—O387.75 (13)O5—C6—C7122.5 (5)
O1—U1—O491.01 (15)O6—C6—C7119.0 (4)
O1—U1—O591.39 (14)O5—C6—O6118.5 (4)
O1—U1—O688.24 (13)S2—C7—C6118.5 (4)
O1—U1—O788.71 (15)S2—C7—C8110.6 (4)
O1—U1—O888.83 (15)C6—C7—C8130.8 (5)
O2—U1—O392.34 (13)C7—C8—C9114.1 (5)
O2—U1—O489.99 (13)C8—C9—C10111.4 (5)
O2—U1—O589.54 (13)Cl2—C10—C9127.7 (4)
O2—U1—O691.75 (13)S2—C10—C9113.1 (4)
O2—U1—O790.22 (12)Cl2—C10—S2119.2 (4)
O2—U1—O890.11 (13)O7—C11—C12120.0 (4)
O3—U1—O453.22 (10)O8—C11—C12121.2 (4)
O3—U1—O5124.37 (10)O7—C11—O8118.8 (4)
O3—U1—O6174.76 (10)S3—C12—C13111.7 (4)
O3—U1—O7118.94 (10)C11—C12—C13129.7 (4)
O3—U1—O867.13 (10)S3—C12—C11118.6 (3)
O4—U1—O571.20 (10)C12—C13—C14113.1 (4)
O4—U1—O6123.52 (10)C13—C14—C15111.5 (5)
O4—U1—O7172.16 (11)Cl3—C15—C14126.0 (4)
O4—U1—O8120.29 (11)S3—C15—C14113.3 (4)
O5—U1—O652.37 (10)Cl3—C15—S3120.8 (3)
O5—U1—O7116.64 (10)C4—C3—H3123.00
O5—U1—O8168.50 (10)C2—C3—H3124.00
O6—U1—O764.31 (10)C3—C4—H4124.00
O6—U1—O8116.16 (10)C5—C4—H4124.00
O7—U1—O851.87 (11)C7—C8—H8123.00
C2—S1—C591.2 (3)C9—C8—H8123.00
C7—S2—C1090.8 (3)C10—C9—H9124.00
C12—S3—C1590.4 (2)C8—C9—H9124.00
U1—O3—C193.9 (3)C14—C13—H13123.00
U1—O4—C192.3 (3)C12—C13—H13123.00
U1—O5—C694.2 (3)C13—C14—H14124.00
U1—O6—C695.0 (3)C15—C14—H14124.00
U1—O7—C1195.6 (3)C16i—C16—C20122.5 (4)
U1—O8—C1193.7 (3)C17—C16—C20117.9 (5)
H1W—O1W—H2W116 (5)C16i—C16—C17119.7 (4)
C18—N1—C19122.2 (5)C16—C17—C18119.8 (5)
C18—N1—H1119.00N1—C18—C17120.5 (5)
C19—N1—H1119.00N1—C19—C20119.3 (5)
O3—C1—O4120.7 (4)C16—C20—C19120.4 (5)
O4—C1—C2120.8 (5)C16—C17—H17120.00
O3—C1—C2118.6 (4)C18—C17—H17120.00
S1—C2—C3111.0 (4)C17—C18—H18120.00
S1—C2—C1117.9 (4)N1—C18—H18120.00
C1—C2—C3131.1 (5)N1—C19—H19120.00
C2—C3—C4112.9 (6)C20—C19—H19120.00
C3—C4—C5111.1 (6)C16—C20—H20120.00
Cl1—C5—C4126.7 (6)C19—C20—H20120.00
Cl1—C5—S1119.6 (4)
O1—U1—O3—C192.6 (3)U1—O4—C1—O30.6 (5)
O2—U1—O3—C188.6 (3)U1—O4—C1—C2179.1 (4)
O4—U1—O3—C10.3 (3)U1—O5—C6—O60.7 (5)
O5—U1—O3—C12.5 (3)U1—O5—C6—C7179.7 (5)
O7—U1—O3—C1179.9 (3)U1—O6—C6—O50.7 (5)
O8—U1—O3—C1177.7 (3)U1—O6—C6—C7179.6 (4)
O1—U1—O4—C186.1 (3)U1—O7—C11—O81.5 (4)
O2—U1—O4—C193.3 (3)U1—O7—C11—C12179.7 (3)
O3—U1—O4—C10.3 (3)U1—O8—C11—O71.4 (4)
O5—U1—O4—C1177.2 (3)U1—O8—C11—C12179.7 (3)
O6—U1—O4—C1174.7 (3)C18—N1—C19—C201.1 (9)
O8—U1—O4—C13.2 (3)C19—N1—C18—C170.7 (9)
O1—U1—O5—C686.3 (3)O3—C1—C2—C3179.4 (6)
O2—U1—O5—C693.0 (3)O3—C1—C2—S10.8 (7)
O3—U1—O5—C6174.5 (3)O4—C1—C2—S1179.5 (4)
O4—U1—O5—C6176.9 (3)O4—C1—C2—C30.3 (9)
O6—U1—O5—C60.4 (3)S1—C2—C3—C40.7 (6)
O7—U1—O5—C63.0 (3)C1—C2—C3—C4179.6 (5)
O1—U1—O6—C692.7 (3)C2—C3—C4—C50.8 (7)
O2—U1—O6—C688.5 (3)C3—C4—C5—S10.5 (7)
O4—U1—O6—C62.7 (3)C3—C4—C5—Cl1179.7 (4)
O5—U1—O6—C60.4 (3)O6—C6—C7—S27.1 (7)
O7—U1—O6—C6177.9 (3)O5—C6—C7—S2173.2 (4)
O8—U1—O6—C6179.5 (3)O5—C6—C7—C89.2 (9)
O1—U1—O7—C1188.7 (3)O6—C6—C7—C8170.4 (5)
O2—U1—O7—C1190.8 (2)S2—C7—C8—C90.5 (6)
O3—U1—O7—C112.0 (3)C6—C7—C8—C9177.2 (5)
O5—U1—O7—C11179.6 (2)C7—C8—C9—C101.7 (7)
O6—U1—O7—C11177.4 (3)C8—C9—C10—Cl2179.7 (5)
O8—U1—O7—C110.8 (2)C8—C9—C10—S22.0 (6)
O1—U1—O8—C1188.5 (3)O7—C11—C12—C13174.9 (4)
O2—U1—O8—C1191.0 (3)O7—C11—C12—S33.2 (5)
O3—U1—O8—C11176.5 (3)O8—C11—C12—C133.3 (7)
O4—U1—O8—C11178.9 (2)O8—C11—C12—S3178.6 (3)
O6—U1—O8—C111.0 (3)C11—C12—C13—C14179.0 (4)
O7—U1—O8—C110.8 (2)S3—C12—C13—C140.8 (5)
C5—S1—C2—C1179.9 (4)C12—C13—C14—C150.9 (7)
C5—S1—C2—C30.3 (5)C13—C14—C15—S30.7 (6)
C2—S1—C5—Cl1180.0 (4)C13—C14—C15—Cl3179.9 (4)
C2—S1—C5—C40.1 (5)C20—C16—C17—C182.5 (8)
C10—S2—C7—C6178.5 (4)C16i—C16—C17—C18176.0 (5)
C10—S2—C7—C80.5 (4)C17—C16—C20—C192.0 (9)
C7—S2—C10—Cl2179.9 (4)C16i—C16—C20—C19176.4 (5)
C7—S2—C10—C91.5 (5)C17—C16—C16i—C17i180.0 (5)
C15—S3—C12—C11178.7 (3)C17—C16—C16i—C20i1.6 (7)
C15—S3—C12—C130.3 (4)C20—C16—C16i—C17i1.6 (7)
C12—S3—C15—Cl3179.7 (3)C20—C16—C16i—C20i180.0 (6)
C12—S3—C15—C140.2 (4)C16—C17—C18—N11.2 (9)
U1—O3—C1—O40.6 (5)N1—C19—C20—C160.3 (10)
U1—O3—C1—C2179.1 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1; (iii) x, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z+2; (viii) x, y+1/2, z+1/2; (ix) x, y, z+1; (x) x, y+1/2, z1/2; (xi) x, y+1, z+1; (xii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.832.683 (6)169
O1W—H1W···O6x0.81 (4)2.12 (4)2.868 (5)154 (5)
O1W—H1W···O7x0.81 (4)2.33 (5)2.951 (5)134 (5)
O1W—H2W···O10.82 (5)2.10 (5)2.903 (5)166 (5)
C9—H9···O4vii0.932.523.318 (6)144
C17—H17···O7xi0.932.483.379 (6)162
C18—H18···O80.932.383.208 (6)147
Symmetry codes: (vii) x+1, y+1, z+2; (x) x, y+1/2, z1/2; (xi) x, y+1, z+1.
(II) hemi[4,4'-(ethane-1,2-diyl)dipyridinium] tris(5-chlorothiophene-2-carboxylato)dioxidouranate(VI) monohydrate top
Crystal data top
(C12H14N2)0.5[U(C5H2ClO2S)3O2]·H2OF(000) = 1644.0
Mr = 865.92Dx = 1.978 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.5189 (2) ÅCell parameters from 9391 reflections
b = 18.1169 (3) Åθ = 2.5–23.6°
c = 11.1399 (2) ŵ = 6.12 mm1
β = 97.123 (1)°T = 296 K
V = 2907.60 (8) Å3Plate, yellow
Z = 40.10 × 0.08 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7244 independent reflections
Radiation source: fine-focus sealed tube4711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1619
Tmin = 0.531, Tmax = 0.713k = 2420
32147 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
7244 reflections(Δ/σ)max = 0.020
328 parametersΔρmax = 1.32 e Å3
3 restraintsΔρmin = 0.68 e Å3
Crystal data top
(C12H14N2)0.5[U(C5H2ClO2S)3O2]·H2OV = 2907.60 (8) Å3
Mr = 865.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5189 (2) ŵ = 6.12 mm1
b = 18.1169 (3) ÅT = 296 K
c = 11.1399 (2) Å0.10 × 0.08 × 0.05 mm
β = 97.123 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7244 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4711 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.713Rint = 0.049
32147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.32 e Å3
7244 reflectionsΔρmin = 0.68 e Å3
328 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.23722 (1)0.42379 (1)0.71943 (2)0.0490 (1)
Cl10.4756 (2)0.30454 (18)1.4024 (2)0.1888 (15)
Cl20.29337 (16)0.59360 (13)0.04965 (18)0.1169 (9)
Cl30.27346 (18)0.21642 (17)0.7309 (3)0.1577 (14)
S10.36345 (14)0.33663 (12)1.16820 (15)0.1050 (8)
S20.24680 (11)0.52615 (11)0.27535 (13)0.0769 (7)
S30.08681 (13)0.28445 (10)0.77881 (16)0.0862 (7)
O10.2003 (3)0.5097 (2)0.7668 (3)0.0708 (14)
O20.2739 (3)0.3369 (2)0.6748 (3)0.0709 (14)
O30.2655 (3)0.3802 (2)0.9290 (3)0.0668 (14)
O40.3816 (3)0.43778 (19)0.8615 (4)0.0616 (12)
O50.3541 (3)0.4841 (2)0.6096 (3)0.0685 (14)
O60.2185 (3)0.4620 (3)0.5089 (3)0.0781 (14)
O70.0805 (3)0.4027 (2)0.6093 (3)0.0697 (14)
O80.0988 (2)0.3598 (2)0.7927 (3)0.0686 (14)
C10.3505 (4)0.4032 (3)0.9452 (5)0.0562 (19)
C20.4063 (4)0.3890 (3)1.0611 (5)0.0594 (19)
C30.4929 (4)0.4139 (3)1.1028 (7)0.074 (3)
C40.5258 (5)0.3886 (4)1.2208 (7)0.091 (3)
C50.4645 (6)0.3465 (4)1.2642 (6)0.098 (3)
C60.2995 (4)0.4879 (3)0.5122 (5)0.066 (2)
C70.3272 (4)0.5210 (3)0.4029 (5)0.063 (2)
C80.4082 (5)0.5507 (4)0.3817 (6)0.085 (3)
C90.4079 (5)0.5776 (4)0.2641 (7)0.089 (3)
C100.3263 (5)0.5682 (3)0.1976 (6)0.077 (3)
C110.0509 (4)0.3676 (3)0.6931 (5)0.0568 (19)
C120.0435 (4)0.3358 (3)0.6716 (5)0.0613 (17)
C130.1068 (3)0.3399 (3)0.5665 (4)0.0540 (19)
C140.1895 (5)0.3012 (5)0.5789 (7)0.106 (3)
C150.1871 (4)0.2695 (4)0.6864 (7)0.089 (3)
N10.8874 (3)0.6585 (3)0.7066 (4)0.0686 (17)
C160.9848 (4)0.5792 (3)0.8867 (5)0.0542 (17)
C170.9871 (4)0.5622 (3)0.7662 (5)0.062 (2)
C180.9384 (4)0.6030 (4)0.6774 (5)0.064 (2)
C190.8825 (5)0.6779 (3)0.8215 (6)0.074 (3)
C200.9301 (4)0.6385 (3)0.9125 (5)0.064 (2)
C211.0326 (4)0.5316 (3)0.9854 (5)0.065 (2)
O1W0.7857 (4)0.7369 (2)0.5419 (4)0.105 (2)
H30.527200.444601.058100.0900*
H40.583500.400401.262100.1100*
H80.459900.553300.440000.1010*
H90.458900.599400.235700.1070*
H130.095800.365100.496900.0650*
H140.239700.298400.518700.1270*
H10.856100.683400.649700.0820*
H171.022400.522400.745500.0740*
H180.941100.591600.596500.0760*
H190.846700.718100.838800.0890*
H200.926000.651300.992500.0770*
H21A1.049900.561101.057400.0780*
H21B1.088800.511100.960100.0780*
H1W0.740 (4)0.711 (3)0.558 (8)0.1260*
H2W0.776 (5)0.7808 (12)0.554 (7)0.1260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0500 (1)0.0602 (2)0.0365 (1)0.0088 (1)0.0047 (1)0.0030 (1)
Cl10.229 (3)0.234 (3)0.0820 (15)0.063 (3)0.0654 (18)0.0601 (18)
Cl20.1184 (17)0.1739 (19)0.0618 (11)0.0094 (14)0.0252 (11)0.0400 (12)
Cl30.126 (2)0.192 (3)0.162 (2)0.0884 (19)0.0451 (19)0.0196 (19)
S10.1045 (15)0.1461 (17)0.0568 (10)0.0560 (13)0.0201 (9)0.0278 (11)
S20.0703 (11)0.1122 (14)0.0484 (8)0.0140 (9)0.0082 (7)0.0096 (9)
S30.0799 (12)0.1057 (13)0.0733 (11)0.0277 (10)0.0111 (9)0.0029 (10)
O10.075 (3)0.071 (2)0.066 (2)0.001 (2)0.007 (2)0.010 (2)
O20.084 (3)0.071 (2)0.057 (2)0.004 (2)0.006 (2)0.016 (2)
O30.061 (2)0.088 (3)0.048 (2)0.027 (2)0.0061 (18)0.009 (2)
O40.055 (2)0.077 (2)0.052 (2)0.0167 (18)0.0035 (19)0.0091 (19)
O50.052 (2)0.103 (3)0.050 (2)0.018 (2)0.0040 (19)0.011 (2)
O60.052 (2)0.132 (3)0.049 (2)0.030 (2)0.0007 (18)0.022 (2)
O70.054 (2)0.111 (3)0.043 (2)0.020 (2)0.0016 (18)0.007 (2)
O80.061 (2)0.105 (3)0.038 (2)0.024 (2)0.0007 (18)0.003 (2)
C10.055 (4)0.059 (3)0.054 (3)0.012 (3)0.005 (3)0.005 (3)
C20.070 (4)0.056 (3)0.049 (3)0.007 (3)0.005 (3)0.005 (3)
C30.058 (4)0.073 (4)0.085 (5)0.010 (3)0.019 (3)0.004 (3)
C40.076 (5)0.091 (5)0.095 (6)0.002 (4)0.036 (4)0.004 (4)
C50.122 (6)0.105 (5)0.057 (4)0.019 (5)0.029 (4)0.008 (4)
C60.056 (4)0.089 (4)0.051 (3)0.003 (3)0.005 (3)0.004 (3)
C70.055 (4)0.076 (4)0.058 (3)0.001 (3)0.012 (3)0.007 (3)
C80.063 (4)0.117 (5)0.073 (4)0.001 (4)0.006 (3)0.033 (4)
C90.062 (4)0.123 (6)0.085 (5)0.008 (4)0.023 (4)0.034 (4)
C100.078 (5)0.099 (5)0.058 (4)0.009 (4)0.027 (4)0.014 (3)
C110.059 (3)0.075 (4)0.038 (3)0.019 (3)0.012 (3)0.013 (3)
C120.056 (3)0.074 (3)0.056 (3)0.017 (3)0.015 (3)0.011 (3)
C130.033 (3)0.091 (4)0.036 (3)0.019 (3)0.004 (2)0.000 (3)
C140.083 (6)0.153 (7)0.078 (5)0.007 (5)0.005 (4)0.012 (5)
C150.061 (4)0.104 (5)0.105 (6)0.036 (4)0.018 (4)0.030 (5)
N10.070 (3)0.075 (3)0.057 (3)0.001 (3)0.007 (2)0.028 (3)
C160.054 (3)0.067 (3)0.040 (3)0.003 (3)0.001 (2)0.012 (3)
C170.060 (4)0.078 (4)0.047 (3)0.008 (3)0.003 (3)0.001 (3)
C180.062 (4)0.091 (4)0.037 (3)0.007 (3)0.004 (3)0.003 (3)
C190.090 (5)0.066 (4)0.068 (4)0.011 (3)0.013 (4)0.011 (3)
C200.082 (4)0.071 (4)0.036 (3)0.005 (3)0.001 (3)0.007 (3)
C210.068 (4)0.075 (4)0.047 (3)0.009 (3)0.011 (3)0.012 (3)
O1W0.160 (5)0.072 (3)0.069 (3)0.037 (3)0.040 (3)0.011 (3)
Geometric parameters (Å, º) top
U1—O11.749 (4)C2—C31.362 (8)
U1—O21.753 (4)C3—C41.418 (11)
U1—O32.451 (3)C4—C51.309 (11)
U1—O42.478 (4)C6—C71.458 (8)
U1—O52.467 (4)C7—C81.341 (9)
U1—O62.428 (4)C8—C91.397 (10)
U1—O72.477 (4)C9—C101.328 (10)
U1—O82.541 (3)C11—C121.479 (8)
Cl1—C51.707 (7)C12—C131.398 (7)
Cl2—C101.721 (7)C13—C141.412 (9)
Cl3—C151.702 (7)C14—C151.325 (11)
S1—C21.701 (6)C3—H30.9300
S1—C51.714 (8)C4—H40.9300
S2—C71.726 (6)C8—H80.9300
S2—C101.706 (7)C9—H90.9300
S3—C121.695 (6)C13—H130.9300
S3—C151.698 (7)C14—H140.9300
O3—C11.294 (7)C16—C211.498 (8)
O4—C11.253 (7)C16—C201.387 (8)
O5—C61.264 (7)C16—C171.382 (8)
O6—C61.263 (7)C17—C181.361 (8)
O7—C111.249 (7)C19—C201.357 (9)
O8—C111.242 (6)C21—C21i1.546 (8)
O1W—H2W0.82 (3)C17—H170.9300
O1W—H1W0.85 (6)C18—H180.9300
N1—C191.338 (8)C19—H190.9300
N1—C181.313 (8)C20—H200.9300
N1—H10.8600C21—H21B0.9700
C1—C21.460 (8)C21—H21A0.9700
Cl3···C4ii3.471 (8)O1···H21Bviii2.8500
Cl2···H3iii3.0800O1W···H11.7700
Cl3···H4ii3.0200O1W···H19ix2.6600
S1···O32.968 (4)O2···H1Wiii2.72 (9)
S1···O1Wiv3.489 (5)O2···H19iv2.7700
S1···O2v3.406 (4)O3···H2Wiv1.92 (3)
S1···C19vi3.597 (8)O4···H3vi2.6100
S2···C14vii3.667 (9)O4···H9iii2.7600
S2···C18iii3.651 (7)O4···H32.8500
S2···O62.925 (4)O5···H4vi2.6300
S3···O83.008 (4)O5···H82.8700
S1···H19vi3.2000O5···H8iii2.9000
S1···H2Wiv3.16 (7)O6···H18iii2.6500
O1···O33.040 (5)O7···H132.7900
O1···O43.009 (6)O7···H18iii2.2800
O1···O53.039 (6)O7···H17viii2.8300
O1···O63.043 (5)O8···H20vi2.4700
O1···O73.017 (5)O8···H2Wiv2.74 (7)
O1···O83.120 (5)N1···O1W2.625 (7)
O1···C13.369 (7)N1···H1W2.71 (7)
O1···C63.360 (7)C3···O4vi3.243 (7)
O1···C113.401 (7)C4···Cl3xii3.471 (8)
O1···C17viii3.238 (7)C4···O5vi3.334 (8)
O1W···O2iii2.801 (6)C11···C19iv3.579 (8)
O1W···C19ix3.353 (8)C14···S2vii3.667 (9)
O1W···N12.625 (7)C17···O1xiii3.238 (7)
O1W···O8x3.225 (6)C18···S2iii3.651 (7)
O1W···S1x3.489 (5)C18···O6iii3.116 (7)
O1W···O3x2.731 (5)C18···O7iii3.173 (6)
O2···O43.050 (5)C19···O1Wxiv3.353 (8)
O2···S1xi3.406 (4)C19···C11x3.579 (8)
O2···O83.031 (5)C19···S1vi3.597 (8)
O2···C63.327 (7)C20···O8vi3.362 (6)
O2···C113.316 (7)C1···H2Wiv2.88 (5)
O2···O73.055 (6)C11···H17viii2.9000
O2···O1Wiii2.801 (6)C17···H21Ai3.0700
O2···O62.972 (6)C20···H21Bi3.0900
O2···O32.956 (5)H1···H1W1.9300
O2···C13.305 (7)H1···H2W2.3000
O2···O53.034 (5)H1···O1W1.7700
O3···O13.040 (5)H1W···O2iii2.72 (9)
O3···O42.193 (6)H1W···N12.71 (7)
O3···S12.968 (4)H1W···H11.9300
O3···O22.956 (5)H2W···H12.3000
O3···O1Wiv2.731 (5)H2W···S1x3.16 (7)
O3···O82.718 (5)H2W···O3x1.92 (3)
O4···O52.909 (5)H2W···C1x2.88 (5)
O4···C3vi3.243 (7)H2W···O8x2.74 (6)
O4···O32.193 (6)H3···O42.8500
O4···O23.050 (5)H3···O4vi2.6100
O4···O13.009 (6)H3···H3vi2.4600
O5···O42.909 (5)H3···Cl2iii3.0800
O5···O62.179 (6)H4···Cl3xii3.0200
O5···O23.034 (5)H4···O5vi2.6300
O5···O13.039 (6)H8···O52.8700
O5···C4vi3.334 (8)H8···O5iii2.9000
O6···O72.641 (6)H8···H8iii2.5500
O6···C18iii3.116 (7)H9···O4iii2.7600
O6···O13.043 (5)H13···O72.7900
O6···O52.179 (6)H17···O7xiii2.8300
O6···O22.972 (6)H17···C11xiii2.9000
O6···S22.925 (4)H17···H21B2.4700
O7···O23.055 (6)H17···O1xiii2.5700
O7···C18iii3.173 (6)H18···O6iii2.6500
O7···O82.171 (5)H18···O7iii2.2800
O7···O13.017 (5)H19···S1vi3.2000
O7···O62.641 (6)H19···O1Wxiv2.6600
O8···O1Wiv3.225 (6)H19···O2x2.7700
O8···O32.718 (5)H20···O8vi2.4700
O8···C20vi3.362 (6)H20···H21A2.4700
O8···O13.120 (5)H21A···H202.4700
O8···O72.171 (5)H21A···C17i3.0700
O8···S33.008 (4)H21B···H172.4700
O8···O23.031 (5)H21B···C20i3.0900
O1···H17viii2.5700H21B···O1xiii2.8500
O1—U1—O2178.84 (16)O5—C6—O6119.2 (5)
O1—U1—O391.19 (14)S2—C7—C8110.6 (5)
O1—U1—O489.02 (16)C6—C7—C8130.6 (6)
O1—U1—O590.62 (16)S2—C7—C6118.8 (4)
O1—U1—O692.06 (16)C7—C8—C9113.9 (6)
O1—U1—O789.40 (16)C8—C9—C10112.2 (7)
O1—U1—O891.42 (16)Cl2—C10—S2118.7 (4)
O2—U1—O387.70 (14)Cl2—C10—C9128.5 (6)
O2—U1—O490.59 (16)S2—C10—C9112.8 (5)
O2—U1—O590.30 (16)O7—C11—O8121.3 (5)
O2—U1—O689.07 (16)O7—C11—C12118.4 (5)
O2—U1—O790.79 (16)O8—C11—C12120.4 (5)
O2—U1—O887.80 (16)S3—C12—C13110.9 (4)
O3—U1—O452.84 (14)C11—C12—C13127.9 (5)
O3—U1—O5124.82 (13)S3—C12—C11121.1 (4)
O3—U1—O6176.02 (15)C12—C13—C14111.7 (5)
O3—U1—O7117.21 (13)C13—C14—C15112.1 (6)
O3—U1—O865.96 (12)Cl3—C15—C14124.8 (6)
O4—U1—O572.06 (13)S3—C15—C14113.8 (5)
O4—U1—O6124.91 (14)Cl3—C15—S3121.4 (5)
O4—U1—O7169.88 (13)C4—C3—H3123.00
O4—U1—O8118.79 (12)C2—C3—H3123.00
O5—U1—O652.85 (14)C3—C4—H4124.00
O5—U1—O7117.96 (12)C5—C4—H4124.00
O5—U1—O8168.98 (11)C7—C8—H8123.00
O6—U1—O765.14 (13)C9—C8—H8123.00
O6—U1—O8116.24 (13)C10—C9—H9124.00
O7—U1—O851.26 (11)C8—C9—H9124.00
C2—S1—C591.2 (3)C12—C13—H13124.00
C7—S2—C1090.6 (3)C14—C13—H13124.00
C12—S3—C1591.5 (3)C13—C14—H14124.00
U1—O3—C194.2 (3)C15—C14—H14124.00
U1—O4—C194.0 (3)C17—C16—C20117.2 (5)
U1—O5—C693.0 (3)C20—C16—C21121.3 (5)
U1—O6—C694.9 (3)C17—C16—C21121.3 (5)
U1—O7—C1195.1 (3)C16—C17—C18120.8 (5)
U1—O8—C1192.2 (3)N1—C18—C17119.6 (5)
H1W—O1W—H2W110 (7)N1—C19—C20119.6 (6)
C18—N1—C19122.5 (5)C16—C20—C19120.3 (5)
C18—N1—H1119.00C16—C21—C21i109.9 (5)
C19—N1—H1119.00C18—C17—H17120.00
O3—C1—O4118.9 (5)C16—C17—H17120.00
O3—C1—C2118.8 (5)N1—C18—H18120.00
O4—C1—C2122.3 (5)C17—C18—H18120.00
S1—C2—C3110.4 (5)N1—C19—H19120.00
C1—C2—C3129.1 (6)C20—C19—H19120.00
S1—C2—C1120.5 (4)C19—C20—H20120.00
C2—C3—C4113.6 (6)C16—C20—H20120.00
C3—C4—C5111.4 (7)C16—C21—H21A110.00
Cl1—C5—S1119.6 (5)C16—C21—H21B110.00
S1—C5—C4113.5 (6)C21i—C21—H21A110.00
Cl1—C5—C4126.9 (7)C21i—C21—H21B110.00
O5—C6—C7122.1 (5)H21A—C21—H21B108.00
O6—C6—C7118.8 (5)
O1—U1—O3—C189.6 (3)U1—O3—C1—C2177.9 (4)
O2—U1—O3—C190.8 (3)U1—O4—C1—O33.0 (5)
O4—U1—O3—C11.7 (3)U1—O4—C1—C2178.0 (5)
O5—U1—O3—C12.0 (4)U1—O5—C6—O61.0 (5)
O7—U1—O3—C1179.5 (3)U1—O5—C6—C7179.3 (5)
O8—U1—O3—C1179.4 (3)U1—O6—C6—O51.0 (6)
O1—U1—O4—C194.0 (3)U1—O6—C6—C7179.3 (4)
O2—U1—O4—C184.9 (3)U1—O7—C11—O84.5 (6)
O3—U1—O4—C11.8 (3)U1—O7—C11—C12176.1 (4)
O5—U1—O4—C1175.0 (3)U1—O8—C11—O74.4 (5)
O6—U1—O4—C1174.2 (3)U1—O8—C11—C12176.2 (5)
O8—U1—O4—C12.9 (3)C18—N1—C19—C201.3 (9)
O1—U1—O5—C691.5 (3)C19—N1—C18—C171.3 (9)
O2—U1—O5—C689.2 (3)O3—C1—C2—C3172.8 (6)
O3—U1—O5—C6176.6 (3)O3—C1—C2—S15.4 (7)
O4—U1—O5—C6179.7 (3)O4—C1—C2—S1175.7 (4)
O6—U1—O5—C60.6 (3)O4—C1—C2—C36.2 (9)
O7—U1—O5—C61.9 (3)S1—C2—C3—C41.8 (7)
O1—U1—O6—C688.7 (4)C1—C2—C3—C4180.0 (6)
O2—U1—O6—C691.7 (4)C2—C3—C4—C50.2 (9)
O4—U1—O6—C61.6 (4)C3—C4—C5—S11.5 (8)
O5—U1—O6—C60.6 (3)C3—C4—C5—Cl1180.0 (6)
O7—U1—O6—C6177.0 (4)O6—C6—C7—S22.2 (7)
O8—U1—O6—C6178.7 (3)O5—C6—C7—S2178.1 (4)
O1—U1—O7—C1194.7 (3)O5—C6—C7—C81.1 (10)
O2—U1—O7—C1184.1 (3)O6—C6—C7—C8178.6 (7)
O3—U1—O7—C113.7 (4)S2—C7—C8—C90.3 (8)
O5—U1—O7—C11174.9 (3)C6—C7—C8—C9179.6 (6)
O6—U1—O7—C11172.8 (4)C7—C8—C9—C100.3 (9)
O8—U1—O7—C112.4 (3)C8—C9—C10—Cl2179.0 (5)
O1—U1—O8—C1190.5 (3)C8—C9—C10—S20.1 (8)
O2—U1—O8—C1190.4 (3)O7—C11—C12—C130.2 (9)
O3—U1—O8—C11178.8 (3)O7—C11—C12—S3177.4 (4)
O4—U1—O8—C11179.8 (3)O8—C11—C12—C13179.2 (5)
O6—U1—O8—C112.5 (4)O8—C11—C12—S33.1 (8)
O7—U1—O8—C112.4 (3)C11—C12—C13—C14178.6 (6)
C5—S1—C2—C1179.4 (5)S3—C12—C13—C140.8 (7)
C5—S1—C2—C32.2 (5)C12—C13—C14—C150.8 (9)
C2—S1—C5—Cl1179.2 (5)C13—C14—C15—S30.4 (9)
C2—S1—C5—C42.1 (6)C13—C14—C15—Cl3178.1 (5)
C10—S2—C7—C6179.6 (5)C20—C16—C17—C180.9 (9)
C10—S2—C7—C80.2 (5)C21—C16—C17—C18175.6 (6)
C7—S2—C10—Cl2179.3 (4)C17—C16—C20—C190.9 (9)
C7—S2—C10—C90.1 (5)C21—C16—C20—C19175.6 (6)
C15—S3—C12—C11178.5 (5)C17—C16—C21—C21i86.5 (6)
C15—S3—C12—C130.5 (5)C20—C16—C21—C21i88.0 (6)
C12—S3—C15—Cl3178.6 (5)C16—C17—C18—N11.1 (9)
C12—S3—C15—C140.1 (6)N1—C19—C20—C161.1 (9)
U1—O3—C1—O43.1 (5)C16—C21—C21i—C16i180.0 (5)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1, z+2; (vii) x, y+1, z+1; (viii) x1, y, z; (ix) x, y+3/2, z1/2; (x) x+1, y+1/2, z+3/2; (xi) x, y+1/2, z1/2; (xii) x+1, y+1/2, z+1/2; (xiii) x+1, y, z; (xiv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.772.625 (7)175
O1W—H2W···O3x0.82 (3)1.92 (3)2.731 (5)171 (8)
C17—H17···O1xiii0.932.573.238 (7)129
C18—H18···O7iii0.932.283.173 (6)161
C20—H20···O8vi0.932.473.362 (6)160
Symmetry codes: (iii) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (x) x+1, y+1/2, z+3/2; (xiii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula(C10H10N2)0.5[U(C5H2ClO2S)3O2]·H2O(C12H14N2)0.5[U(C5H2ClO2S)3O2]·H2O
Mr851.90865.92
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)296296
a, b, c (Å)14.1630 (5), 17.5777 (6), 11.2915 (4)14.5189 (2), 18.1169 (3), 11.1399 (2)
β (°) 104.595 (2) 97.123 (1)
V3)2720.34 (16)2907.60 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)6.546.12
Crystal size (mm)0.08 × 0.06 × 0.050.10 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.577, 0.6980.531, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
33776, 8824, 5253 32147, 7244, 4711
Rint0.0420.049
(sin θ/λ)max1)0.7290.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 0.99 0.040, 0.098, 1.01
No. of reflections87477244
No. of parameters313328
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.16, 1.031.32, 0.68

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.832.683 (6)169
O1W—H1W···O6i0.81 (4)2.12 (4)2.868 (5)154 (5)
O1W—H1W···O7i0.81 (4)2.33 (5)2.951 (5)134 (5)
O1W—H2W···O10.82 (5)2.10 (5)2.903 (5)166 (5)
C9—H9···O4ii0.932.523.318 (6)144
C17—H17···O7iii0.932.483.379 (6)162
C18—H18···O80.932.383.208 (6)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.772.625 (7)175
O1W—H2W···O3i0.82 (3)1.92 (3)2.731 (5)171 (8)
C17—H17···O1ii0.932.573.238 (7)129
C18—H18···O7iii0.932.283.173 (6)161
C20—H20···O8iv0.932.473.362 (6)160
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds