Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of the complex of dibenzo-18-crown-6 [systematic name: 2,5,8,15,18,21-hexa­oxa­tri­cyclo­[20.4.0.09,14]hexa­cosa-1(26),9,11,13,22,24-hexa­ene] with 4-meth­oxy­anil­inium tetra­fluoro­borate, C7H10NO+·BF4-·C20H24O6, the protonated 4-meth­oxy­anilinium (MB-NH3+) cation forms a 1:1 supra­molecular rotator-stator complex with the dibenzo-18-crown-6 mol­ecule via N-H...O hydrogen bonds. The MB-NH3+ group is attached from the convex side of the bowl-shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C-H...[pi] inter­actions, while the cations and anions are linked by weak C-H...F hydrogen bonds, forming cation-crown-anion chains parallel to [011].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110027630/sq3254sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110027630/sq3254Isup2.hkl
Contains datablock I

CCDC reference: 790653

Comment top

Because of their novel coordination modes, crown ethers have been widely used in catalysis, solvent extraction, isotope separation, bionics, materials chemistry, host–guest chemistry and supramolecular chemistry (Clark et al., 1998; Nakamura et al., 1998). Crown ethers have attracted much attention recently, due to their ability to form non-covalent hydrogen-bonded complexes with ammonium cations, both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004). The structures of organic ammonium RNH3+(crown ether) assemblies in the solid state depend not only on the structure of the cation and the size of the crown ether ring, but also on the nature of the counteranion. Various types of RNH3+ structures (R = H, CH3, C6H5CH2, NH2 etc.) have been shown to form stable ammonium(crown ether) complexes in the solid state (Akutagawa et al., 2005, 2009). The crown ether supramolecular approach has two advantages (Akutagawa et al., 2008). Firstly, the combination of organic and/or inorganic cations and crown ethers yields diverse molecular rotator structures. Secondly, one-pot synthesis of rotator–stator structures by self-assembly processes through selective cation recognition by crown ethers becomes possible. The ionic radius of NH4+ matches the cavity size of six-O crown ethers, and N—H···O hydrogen bonds help to form stable RNH3+(crown ether) complexes. The potential capacity of dibenzo-crowns to form π interactions upon stacking seemed to us to be an interesting property that could lead to more stable supramolecular assemblies.

The asymmetric unit of the title compound, C7H10NO+.BF4-.C20H24O6, (I), contains a 1:1 (MB-NH3+)(DB[18]crown-6) adduct in the supramolecular cation and a disordered tetrafluoroborate anion (Fig. 1) (MB-NH3+ is the 4-methoxyanilinium cation and DB[18]crown-6 is dibenzo-18-crown-6). The DB[18]crown-6 molecule possesses a jackknife-type configuration, with a folding angle between the two arene rings of 134.38 (15)°, indicating that the rings are oriented in the same direction with respect to the crown ether ring. This configuration of the crown itself is similar to that observed in the anilinium (Ph-NH3+) and adamantylammonium (AD-NH3+) complexes of DB[18]crown-6 (Akutagawa et al., 2008). The arene rings are essentially planar, with average deviations of the C atoms from the arene planes of 0.0033 and 0.0029 Å [For which rings?]. The six O atoms of the crown ring are almost coplanar, with a mean deviation of 0.036 Å.

In the supramolecular cation of (I), the ammonium N atom is in a backward perching position on the convex side of the bowl, lying 0.77 Å from the O6 plane and with the C—N bond of the MB-NH3+ group perpendicular to the mean O-atom plane, rather than in the nesting position (i.e. on the concave side of the bowl). By contrast, in the Ph-NH3+ and AD-NH3+ complexes, the amine is found in the nesting location (Akutagawa et al., 2008).

The supramolecular cation of (I) is constructed by three bifurcated ammonium–crown N—H···O hydrogen bonds, each with one strong (H···O ca 2.0 Å) linear interaction and one longer (H···O ca 2.5 Å) acute interaction (Table 1). A similar pattern was observed in the 18-crown-6 complex of propane-1,3-diaminium (Zhao & Qu, 2010). The average N···O hydrogen-bonding distance (2.87 Å) is consistent with similar interactions in other ammonium complexes of DB[18]crown-6 (Akutagawa et al., 2005, 2008).

In the packing of (I), the jackknife-shaped supramolecular cations are arranged in slanting pairs, wherein the dihedral angle between adjacent O6 planes is ca 64.61 (3)°. In addition to N—H···O hydrogen bonds, C—H···π interactions are the main molecular interaction. The pairwise face-to-face (MB-NH3+)(DB[18]crown-6) cations are linked by C—H···π interactions with C···Cg distances in the range 3.511 (4)–3.878 (4) Å, forming one-dimensional chains along the b axis (Fig. 2). The disordered tetrafluoroborate anions run between these chains and link them by weak C—H···F hydrogen bonds (Table 1), forming cation–crown–anion chains parallel to [011].

It is interesting that the molecular configuration and packing in (I) are quite different from what is found in the related (Ph-NH3+)(DB[18]crown-6)[Ni(dmit)2-] and (AD-NH3+)(DB[18]crown-6)[Ni(dmit)2-] salts (dmit2- is 2-thioxo-1,3-dithiole-4,5-dithiolate) (Akutagawa et al., 2008). In the (Ph-NH3+)(DB[18]crown-6) and (AD-NH3+)(DB[18]crown-6) complexes, the –NH3+ groups are in the forward perching (nesting) position, and the cation and anion layers are arranged alternately with a uniform stacking, in which the supramolecular cations are arranged in the same direction. These differences may be due to the BF4- anion, which is relatively small (compared with [Ni(dmit)2-]) for embedding large supramolecular cations in the crystal structure. The [BF4]- anions lack the ability to form π interactions but offer better hydrogen-bond acceptors to the C—H groups. Such a feature would further support the observed behaviour.

Related literature top

For related literature, see: Akutagawa et al. (2005, 2008, 2009); Clark et al. (1998); Fender et al. (2002); Kryatova et al. (2004); Nakamura et al. (1998); Zhao & Qu (2010).

Experimental top

4-Methoxyaniline (0.25 g, 2 mmol) was dissolved in methanol (Volume?), to which tetrafluoroboric acid in aqueous solution (40% w/w, Volume?) was then slowly added with stirring over a period of 20 min. During this reaction, the solution pH gradually changed to ca 7. Dibenzo-18-crown-6 (0.72 g, 2 mmol) was added and the mixture was then heated to reflux for 24 h. The reaction solution was cooled to room temperature and filtered. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the filtrate at room temperature after 2 d, giving a yield of ca 62%. The crystals were colourless, prismatic and of average size 0.2 × 0.3 × 0.4 mm.

Refinement top

The positional parameters of all C-bound H atoms were calculated geometrically and allowed to ride, with C(aromatic)—H = 0.93, C(crown ether)—H = 0.97 and C(methyl)—H = 0.96 Å, and with Uiso = 1.2Ueq(Caromatic/crown) or 1.5Ueq(Cmethyl). All ammonium H atoms were found in a difference Fourier map. However, they were then placed in ideal positions and refined using a rotating model, with Uiso = 1.5Ueq(N), with restraints for the N—H and H—H distances of 0.86 (2) and 1.45 (2) Å, respectively. The tetrafluoroborate anion is disordered over two orientations, with site-occupancy factors of 0.905 (3) (unprimed) and 0.095 (3) (primed). The B—F' distances of the low-occupancy F sites were refined with restraints of 1.39 (2) Å. In the absence of significant anomalous scattering effects, Friedel pairs were merged and the absolute configuration chosen arbitrarily.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. N-bound H atoms are shown as small spheres of arbitrary radii; all other H atoms have been omitted for clarity. Dashed lines indicate N—H···O hydrogen bonds. The BF4- anion is disordered over two orientations, with F-atom occupancies of 0.905 (3) (unprimed) and 0.095 (3) (primed).
[Figure 2] Fig. 2. A view of the packing of (I), along the a axis. Dashed lines indicate C—H···π interactions. Both orientations of the disordered BF4- anions are shown.
4-methoxyanilinium tetrafluoroborate–2,5,8,15,18,21- hexaoxatricyclo[20.4.0.09,14]hexacosa-1(26),9,11,13,22,24-hexaene (1/1) top
Crystal data top
C7H10NO+·BF4·C20H24O6F(000) = 1200
Mr = 571.36Dx = 1.388 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7516 reflections
a = 8.863 (4) Åθ = 2.2–27.5°
b = 16.408 (7) ŵ = 0.12 mm1
c = 18.806 (8) ÅT = 103 K
V = 2735 (2) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.959, Tmax = 0.977l = 2424
30293 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.9752P]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.17 e Å3
10 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H10NO+·BF4·C20H24O6V = 2735 (2) Å3
Mr = 571.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.863 (4) ŵ = 0.12 mm1
b = 16.408 (7) ÅT = 103 K
c = 18.806 (8) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3278 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.977Rint = 0.069
30293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05010 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.17 e Å3
3521 reflectionsΔρmin = 0.29 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3834 (3)0.66049 (17)0.29803 (15)0.0182 (6)
C20.4151 (4)0.70897 (19)0.23906 (16)0.0242 (7)
H2A0.49950.74260.23910.029*
C30.3195 (4)0.70689 (19)0.17978 (16)0.0237 (7)
H3A0.34120.73870.14020.028*
C40.1933 (3)0.65774 (18)0.17995 (16)0.0225 (6)
H4A0.13040.65660.14040.027*
C50.1593 (4)0.60977 (18)0.23892 (16)0.0215 (6)
H5A0.07360.57710.23870.026*
C60.2533 (3)0.61066 (17)0.29794 (15)0.0169 (6)
C70.0884 (3)0.52222 (19)0.36285 (15)0.0207 (6)
H7A0.07360.48920.32060.025*
H7B0.00590.56090.36620.025*
C80.0919 (4)0.46879 (19)0.42803 (14)0.0216 (6)
H8A0.00270.43460.42900.026*
H8B0.17980.43360.42630.026*
C90.0969 (4)0.46751 (19)0.55331 (15)0.0216 (6)
H9A0.18190.43030.55170.026*
H9B0.00500.43540.55470.026*
C100.1069 (3)0.51938 (19)0.61914 (15)0.0208 (6)
H10A0.02510.55870.61980.025*
H10B0.09870.48550.66120.025*
C110.2840 (3)0.60574 (17)0.67908 (15)0.0170 (6)
C120.1930 (3)0.60883 (18)0.73899 (16)0.0209 (6)
H12A0.10340.57930.74030.025*
C130.2356 (4)0.65607 (18)0.79720 (15)0.0227 (6)
H13A0.17410.65810.83720.027*
C140.3696 (4)0.70018 (19)0.79580 (16)0.0259 (7)
H14A0.39810.73130.83490.031*
C150.4610 (4)0.69740 (19)0.73541 (16)0.0252 (7)
H15A0.55060.72680.73430.030*
C160.4189 (3)0.65106 (18)0.67706 (15)0.0183 (6)
C170.6422 (3)0.6901 (2)0.61333 (16)0.0248 (7)
H17A0.70440.67390.65340.030*
H17B0.62410.74830.61660.030*
C180.7213 (3)0.6705 (2)0.54478 (15)0.0251 (7)
H18A0.81800.69800.54330.030*
H18B0.73920.61230.54180.030*
C190.7051 (3)0.6821 (2)0.41961 (15)0.0246 (7)
H19A0.72890.62470.41490.029*
H19B0.79880.71260.41820.029*
C200.6052 (4)0.7083 (2)0.35920 (16)0.0253 (7)
H20A0.57710.76500.36500.030*
H20B0.65880.70270.31450.030*
C210.8414 (4)0.2551 (2)0.52954 (17)0.0311 (8)
H21A0.91330.21360.51750.047*
H21B0.74950.23010.54540.047*
H21C0.88160.28870.56680.047*
C220.7099 (3)0.36696 (17)0.47618 (16)0.0194 (6)
C230.6658 (3)0.40548 (18)0.41331 (15)0.0200 (6)
H23A0.70410.38790.36990.024*
C240.5645 (3)0.47028 (18)0.41576 (15)0.0187 (6)
H24A0.53400.49620.37420.022*
C250.5096 (3)0.49571 (16)0.48176 (15)0.0172 (6)
C260.5523 (3)0.45825 (18)0.54398 (15)0.0192 (6)
H26A0.51450.47630.58740.023*
C270.6536 (3)0.39257 (18)0.54136 (16)0.0198 (6)
H27A0.68270.36640.58300.024*
O10.2308 (2)0.56504 (13)0.35850 (10)0.0202 (4)
O20.0972 (2)0.51769 (12)0.49094 (10)0.0208 (4)
O30.2505 (2)0.56131 (12)0.61887 (10)0.0205 (4)
O40.5007 (2)0.64650 (13)0.61472 (10)0.0201 (4)
O50.6305 (2)0.69615 (12)0.48618 (11)0.0222 (4)
O60.4712 (2)0.65770 (13)0.35845 (11)0.0210 (5)
O70.8115 (2)0.30434 (13)0.46826 (11)0.0233 (5)
N10.4092 (3)0.56755 (14)0.48487 (13)0.0178 (5)
H1C0.313 (2)0.5540 (18)0.4877 (15)0.027*
H1B0.428 (3)0.6000 (17)0.5226 (11)0.027*
H1A0.427 (3)0.5955 (18)0.4464 (11)0.027*
B10.7384 (4)0.5188 (2)0.22979 (18)0.0263 (8)
F10.7660 (3)0.55972 (15)0.29460 (11)0.0392 (6)0.905 (3)
F20.8759 (2)0.49445 (13)0.20176 (11)0.0314 (6)0.905 (3)
F30.6651 (3)0.57173 (15)0.18352 (12)0.0363 (6)0.905 (3)
F40.6499 (3)0.45058 (18)0.24317 (13)0.0438 (7)0.905 (3)
F2'0.838 (3)0.4667 (17)0.2642 (14)0.061 (9)0.095 (3)
F3'0.721 (3)0.4759 (17)0.1610 (10)0.055 (8)0.095 (3)
F4'0.5957 (18)0.5117 (18)0.2559 (11)0.041 (7)0.095 (3)
F1'0.792 (3)0.5939 (12)0.2119 (14)0.054 (8)0.095 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0214 (14)0.0171 (13)0.0161 (13)0.0020 (11)0.0003 (12)0.0016 (11)
C20.0273 (16)0.0213 (15)0.0238 (15)0.0018 (13)0.0003 (14)0.0038 (13)
C30.0318 (17)0.0225 (15)0.0169 (14)0.0045 (13)0.0012 (13)0.0037 (12)
C40.0251 (15)0.0224 (15)0.0200 (15)0.0075 (12)0.0025 (12)0.0001 (12)
C50.0235 (15)0.0209 (15)0.0202 (14)0.0006 (12)0.0021 (13)0.0028 (12)
C60.0169 (13)0.0156 (13)0.0181 (14)0.0037 (11)0.0001 (12)0.0013 (11)
C70.0174 (14)0.0243 (15)0.0204 (14)0.0068 (12)0.0003 (12)0.0030 (12)
C80.0230 (15)0.0251 (15)0.0168 (14)0.0082 (13)0.0009 (12)0.0027 (12)
C90.0234 (15)0.0226 (15)0.0187 (14)0.0055 (13)0.0028 (13)0.0018 (12)
C100.0162 (14)0.0262 (15)0.0201 (14)0.0023 (12)0.0001 (12)0.0013 (12)
C110.0201 (14)0.0169 (13)0.0139 (13)0.0014 (11)0.0021 (11)0.0010 (11)
C120.0203 (14)0.0230 (15)0.0192 (14)0.0022 (12)0.0018 (12)0.0010 (12)
C130.0270 (16)0.0245 (15)0.0166 (14)0.0035 (13)0.0024 (13)0.0020 (12)
C140.0330 (18)0.0264 (16)0.0183 (14)0.0017 (14)0.0018 (14)0.0070 (13)
C150.0287 (16)0.0234 (16)0.0234 (15)0.0043 (13)0.0005 (13)0.0047 (13)
C160.0192 (14)0.0173 (13)0.0182 (14)0.0001 (11)0.0016 (12)0.0000 (12)
C170.0222 (15)0.0316 (17)0.0207 (14)0.0097 (14)0.0007 (13)0.0039 (13)
C180.0186 (15)0.0358 (18)0.0209 (15)0.0072 (13)0.0014 (13)0.0040 (13)
C190.0201 (15)0.0338 (17)0.0198 (14)0.0075 (14)0.0046 (12)0.0018 (13)
C200.0241 (16)0.0298 (17)0.0221 (15)0.0117 (14)0.0009 (13)0.0042 (13)
C210.0353 (18)0.0288 (17)0.0292 (17)0.0077 (15)0.0017 (15)0.0035 (14)
C220.0169 (13)0.0186 (13)0.0227 (15)0.0015 (11)0.0009 (12)0.0005 (12)
C230.0230 (15)0.0221 (14)0.0151 (13)0.0002 (12)0.0031 (12)0.0015 (12)
C240.0201 (14)0.0214 (14)0.0146 (13)0.0003 (12)0.0005 (12)0.0007 (12)
C250.0115 (12)0.0206 (13)0.0194 (13)0.0008 (11)0.0011 (11)0.0001 (12)
C260.0214 (14)0.0220 (15)0.0143 (13)0.0017 (12)0.0021 (12)0.0014 (12)
C270.0227 (14)0.0201 (14)0.0168 (13)0.0030 (12)0.0009 (12)0.0022 (11)
O10.0171 (10)0.0245 (11)0.0189 (10)0.0046 (9)0.0007 (8)0.0030 (9)
O20.0236 (11)0.0224 (10)0.0163 (9)0.0025 (9)0.0011 (9)0.0006 (9)
O30.0204 (10)0.0215 (10)0.0196 (10)0.0044 (9)0.0013 (9)0.0047 (8)
O40.0174 (10)0.0246 (11)0.0183 (10)0.0057 (9)0.0018 (8)0.0035 (9)
O50.0202 (10)0.0298 (11)0.0167 (9)0.0036 (9)0.0002 (9)0.0004 (9)
O60.0185 (10)0.0240 (11)0.0204 (10)0.0082 (9)0.0024 (8)0.0046 (9)
O70.0250 (11)0.0237 (11)0.0213 (11)0.0063 (9)0.0015 (9)0.0029 (9)
N10.0192 (12)0.0170 (11)0.0171 (11)0.0020 (10)0.0006 (11)0.0011 (10)
B10.0229 (17)0.037 (2)0.0188 (16)0.0051 (16)0.0016 (15)0.0002 (15)
F10.0315 (12)0.0604 (16)0.0257 (11)0.0085 (12)0.0003 (10)0.0174 (11)
F20.0273 (11)0.0387 (12)0.0283 (11)0.0018 (10)0.0073 (10)0.0065 (10)
F30.0276 (12)0.0506 (14)0.0307 (12)0.0014 (11)0.0023 (10)0.0123 (11)
F40.0315 (13)0.0590 (18)0.0409 (14)0.0188 (13)0.0090 (12)0.0180 (13)
F2'0.029 (13)0.09 (2)0.062 (16)0.025 (14)0.017 (12)0.035 (16)
F3'0.043 (14)0.074 (19)0.048 (14)0.007 (14)0.020 (12)0.024 (13)
F4'0.016 (10)0.08 (2)0.023 (10)0.000 (12)0.009 (9)0.015 (12)
F1'0.052 (16)0.046 (15)0.063 (17)0.020 (12)0.016 (13)0.025 (13)
Geometric parameters (Å, º) top
C1—O61.378 (3)C17—H17A0.9700
C1—C21.393 (4)C17—H17B0.9700
C1—C61.413 (4)C18—O51.428 (4)
C2—C31.401 (4)C18—H18A0.9700
C2—H2A0.9300C18—H18B0.9700
C3—C41.379 (4)C19—O51.434 (3)
C3—H3A0.9300C19—C201.503 (4)
C4—C51.393 (4)C19—H19A0.9700
C4—H4A0.9300C19—H19B0.9700
C5—C61.388 (4)C20—O61.449 (3)
C5—H5A0.9300C20—H20A0.9700
C6—O11.377 (3)C20—H20B0.9700
C7—O11.446 (3)C21—O71.432 (4)
C7—C81.507 (4)C21—H21A0.9600
C7—H7A0.9700C21—H21B0.9600
C7—H7B0.9700C21—H21C0.9600
C8—O21.430 (3)C22—O71.374 (3)
C8—H8A0.9700C22—C271.389 (4)
C8—H8B0.9700C22—C231.396 (4)
C9—O21.433 (3)C23—C241.392 (4)
C9—C101.505 (4)C23—H23A0.9300
C9—H9A0.9700C24—C251.397 (4)
C9—H9B0.9700C24—H24A0.9300
C10—O31.447 (3)C25—C261.375 (4)
C10—H10A0.9700C25—N11.478 (4)
C10—H10B0.9700C26—C271.403 (4)
C11—O31.379 (3)C26—H26A0.9300
C11—C121.386 (4)C27—H27A0.9300
C11—C161.409 (4)N1—H1C0.885 (16)
C12—C131.394 (4)N1—H1B0.903 (16)
C12—H12A0.9300N1—H1A0.870 (16)
C13—C141.391 (5)B1—F1'1.362 (15)
C13—H13A0.9300B1—F4'1.362 (15)
C14—C151.396 (4)B1—F21.387 (4)
C14—H14A0.9300B1—F2'1.388 (15)
C15—C161.386 (4)B1—F41.390 (4)
C15—H15A0.9300B1—F31.391 (4)
C16—O41.380 (3)B1—F11.413 (4)
C17—O41.445 (3)B1—F3'1.481 (16)
C17—C181.502 (4)
O6—C1—C2124.2 (3)O5—C19—H19B109.6
O6—C1—C6116.3 (2)C20—C19—H19B109.6
C2—C1—C6119.6 (3)H19A—C19—H19B108.2
C1—C2—C3119.8 (3)O6—C20—C19109.1 (2)
C1—C2—H2A120.1O6—C20—H20A109.9
C3—C2—H2A120.1C19—C20—H20A109.9
C4—C3—C2120.2 (3)O6—C20—H20B109.9
C4—C3—H3A119.9C19—C20—H20B109.9
C2—C3—H3A119.9H20A—C20—H20B108.3
C3—C4—C5120.5 (3)O7—C21—H21A109.5
C3—C4—H4A119.7O7—C21—H21B109.5
C5—C4—H4A119.7H21A—C21—H21B109.5
C6—C5—C4120.1 (3)O7—C21—H21C109.5
C6—C5—H5A120.0H21A—C21—H21C109.5
C4—C5—H5A120.0H21B—C21—H21C109.5
O1—C6—C5124.6 (3)O7—C22—C27123.9 (3)
O1—C6—C1115.6 (2)O7—C22—C23115.5 (3)
C5—C6—C1119.8 (3)C27—C22—C23120.7 (3)
O1—C7—C8108.1 (2)C24—C23—C22119.9 (3)
O1—C7—H7A110.1C24—C23—H23A120.1
C8—C7—H7A110.1C22—C23—H23A120.1
O1—C7—H7B110.1C23—C24—C25118.8 (3)
C8—C7—H7B110.1C23—C24—H24A120.6
H7A—C7—H7B108.4C25—C24—H24A120.6
O2—C8—C7110.3 (2)C26—C25—C24121.8 (3)
O2—C8—H8A109.6C26—C25—N1119.3 (3)
C7—C8—H8A109.6C24—C25—N1118.9 (3)
O2—C8—H8B109.6C25—C26—C27119.3 (3)
C7—C8—H8B109.6C25—C26—H26A120.3
H8A—C8—H8B108.1C27—C26—H26A120.3
O2—C9—C10110.4 (2)C22—C27—C26119.6 (3)
O2—C9—H9A109.6C22—C27—H27A120.2
C10—C9—H9A109.6C26—C27—H27A120.2
O2—C9—H9B109.6C6—O1—C7115.9 (2)
C10—C9—H9B109.6C8—O2—C9110.8 (2)
H9A—C9—H9B108.1C11—O3—C10116.0 (2)
O3—C10—C9108.5 (2)C16—O4—C17116.4 (2)
O3—C10—H10A110.0C18—O5—C19111.5 (2)
C9—C10—H10A110.0C1—O6—C20116.9 (2)
O3—C10—H10B110.0C22—O7—C21117.1 (2)
C9—C10—H10B110.0C25—N1—H1C113 (2)
H10A—C10—H10B108.4C25—N1—H1B113 (2)
O3—C11—C12124.2 (3)H1C—N1—H1B106 (2)
O3—C11—C16116.1 (2)C25—N1—H1A106 (2)
C12—C11—C16119.8 (3)H1C—N1—H1A111 (2)
C11—C12—C13120.1 (3)H1B—N1—H1A108 (2)
C11—C12—H12A120.0F1'—B1—F4'119.3 (18)
C13—C12—H12A120.0F1'—B1—F282.0 (12)
C14—C13—C12120.4 (3)F4'—B1—F2158.3 (14)
C14—C13—H13A119.8F1'—B1—F2'116.8 (17)
C12—C13—H13A119.8F4'—B1—F2'111.7 (15)
C13—C14—C15119.6 (3)F2—B1—F2'56.0 (11)
C13—C14—H14A120.2F1'—B1—F4165.8 (12)
C15—C14—H14A120.2F4'—B1—F448.8 (13)
C16—C15—C14120.4 (3)F2—B1—F4109.4 (3)
C16—C15—H15A119.8F2'—B1—F477.2 (12)
C14—C15—H15A119.8F1'—B1—F356.1 (12)
O4—C16—C15124.1 (3)F4'—B1—F381.1 (10)
O4—C16—C11116.1 (2)F2—B1—F3110.7 (3)
C15—C16—C11119.8 (3)F2'—B1—F3166.7 (12)
O4—C17—C18108.3 (2)F4—B1—F3110.6 (3)
O4—C17—H17A110.0F1'—B1—F174.0 (12)
C18—C17—H17A110.0F4'—B1—F183.7 (11)
O4—C17—H17B110.0F2—B1—F1108.2 (3)
C18—C17—H17B110.0F2'—B1—F177.3 (13)
H17A—C17—H17B108.4F4—B1—F1108.9 (3)
O5—C18—C17109.7 (3)F3—B1—F1108.9 (3)
O5—C18—H18A109.7F1'—B1—F3'104.5 (16)
C17—C18—H18A109.7F4'—B1—F3'100.2 (14)
O5—C18—H18B109.7F2—B1—F3'67.9 (10)
C17—C18—H18B109.7F2'—B1—F3'100.4 (17)
H18A—C18—H18B108.2F4—B1—F3'73.5 (11)
O5—C19—C20110.1 (3)F3—B1—F3'72.6 (11)
O5—C19—H19A109.6F1—B1—F3'176.0 (10)
C20—C19—H19A109.6
O6—C1—C2—C3179.3 (3)C27—C22—C23—C240.1 (4)
C6—C1—C2—C31.1 (4)C22—C23—C24—C250.4 (4)
C1—C2—C3—C40.8 (4)C23—C24—C25—C260.3 (4)
C2—C3—C4—C50.1 (4)C23—C24—C25—N1176.4 (2)
C3—C4—C5—C60.5 (4)C24—C25—C26—C270.1 (4)
C4—C5—C6—O1179.3 (3)N1—C25—C26—C27176.9 (2)
C4—C5—C6—C10.1 (4)O7—C22—C27—C26178.7 (3)
O6—C1—C6—O10.2 (4)C23—C22—C27—C260.5 (4)
C2—C1—C6—O1179.8 (3)C25—C26—C27—C220.6 (4)
O6—C1—C6—C5179.7 (3)C5—C6—O1—C78.3 (4)
C2—C1—C6—C50.7 (4)C1—C6—O1—C7172.2 (2)
O1—C7—C8—O266.0 (3)C8—C7—O1—C6173.7 (2)
O2—C9—C10—O364.1 (3)C7—C8—O2—C9178.6 (3)
O3—C11—C12—C13179.5 (3)C10—C9—O2—C8178.4 (3)
C16—C11—C12—C130.5 (4)C12—C11—O3—C103.1 (4)
C11—C12—C13—C140.2 (5)C16—C11—O3—C10175.8 (2)
C12—C13—C14—C150.5 (5)C9—C10—O3—C11174.1 (2)
C13—C14—C15—C160.0 (5)C15—C16—O4—C173.3 (4)
C14—C15—C16—O4178.4 (3)C11—C16—O4—C17177.5 (2)
C14—C15—C16—C110.7 (5)C18—C17—O4—C16174.0 (2)
O3—C11—C16—O40.8 (4)C17—C18—O5—C19177.2 (2)
C12—C11—C16—O4178.2 (3)C20—C19—O5—C18178.9 (3)
O3—C11—C16—C15180.0 (3)C2—C1—O6—C200.7 (4)
C12—C11—C16—C151.0 (4)C6—C1—O6—C20179.8 (2)
O4—C17—C18—O560.9 (3)C19—C20—O6—C1166.0 (2)
O5—C19—C20—O664.0 (3)C27—C22—O7—C2110.3 (4)
O7—C22—C23—C24179.3 (2)C23—C22—O7—C21170.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.87 (2)2.45 (2)2.855 (3)109 (2)
N1—H1A···O50.87 (2)2.53 (3)2.881 (3)103 (2)
N1—H1A···O60.87 (2)1.98 (2)2.854 (3)177 (3)
N1—H1B···O30.90 (2)2.48 (2)2.887 (3)110 (2)
N1—H1B···O40.90 (2)2.00 (2)2.880 (3)165 (3)
N1—H1B···O50.90 (2)2.49 (3)2.881 (3)107 (2)
N1—H1C···O10.88 (2)2.51 (3)2.855 (3)104 (2)
N1—H1C···O20.88 (2)2.00 (2)2.886 (3)177 (3)
N1—H1C···O30.88 (2)2.53 (3)2.888 (3)105 (2)
C19—H19A···F10.972.523.139 (4)121
C7—H7B···F1i0.972.523.192 (4)127
C5—H5A···F2i0.932.323.222 (4)163
C26—H26A···F2ii0.932.413.132 (4)135
C27—H27A···F3ii0.932.533.174 (4)126
C12—H12A···F4iii0.932.303.192 (4)161
C7—H7A···Cg2iv0.972.953.798 (4)147
C10—H10B···Cg1iii0.972.963.812 (4)147
C15—H15A···Cg1v0.932.863.761 (4)165
C20—H20B···Cg1v0.972.963.511 (4)117
C21—H21A···Cg3vi0.962.953.878 (4)164
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x, y+3/2, z+3/2; (vi) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H10NO+·BF4·C20H24O6
Mr571.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)103
a, b, c (Å)8.863 (4), 16.408 (7), 18.806 (8)
V3)2735 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.959, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
30293, 3521, 3278
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.105, 1.16
No. of reflections3521
No. of parameters407
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.87 (2)2.45 (2)2.855 (3)109 (2)
N1—H1A···O50.870 (16)2.53 (3)2.881 (3)103.1 (18)
N1—H1A···O60.870 (16)1.984 (16)2.854 (3)177 (3)
N1—H1B···O30.901 (16)2.48 (2)2.887 (3)110 (2)
N1—H1B···O40.901 (16)1.999 (16)2.880 (3)165 (3)
N1—H1B···O50.90 (2)2.49 (3)2.881 (3)106.9 (17)
N1—H1C···O10.884 (16)2.51 (3)2.855 (3)104 (2)
N1—H1C···O20.884 (16)2.003 (16)2.886 (3)177 (3)
N1—H1C···O30.883 (19)2.53 (3)2.888 (3)105 (2)
C19—H19A···F10.972.523.139 (4)121.4
C7—H7B···F1i0.972.523.192 (4)126.7
C5—H5A···F2i0.932.323.222 (4)162.6
C26—H26A···F2ii0.932.413.132 (4)134.5
C27—H27A···F3ii0.932.533.174 (4)126.2
C12—H12A···F4iii0.932.303.192 (4)161.0
C7—H7A···Cg2iv0.972.953.798 (4)146.85
C10—H10B···Cg1iii0.972.963.812 (4)146.76
C15—H15A···Cg1v0.932.863.761 (4)164.54
C20—H20B···Cg1v0.972.963.511 (4)117.23
C21—H21A···Cg3vi0.962.953.878 (4)163.47
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x, y+3/2, z+3/2; (vi) x, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds