Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Pb2(C8H4O4)2(C18H11N5)2]n, contains two PbII atoms, two benzene-1,4-dicarboxyl­ate (1,4-bdc) dianions and two 6-(4-pyrid­yl)-5H-imidazolo­[4,5-f][1,10]phenanthroline (L) ligands. Each PbII atom is eight-coordinated by three N atoms from two different L ligands and five carboxyl­ate O atoms from three different 1,4-bdc dianions. The two 1,4-bdc dianions (1,4-bdc1 and 1,4-bdc2) show different coordination modes. Each 1,4-bdc1 coordinates to two PbII atoms in a chelating bis-bidentate mode. Each carboxyl­ate group of the 1,4-bdc2 anion connects two PbII atoms in a chelating-bridging tridentate mode to form a dinuclear unit. Neighbouring dinuclear units are connected together by the aromatic backbone of the 1,4-bdc dianions and the L ligands into a three-dimensional six-connected [alpha]-polonium framework. The most striking feature is that two identical three-dimensional single [alpha]-polonium nets are inter­locked with each other, thus leading directly to the formation of a twofold inter­penetrated three-dimensional [alpha]-polonium architecture. The framework is held together in part by strong N-H...O hydrogen bonds between the imidazole NH groups of the L ligands and the carboxyl­ate O atoms of 1,4-bdc dianions within different [alpha]-polonium nets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110032026/sq3261sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110032026/sq3261Isup2.hkl
Contains datablock I

CCDC reference: 796062

Comment top

The design and synthesis of coordination polymers with infinite three-dimensional framework structures has been an area of rapid growth in recent years, owing to the potential of these polymers in various applications such as catalysis, electrical conductivity, host–guest chemistry and magnetism (Ockwig et al., 2005; O'Keeffe et al., 2008; Yang et al., 2008). In this regard, a great many coordination polymers with mineral topologies, including CdSO4 (cds), NbO (nbo), Pt3O4 (pto), pyrite (pyr), quartz (qtz), rutile (rto), diamond (diaz) and sodalite (sod), have provided experimental examples of these theoretical topologies (Batten, 2001; Batten & Robson, 1998; Carlucci et al., 2003). As a result, the design and construction of diverse topological networks has received much attention (Eddaoudi et al., 2001). The topologies of coordination polymers can often be controlled and modified by the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand (Long et al., 2002). It is well known that careful selection of a suitable organic ligand with certain features is helpful for constructing coordination polymers with desirable properties. So far, the combination of bridging carboxylates, 1,10-phenanthroline-like (phen-like) chelating ligands and metal ions has generated many interesting coordination architectures (Wang et al., 2008; Qiao et al., 2008; Kong et al., 2009). Unfortunately, owing to the termination effect of chelating phen-like ligands, such coordination polymers containing both polycarboxylates and phen-like ligands are usually only one- or two-dimensional (Wang et al., 2009, 2010; Qiao et al., 2009). High-dimensional complexes based on dicarboxylate and phen-like ligands have rarely been reported (Yang et al., 2007). Here, we have selected the benzene-1,4-dicarboxylate dianion (1,4-bdc) as an organic linker and 6-(pyridin-4-yl)-5H-cyclopenta[f][1,10]phenanthroline (L) as an N-donor ligand, generating a new two-fold interpenetrating coordination polymer with α-Po topology, [Pb2(L)2(1,4-bdc)2]n, (I).

The asymmetric unit of (I) contains two PbII atoms, two 1,4-bdc dianions and two L ligands (Fig. 1). Each PbII atom is eight-coordinated by three N atoms from two different L ligands and five carboxylate O atoms from three different 1,4-bdc dianions. The Pb—O distances (Table 1) are comparable with those observed for [Pb(eedb)(L')(DMF)] (eedb is 4,4'-ethylenedibenzoate, L' is pyrazino[2,3-f][1,10]phenanthroline and DMF is dimethylformamide) (Qiao et al., 2009). The two independent 1,4-bdc dianions show different coordination modes. For convenience, the 1,4-bdc anions containing atoms O1–O4 and O5–O8 are designated 1,4-bdc1 and 1,4-bdc2, respectively. Each 1,4-bdc1 anion coordinates to two PbII atoms in a chelating bis-bidentate mode. Carboxylate atoms O1 and O2 chelate Pb1, while atoms O3 and O4 chelate Pb2v [symmetry code: (v) x, y, z - 1]. Each carboxylate group of the 1,4-bdc2 anion connects two PbII atoms in a chelating-bridging tridentate mode to form a dimer. Carboxylate atoms O5 and O6 chelate Pb1, while atom O5 bridges simultaneously to Pb2. The other O atoms, O7 and O8, chelate Pb2vi, while atom O7 bridges simultaneously to Pb1vi [symmetry code: (vi) 1 + x, y, z]. The distance between the PbII atoms in the dinuclear unit is 3.751 (3) Å.

Neighbouring dinuclear units are connected together by the aromatic backbone of both 1,4-bdc dianions and the L ligands. Each dinuclear PbII unit is surrounded by eight organic ligands: four bridging 1,4-bdc dianions and four bridging L ligands. Although each dinuclear PbII unit is ligated by eight bridging ligands, it is almost [Please check rephrasing] linked to six nearest neighbours, because two pairs of L ligands form two `double bridges' (Fig. 2). Each dinuclear unit therefore acts as a six-connecting node, and the overall three-dimensional framework topology is that of α-polonium (Fig. 2).

The most striking feature of (I) is that two identical three-dimensional single α-polonium nets are interlocked with each other, thus leading directly to the formation of a twofold interpenetrated three-dimensional α-Po architecture (Fig. 3).

There are strong N—H···O hydrogen bonds between the N atoms of the L ligands and the carboxylate O atoms of the 1,4-bdc ligands within different α-Po nets (Table 2). Each α-Po net is hydrogen-bonded to its neighbour through these hydrogen bonds, which further consolidates the twofold interpenetrated framework.

To date, although a number of α-Po frameworks have been reported, we are not aware of any other example of a PbII coordination polymer with this motif (O'Keeffe et al., 2008; Wang et al., 2010). As far as we know, only one α-Po framework based on a 1,10-phen-like ligand, [Cd(1,4-ndc)(L'')]n (L'' is pyrazino[2,3-f][1,10]phenanthroline and 1,4-ndc is naphthalene-1,4-dicarboxylate), has been reported so far (Qiao et al., 2008). In that structure, four CdII atoms are bridged by the carboxylate groups of the 1,4-ndc ligands to form tetranuclear cadmium carboxylate clusters. These tetranuclear cadmium carboxylate clusters are further connected together by the aromatic backbone of the dicarboxylate ligands to generate a three-dimensional non-interpenetrating α-Po net.

Notably, although the very recently reported compound {[Pb(L)(1,4-bdc)].2H2O}n (Wang et al., 2010) is constructed from the same mixed organic ligands and PbII atoms, its structure is entirely different from that of (I). In that compound, each carboxylate group of the 1,4-bdc anion chelates one PbII atom in a bidentate mode. All 1,4-bdc anions assume one kind of coordination mode, namely bridging bis(bidentate). Adjacent PbII atoms are bridged by 1,4-bdc dianions to form a one-dimensional zigzag chain. The L ligands are attached on both sides of the chains in chelating modes. Clearly, the topological difference between (I) and the previously reported compound is mainly attributed to the different coordination modes of the 1,4-bdc dianions and the L ligands. The water molecules are not coordinated to any of the metal atoms, and are in the voids between the chains. It should be pointed out that the previously reported compound was synthesized at 443 K, while (I) was prepared at 468 K in the presence of PbII, 1,4-bdc and L. Thus, the synthesis of the two structures can apparently be controlled through variation of the reaction temperature.

Related literature top

For related literature, see: Batten (2001); Batten & Robson (1998); Carlucci et al. (2003); Eddaoudi et al. (2001); Kong et al. (2009); Long et al. (2002); O'Keeffe et al. (2008); Ockwig et al. (2005); Qiao et al. (2008, 2009); Wang et al. (2008, 2009, 2010); Yang et al. (2007, 2008).

Experimental top

A mixture of Pb(NO3)2 (0.5 mmol), 1,4-H2bdc (0.5 mmol) and L (1 mmol) was dissolved in distilled water (12 ml). The resulting solution was stirred for about 2 h at room temperature, sealed in a 23 ml Teflon-lined stainless steel autoclave and heated at 468 K for 7 d under autogenous pressure. Afterwards, the reaction system was slowly cooled to room temperature. Pale-yellow block crystals of (I) suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature (yield 35% based on PbII).

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the PbII atoms in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x, y, 1 + z; (iv) x, 1 + y, z.]
[Figure 2] Fig. 2. A view of the three-dimensional α-polonium net of (I). Large balls represent the six-connected nodes.
[Figure 3] Fig. 3. A view of the twofold interpenetrated α-polonium structure of (I). Hydrogen-bonding interactions between the nets are shown as dashed lines.
Poly[bis(µ-benzene-1,4-dicarboxylato)bis[µ-6-(4-pyridyl)-5H- imidazolo[4,5-f][1,10]phenanthroline]dilead(II)] top
Crystal data top
[Pb2(C8H4O4)2(C18H11N5)2]Z = 2
Mr = 1337.24F(000) = 1280
Triclinic, P1Dx = 1.932 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9066 (7) ÅCell parameters from 7984 reflections
b = 15.0537 (10) Åθ = 1.4–25.0°
c = 15.0663 (10) ŵ = 7.38 mm1
α = 75.890 (1)°T = 293 K
β = 74.199 (1)°Block, pale yellow
γ = 81.399 (1)°0.27 × 0.22 × 0.16 mm
V = 2299.2 (3) Å3
Data collection top
Bruker APEX
diffractometer
7984 independent reflections
Radiation source: fine-focus sealed tube6315 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.56, Tmax = 0.77k = 1717
12743 measured reflectionsl = 1710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
7984 reflections(Δ/σ)max = 0.001
649 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Pb2(C8H4O4)2(C18H11N5)2]γ = 81.399 (1)°
Mr = 1337.24V = 2299.2 (3) Å3
Triclinic, P1Z = 2
a = 10.9066 (7) ÅMo Kα radiation
b = 15.0537 (10) ŵ = 7.38 mm1
c = 15.0663 (10) ÅT = 293 K
α = 75.890 (1)°0.27 × 0.22 × 0.16 mm
β = 74.199 (1)°
Data collection top
Bruker APEX
diffractometer
7984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6315 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.77Rint = 0.021
12743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 0.98Δρmax = 1.27 e Å3
7984 reflectionsΔρmin = 0.60 e Å3
649 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0251 (5)0.5031 (4)0.1199 (5)0.056 (2)
H10.11070.49840.11890.068*
C20.0497 (6)0.5853 (4)0.1164 (5)0.0542 (19)
H20.01170.63540.11330.065*
C30.5529 (5)0.6300 (4)0.1037 (5)0.0421 (15)
H30.59810.68560.09360.051*
C40.6187 (6)0.5625 (4)0.1133 (5)0.0496 (17)
H40.70550.57400.11140.060*
C50.3520 (5)0.3785 (4)0.1311 (4)0.0326 (13)
C60.5561 (5)0.4790 (4)0.1255 (4)0.0405 (15)
H60.59920.43290.13190.049*
C70.4255 (5)0.4646 (4)0.1280 (4)0.0303 (12)
C80.3639 (5)0.5372 (3)0.1207 (4)0.0326 (13)
C90.2264 (5)0.5242 (4)0.1224 (4)0.0354 (14)
C100.0289 (5)0.4286 (4)0.1251 (5)0.0509 (18)
H100.01970.37250.12700.061*
C110.1565 (5)0.4374 (4)0.1275 (4)0.0358 (14)
C120.2814 (5)0.2343 (4)0.1295 (4)0.0354 (14)
C130.2237 (5)0.3646 (4)0.1315 (4)0.0361 (14)
C140.1904 (6)0.0174 (5)0.1066 (7)0.081 (3)
H140.11880.05800.09950.097*
C150.1827 (6)0.0745 (4)0.1131 (6)0.071 (3)
H150.10780.09440.10940.085*
C160.2843 (5)0.1363 (4)0.1251 (4)0.0364 (14)
C170.3904 (6)0.1014 (4)0.1298 (6)0.064 (2)
H170.46250.14080.13840.077*
C180.3913 (7)0.0089 (4)0.1219 (6)0.066 (2)
H180.46530.01240.12530.080*
C190.4661 (6)0.3605 (4)0.3762 (6)0.063 (2)
H190.50560.30150.37430.075*
C200.5390 (6)0.4270 (4)0.3804 (5)0.056 (2)
H200.62440.41220.38190.068*
C210.4835 (6)0.5143 (4)0.3824 (5)0.0501 (17)
H210.53090.56000.38420.060*
C220.3544 (5)0.5340 (4)0.3816 (4)0.0359 (14)
C230.2859 (5)0.4631 (4)0.3776 (4)0.0341 (13)
C240.1508 (5)0.4784 (4)0.3774 (4)0.0332 (13)
C250.0320 (6)0.4220 (4)0.3747 (4)0.0462 (16)
H250.07340.37320.37230.055*
C260.1034 (6)0.5060 (4)0.3787 (5)0.0462 (16)
H260.18950.51280.37860.055*
C270.0450 (5)0.5784 (4)0.3829 (4)0.0430 (15)
H270.09080.63540.38570.052*
C280.0842 (5)0.5657 (4)0.3830 (4)0.0351 (14)
C290.1567 (5)0.6355 (4)0.3881 (4)0.0331 (13)
C300.2842 (5)0.6228 (4)0.3857 (4)0.0339 (13)
C310.2258 (5)0.7624 (4)0.3964 (4)0.0350 (14)
C320.2231 (5)0.8591 (4)0.3999 (4)0.0352 (13)
C330.1126 (6)0.9170 (4)0.4012 (5)0.0473 (17)
H330.03750.89460.40150.057*
C340.3305 (6)0.8973 (4)0.4005 (5)0.0496 (18)
H340.40760.86110.39990.060*
C350.1139 (6)1.0081 (4)0.4020 (5)0.0473 (16)
H350.03811.04590.40270.057*
C360.3231 (6)0.9892 (4)0.4019 (5)0.0496 (17)
H360.39631.01320.40300.060*
C370.2574 (5)0.2445 (4)0.0805 (4)0.0342 (13)
C380.2548 (5)0.2308 (4)0.1743 (4)0.0326 (13)
C390.1502 (5)0.1949 (4)0.1841 (4)0.0455 (16)
H390.08210.18000.13200.055*
C400.1469 (6)0.1813 (4)0.2709 (4)0.0467 (16)
H400.07640.15760.27700.056*
C410.2485 (5)0.2030 (4)0.3489 (4)0.0312 (13)
C420.2449 (6)0.1920 (4)0.4448 (4)0.0371 (14)
C430.3515 (5)0.2412 (4)0.3402 (4)0.0408 (15)
H430.41860.25790.39260.049*
C440.3536 (5)0.2544 (4)0.2528 (4)0.0406 (15)
H440.42300.27970.24690.049*
C450.5348 (5)0.1564 (4)0.1885 (5)0.0363 (14)
C460.6565 (5)0.1580 (3)0.2175 (4)0.0304 (12)
C470.7718 (5)0.1719 (4)0.1486 (4)0.0371 (14)
H470.77520.17250.08610.044*
C480.8801 (5)0.1848 (4)0.1727 (4)0.0349 (13)
H480.95600.19460.12640.042*
C490.8762 (5)0.1830 (3)0.2657 (4)0.0319 (13)
C500.7636 (5)0.1664 (4)0.3343 (4)0.0384 (14)
H500.76090.16400.39710.046*
C510.6545 (5)0.1534 (4)0.3101 (4)0.0405 (14)
H510.57960.14140.35680.049*
C520.9942 (5)0.1986 (4)0.2921 (4)0.0351 (14)
N10.4282 (4)0.6191 (3)0.1082 (4)0.0374 (12)
N20.1725 (4)0.5971 (3)0.1170 (4)0.0414 (13)
N30.3858 (4)0.2950 (3)0.1310 (3)0.0357 (11)
H3A0.46010.28310.13180.043*
N40.1786 (4)0.2735 (3)0.1305 (4)0.0365 (12)
N90.2942 (5)0.0511 (3)0.1098 (4)0.0500 (14)
N100.2168 (5)1.0452 (3)0.4017 (3)0.0406 (12)
O10.3628 (4)0.2633 (3)0.0702 (3)0.0470 (11)
O20.1613 (4)0.2351 (3)0.0135 (3)0.0476 (11)
O30.1348 (3)0.2068 (3)0.4647 (3)0.0391 (10)
O40.3458 (4)0.1743 (3)0.5021 (3)0.0439 (10)
O50.4314 (4)0.1563 (3)0.2500 (3)0.0502 (11)
O60.5416 (3)0.1629 (3)0.1023 (3)0.0403 (10)
O71.0982 (4)0.1948 (3)0.2319 (3)0.0588 (13)
O80.9841 (4)0.2119 (3)0.3734 (3)0.0415 (10)
N50.0910 (4)0.4067 (3)0.3739 (3)0.0366 (11)
N60.3432 (4)0.3761 (3)0.3748 (4)0.0455 (13)
N70.3281 (4)0.7025 (3)0.3900 (3)0.0371 (12)
N80.1199 (4)0.7250 (3)0.3949 (3)0.0361 (12)
H8A0.04440.75250.39760.043*
Pb10.306872 (18)0.228293 (14)0.106810 (15)0.03121 (7)
Pb20.216110 (19)0.227339 (14)0.365684 (15)0.03315 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.050 (4)0.104 (6)0.008 (3)0.021 (4)0.028 (4)
C20.036 (4)0.039 (4)0.100 (6)0.007 (3)0.022 (4)0.029 (4)
C30.033 (3)0.026 (3)0.066 (4)0.002 (3)0.017 (3)0.003 (3)
C40.028 (3)0.049 (4)0.075 (5)0.003 (3)0.019 (3)0.011 (4)
C50.034 (3)0.025 (3)0.042 (4)0.009 (2)0.008 (3)0.011 (3)
C60.035 (3)0.033 (3)0.057 (4)0.011 (3)0.017 (3)0.004 (3)
C70.031 (3)0.027 (3)0.037 (3)0.008 (2)0.010 (3)0.008 (3)
C80.035 (3)0.019 (3)0.045 (4)0.006 (2)0.012 (3)0.005 (3)
C90.038 (3)0.027 (3)0.044 (4)0.005 (3)0.014 (3)0.007 (3)
C100.034 (3)0.039 (4)0.085 (5)0.002 (3)0.013 (3)0.026 (4)
C110.034 (3)0.026 (3)0.048 (4)0.005 (2)0.009 (3)0.010 (3)
C120.035 (3)0.027 (3)0.047 (4)0.008 (3)0.008 (3)0.012 (3)
C130.032 (3)0.029 (3)0.046 (4)0.006 (2)0.001 (3)0.015 (3)
C140.041 (4)0.033 (4)0.173 (9)0.004 (3)0.024 (5)0.036 (5)
C150.039 (4)0.036 (4)0.149 (8)0.007 (3)0.027 (5)0.033 (5)
C160.037 (3)0.023 (3)0.050 (4)0.006 (3)0.004 (3)0.014 (3)
C170.056 (4)0.029 (4)0.126 (7)0.002 (3)0.047 (5)0.028 (4)
C180.059 (5)0.037 (4)0.122 (7)0.004 (3)0.041 (5)0.034 (4)
C190.041 (4)0.037 (4)0.115 (7)0.007 (3)0.017 (4)0.034 (4)
C200.033 (3)0.037 (4)0.101 (6)0.004 (3)0.016 (4)0.024 (4)
C210.036 (3)0.040 (4)0.076 (5)0.009 (3)0.009 (3)0.018 (4)
C220.033 (3)0.031 (3)0.044 (4)0.004 (3)0.002 (3)0.016 (3)
C230.039 (3)0.029 (3)0.035 (3)0.008 (3)0.004 (3)0.013 (3)
C240.038 (3)0.029 (3)0.035 (3)0.004 (3)0.006 (3)0.014 (3)
C250.054 (4)0.035 (4)0.056 (4)0.016 (3)0.016 (3)0.012 (3)
C260.035 (3)0.044 (4)0.068 (5)0.004 (3)0.018 (3)0.021 (3)
C270.041 (3)0.030 (3)0.064 (4)0.001 (3)0.022 (3)0.015 (3)
C280.036 (3)0.035 (3)0.037 (3)0.007 (3)0.002 (3)0.017 (3)
C290.032 (3)0.027 (3)0.039 (3)0.009 (2)0.004 (3)0.009 (3)
C300.038 (3)0.028 (3)0.038 (3)0.008 (3)0.006 (3)0.013 (3)
C310.039 (3)0.024 (3)0.044 (4)0.009 (3)0.003 (3)0.013 (3)
C320.044 (3)0.029 (3)0.033 (3)0.007 (3)0.004 (3)0.010 (3)
C330.044 (4)0.029 (3)0.073 (5)0.014 (3)0.014 (3)0.011 (3)
C340.033 (3)0.028 (3)0.089 (5)0.003 (3)0.011 (3)0.019 (3)
C350.045 (4)0.028 (3)0.067 (5)0.004 (3)0.010 (3)0.010 (3)
C360.044 (4)0.039 (4)0.071 (5)0.016 (3)0.007 (3)0.022 (3)
C370.030 (3)0.032 (3)0.041 (4)0.005 (2)0.010 (3)0.007 (3)
C380.030 (3)0.037 (3)0.037 (3)0.006 (2)0.014 (3)0.012 (3)
C390.029 (3)0.071 (5)0.037 (4)0.017 (3)0.001 (3)0.012 (3)
C400.039 (3)0.072 (5)0.039 (4)0.021 (3)0.014 (3)0.016 (3)
C410.031 (3)0.028 (3)0.039 (3)0.001 (2)0.014 (3)0.009 (3)
C420.040 (4)0.030 (3)0.047 (4)0.008 (3)0.017 (3)0.009 (3)
C430.033 (3)0.049 (4)0.038 (4)0.005 (3)0.005 (3)0.008 (3)
C440.035 (3)0.052 (4)0.041 (4)0.012 (3)0.011 (3)0.014 (3)
C450.035 (3)0.024 (3)0.051 (4)0.005 (2)0.014 (3)0.005 (3)
C460.028 (3)0.026 (3)0.039 (3)0.003 (2)0.013 (3)0.005 (3)
C470.038 (3)0.043 (4)0.034 (3)0.001 (3)0.012 (3)0.013 (3)
C480.024 (3)0.040 (3)0.038 (3)0.006 (2)0.001 (3)0.007 (3)
C490.030 (3)0.025 (3)0.040 (3)0.005 (2)0.012 (3)0.002 (3)
C500.040 (3)0.044 (4)0.031 (3)0.003 (3)0.009 (3)0.009 (3)
C510.030 (3)0.048 (4)0.042 (4)0.014 (3)0.004 (3)0.006 (3)
C520.036 (3)0.027 (3)0.045 (4)0.003 (2)0.016 (3)0.005 (3)
N10.036 (3)0.027 (3)0.053 (3)0.006 (2)0.016 (2)0.008 (2)
N20.037 (3)0.026 (3)0.068 (4)0.003 (2)0.020 (3)0.014 (3)
N30.034 (3)0.033 (3)0.045 (3)0.013 (2)0.008 (2)0.013 (2)
N40.032 (3)0.024 (2)0.056 (3)0.004 (2)0.007 (2)0.017 (2)
N90.047 (3)0.031 (3)0.079 (4)0.009 (2)0.015 (3)0.023 (3)
N100.045 (3)0.029 (3)0.044 (3)0.008 (2)0.003 (2)0.007 (2)
O10.039 (2)0.068 (3)0.044 (3)0.018 (2)0.011 (2)0.021 (2)
O20.034 (2)0.077 (3)0.037 (2)0.015 (2)0.004 (2)0.021 (2)
O30.033 (2)0.051 (3)0.038 (2)0.0044 (19)0.0090 (19)0.019 (2)
O40.035 (2)0.058 (3)0.040 (3)0.000 (2)0.005 (2)0.023 (2)
O50.028 (2)0.070 (3)0.050 (3)0.006 (2)0.007 (2)0.008 (2)
O60.036 (2)0.042 (2)0.050 (3)0.0034 (18)0.017 (2)0.017 (2)
O70.037 (3)0.094 (4)0.047 (3)0.019 (2)0.007 (2)0.014 (3)
O80.040 (2)0.043 (2)0.048 (3)0.0073 (19)0.016 (2)0.015 (2)
N50.037 (3)0.029 (3)0.049 (3)0.008 (2)0.013 (2)0.011 (2)
N60.034 (3)0.027 (3)0.077 (4)0.001 (2)0.010 (3)0.019 (3)
N70.034 (3)0.028 (3)0.050 (3)0.006 (2)0.005 (2)0.014 (2)
N80.036 (3)0.024 (2)0.051 (3)0.003 (2)0.010 (2)0.015 (2)
Pb10.03078 (12)0.03135 (13)0.03598 (14)0.00628 (9)0.01026 (10)0.01111 (10)
Pb20.03446 (13)0.03374 (13)0.03622 (14)0.00678 (10)0.01022 (10)0.01278 (10)
Geometric parameters (Å, º) top
C1—C101.369 (7)C31—C321.465 (7)
C1—C21.381 (8)C32—C331.376 (8)
C1—H10.9300C32—C341.383 (8)
C2—N21.326 (7)C33—C351.377 (8)
C2—H20.9300C33—H330.9300
C3—N11.330 (7)C34—C361.379 (8)
C3—C41.383 (8)C34—H340.9300
C3—H30.9300C35—N101.324 (7)
C4—C61.367 (8)C35—H350.9300
C4—H40.9300C36—N101.328 (7)
C5—N31.362 (6)C36—H360.9300
C5—C131.381 (7)C37—O21.240 (7)
C5—C71.422 (7)C37—O11.281 (6)
C6—C71.399 (7)C37—C381.485 (8)
C6—H60.9300C38—C441.379 (8)
C7—C81.407 (7)C38—C391.388 (7)
C8—N11.354 (7)C39—C401.383 (8)
C8—C91.477 (7)C39—H390.9300
C9—N21.350 (6)C40—C411.389 (8)
C9—C111.418 (7)C40—H400.9300
C10—C111.388 (7)C41—C431.385 (7)
C10—H100.9300C41—C421.505 (8)
C11—C131.428 (7)C42—O41.239 (7)
C12—N41.338 (6)C42—O31.290 (6)
C12—N31.351 (6)C42—Pb2i2.870 (6)
C12—C161.466 (7)C43—C441.385 (8)
C13—N41.384 (7)C43—H430.9300
C14—N91.325 (8)C44—H440.9300
C14—C151.377 (8)C45—O51.249 (7)
C14—H140.9300C45—O61.261 (7)
C15—C161.358 (8)C45—C461.511 (7)
C15—H150.9300C46—C511.374 (8)
C16—C171.365 (8)C46—C471.401 (8)
C17—C181.369 (8)C47—C481.379 (7)
C17—H170.9300C47—H470.9300
C18—N91.308 (8)C48—C491.384 (7)
C18—H180.9300C48—H480.9300
C19—N61.331 (7)C49—C501.383 (8)
C19—C201.391 (8)C49—C521.511 (7)
C19—H190.9300C50—C511.389 (7)
C20—C211.367 (8)C50—H500.9300
C20—H200.9300C51—H510.9300
C21—C221.398 (8)C52—O71.249 (7)
C21—H210.9300C52—O81.260 (7)
C22—C231.411 (7)N3—H3A0.8600
C22—C301.444 (7)Pb1—O12.508 (4)
C23—N61.370 (7)Pb1—O22.691 (4)
C23—C241.458 (7)Pb1—O52.772 (4)
C24—N51.360 (6)Pb1—O62.591 (4)
C24—C281.413 (7)Pb1—O7ii2.555 (4)
C25—N51.324 (7)Pb1—N1iii2.824 (4)
C25—C261.387 (8)Pb1—N2iii2.829 (4)
C25—H250.9300Pb1—N92.681 (5)
C26—C271.363 (7)Pb2—O3iv2.424 (4)
C26—H260.9300Pb2—O4iv2.651 (4)
C27—C281.394 (7)Pb2—O52.761 (4)
C27—H270.9300Pb2—O7ii2.836 (4)
C28—C291.433 (7)Pb2—O8ii2.545 (4)
C29—N81.367 (6)Pb2—N52.853 (4)
C29—C301.367 (7)Pb2—N62.852 (4)
C30—N71.378 (6)Pb2—N10v2.662 (5)
C31—N71.323 (7)N8—H8A0.8600
C31—N81.367 (6)
C10—C1—C2118.9 (5)C41—C42—Pb2i163.3 (4)
C10—C1—H1120.6C44—C43—C41119.4 (6)
C2—C1—H1120.6C44—C43—H43120.3
N2—C2—C1124.0 (5)C41—C43—H43120.3
N2—C2—H2118.0C38—C44—C43121.3 (5)
C1—C2—H2118.0C38—C44—H44119.3
N1—C3—C4123.2 (5)C43—C44—H44119.3
N1—C3—H3118.4O5—C45—O6123.2 (5)
C4—C3—H3118.4O5—C45—C46118.2 (5)
C6—C4—C3119.9 (5)O6—C45—C46118.3 (5)
C6—C4—H4120.0C51—C46—C47118.9 (5)
C3—C4—H4120.0C51—C46—C45120.9 (5)
N3—C5—C13105.5 (5)C47—C46—C45120.0 (5)
N3—C5—C7131.0 (5)C48—C47—C46120.6 (5)
C13—C5—C7123.5 (5)C48—C47—H47119.7
C4—C6—C7118.3 (5)C46—C47—H47119.7
C4—C6—H6120.9C47—C48—C49120.1 (5)
C7—C6—H6120.9C47—C48—H48119.9
C6—C7—C8118.8 (5)C49—C48—H48119.9
C6—C7—C5124.0 (5)C50—C49—C48119.5 (5)
C8—C7—C5117.1 (5)C50—C49—C52120.3 (5)
N1—C8—C7121.8 (5)C48—C49—C52120.3 (5)
N1—C8—C9117.9 (5)C49—C50—C51120.4 (5)
C7—C8—C9120.2 (5)C49—C50—H50119.8
N2—C9—C11122.3 (5)C51—C50—H50119.8
N2—C9—C8117.2 (5)C46—C51—C50120.5 (5)
C11—C9—C8120.4 (5)C46—C51—H51119.8
C1—C10—C11119.5 (6)C50—C51—H51119.8
C1—C10—H10120.2O7—C52—O8123.5 (5)
C11—C10—H10120.2O7—C52—C49117.1 (5)
C10—C11—C9117.7 (5)O8—C52—C49119.3 (5)
C10—C11—C13124.7 (5)C3—N1—C8118.0 (5)
C9—C11—C13117.6 (5)C2—N2—C9117.5 (5)
N4—C12—N3112.6 (4)C12—N3—C5107.6 (4)
N4—C12—C16124.9 (5)C12—N3—H3A126.2
N3—C12—C16122.5 (5)C5—N3—H3A126.2
C5—C13—N4110.8 (5)C12—N4—C13103.6 (4)
C5—C13—C11121.1 (5)C18—N9—C14116.0 (5)
N4—C13—C11128.0 (5)C18—N9—Pb1119.9 (4)
N9—C14—C15123.5 (6)C14—N9—Pb1123.9 (4)
N9—C14—H14118.3C35—N10—C36116.6 (5)
C15—C14—H14118.3C35—N10—Pb2iii119.6 (4)
C16—C15—C14120.1 (6)C36—N10—Pb2iii122.5 (4)
C16—C15—H15120.0C37—O1—Pb197.5 (3)
C14—C15—H15120.0C37—O2—Pb189.9 (3)
C15—C16—C17116.2 (5)C42—O3—Pb2i96.4 (3)
C15—C16—C12121.8 (5)C42—O4—Pb2i87.2 (3)
C17—C16—C12122.0 (5)C45—O5—Pb2157.8 (4)
C16—C17—C18120.4 (6)C45—O5—Pb188.6 (3)
C16—C17—H17119.8Pb2—O5—Pb185.34 (11)
C18—C17—H17119.8C45—O6—Pb196.8 (3)
N9—C18—C17123.8 (6)C52—O7—Pb1vi166.2 (4)
N9—C18—H18118.1C52—O8—Pb2vi100.9 (3)
C17—C18—H18118.1C25—N5—C24117.5 (5)
N6—C19—C20123.9 (6)C25—N5—Pb2119.0 (4)
N6—C19—H19118.0C24—N5—Pb2123.5 (3)
C20—C19—H19118.0C19—N6—C23117.6 (5)
C21—C20—C19119.2 (6)C19—N6—Pb2118.2 (4)
C21—C20—H20120.4C23—N6—Pb2124.2 (3)
C19—C20—H20120.4C31—N7—C30104.4 (4)
C20—C21—C22119.0 (5)C29—N8—C31107.1 (4)
C20—C21—H21120.5C29—N8—H8A126.5
C22—C21—H21120.5C31—N8—H8A126.5
C21—C22—C23118.9 (5)O1—Pb1—O7ii132.98 (13)
C21—C22—C30124.3 (5)O1—Pb1—O689.16 (13)
C23—C22—C30116.9 (5)O7ii—Pb1—O6131.70 (14)
N6—C23—C22121.5 (5)O1—Pb1—N990.13 (15)
N6—C23—C24116.7 (5)O7ii—Pb1—N978.78 (16)
C22—C23—C24121.9 (5)O6—Pb1—N978.89 (14)
N5—C24—C28121.5 (5)O1—Pb1—O249.80 (12)
N5—C24—C23118.6 (5)O7ii—Pb1—O283.23 (12)
C28—C24—C23119.9 (5)O6—Pb1—O2130.95 (12)
N5—C25—C26124.4 (5)N9—Pb1—O276.17 (15)
N5—C25—H25117.8O1—Pb1—O5137.61 (12)
C26—C25—H25117.8O7ii—Pb1—O586.88 (12)
C27—C26—C25118.8 (5)O6—Pb1—O548.49 (12)
C27—C26—H26120.6N9—Pb1—O583.81 (15)
C25—C26—H26120.6O2—Pb1—O5159.04 (13)
C26—C27—C28119.1 (5)O1—Pb1—N1iii91.40 (13)
C26—C27—H27120.5O7ii—Pb1—N1iii117.17 (15)
C28—C27—H27120.5O6—Pb1—N1iii76.11 (12)
C27—C28—C24118.7 (5)N9—Pb1—N1iii154.93 (14)
C27—C28—C29124.7 (5)O2—Pb1—N1iii122.69 (13)
C24—C28—C29116.5 (5)O5—Pb1—N1iii78.27 (13)
N8—C29—C30105.6 (5)O1—Pb1—N2iii93.17 (14)
N8—C29—C28130.3 (5)O7ii—Pb1—N2iii75.12 (15)
C30—C29—C28124.1 (5)O6—Pb1—N2iii133.84 (12)
C29—C30—N7111.0 (5)N9—Pb1—N2iii147.09 (14)
C29—C30—C22120.6 (5)O2—Pb1—N2iii81.14 (13)
N7—C30—C22128.3 (5)O5—Pb1—N2iii114.08 (13)
N7—C31—N8111.9 (4)N1iii—Pb1—N2iii57.75 (13)
N7—C31—C32125.8 (5)O3iv—Pb2—O8ii82.40 (13)
N8—C31—C32122.2 (5)O3iv—Pb2—O4iv51.73 (12)
C33—C32—C34116.7 (5)O8ii—Pb2—O4iv130.42 (13)
C33—C32—C31121.0 (5)O3iv—Pb2—N10v83.64 (14)
C34—C32—C31122.3 (5)O8ii—Pb2—N10v79.47 (14)
C32—C33—C35119.7 (6)O4iv—Pb2—N10v77.92 (14)
C32—C33—H33120.2O3iv—Pb2—O5134.04 (12)
C35—C33—H33120.2O8ii—Pb2—O5126.98 (12)
C36—C34—C32119.9 (6)O4iv—Pb2—O585.16 (12)
C36—C34—H34120.1N10v—Pb2—O570.88 (14)
C32—C34—H34120.1O3iv—Pb2—O7ii128.71 (12)
N10—C35—C33123.8 (6)O8ii—Pb2—O7ii48.15 (12)
N10—C35—H35118.1O4iv—Pb2—O7ii153.24 (13)
C33—C35—H35118.1N10v—Pb2—O7ii75.75 (15)
N10—C36—C34123.3 (5)O5—Pb2—O7ii81.85 (12)
N10—C36—H36118.3O3iv—Pb2—N686.80 (14)
C34—C36—H36118.3O8ii—Pb2—N6132.49 (13)
O2—C37—O1121.1 (5)O4iv—Pb2—N669.75 (14)
O2—C37—C38120.8 (5)N10v—Pb2—N6144.92 (15)
O1—C37—C38118.1 (5)O5—Pb2—N692.72 (13)
C44—C38—C39119.0 (5)O7ii—Pb2—N6133.96 (15)
C44—C38—C37121.3 (5)O3iv—Pb2—N580.93 (13)
C39—C38—C37119.7 (5)O8ii—Pb2—N575.59 (12)
C40—C39—C38120.3 (6)O4iv—Pb2—N5109.41 (12)
C40—C39—H39119.8N10v—Pb2—N5152.12 (14)
C38—C39—H39119.8O5—Pb2—N5135.25 (13)
C39—C40—C41120.2 (5)O7ii—Pb2—N596.20 (13)
C39—C40—H40119.9N6—Pb2—N557.02 (13)
C41—C40—H40119.9O3iv—Pb2—C42iv26.53 (14)
C43—C41—C40119.7 (5)O8ii—Pb2—C42iv108.23 (15)
C43—C41—C42119.0 (5)O4iv—Pb2—C42iv25.55 (13)
C40—C41—C42121.1 (5)N10v—Pb2—C42iv82.83 (15)
O4—C42—O3123.0 (5)O5—Pb2—C42iv110.32 (15)
O4—C42—C41119.8 (5)O7ii—Pb2—C42iv150.37 (14)
O3—C42—C41117.0 (5)N6—Pb2—C42iv73.97 (16)
O4—C42—Pb2i67.3 (3)N5—Pb2—C42iv93.25 (15)
O3—C42—Pb2i57.1 (3)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y, z+1; (v) x, y1, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1vii0.861.932.720 (6)151
N8—H8A···O3viii0.862.022.822 (6)155
Symmetry codes: (vii) x+1, y, z; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb2(C8H4O4)2(C18H11N5)2]
Mr1337.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.9066 (7), 15.0537 (10), 15.0663 (10)
α, β, γ (°)75.890 (1), 74.199 (1), 81.399 (1)
V3)2299.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)7.38
Crystal size (mm)0.27 × 0.22 × 0.16
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.56, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
12743, 7984, 6315
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 0.98
No. of reflections7984
No. of parameters649
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb1—O12.508 (4)Pb2—O3iii2.424 (4)
Pb1—O22.691 (4)Pb2—O4iii2.651 (4)
Pb1—O52.772 (4)Pb2—O52.761 (4)
Pb1—O62.591 (4)Pb2—O7i2.836 (4)
Pb1—O7i2.555 (4)Pb2—O8i2.545 (4)
Pb1—N1ii2.824 (4)Pb2—N52.853 (4)
Pb1—N2ii2.829 (4)Pb2—N62.852 (4)
Pb1—N92.681 (5)Pb2—N10iv2.662 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1v0.861.932.720 (6)151.2
N8—H8A···O3vi0.862.022.822 (6)154.5
Symmetry codes: (v) x+1, y, z; (vi) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds