Download citation
Download citation
link to html
Dicaesium divanadium trioxide phosphate hydrogenphos­phate, Cs2V2O3(PO4)(HPO4), (I), and dicaesium tris­[oxido­vanadate(IV)] hydrogenphosphate dihydrate, Cs2[(VO)3(HPO4)4(H2O)]·H2O, (II), crystallize in the monoclinic system with all atoms in general positions. The structures of the two compounds are built up from VO6 octa­hedra and PO4 tetra­hedra. In (I), infinite chains of corner-sharing VO6 octa­hedra are connected to V2O10 dimers by phosphate and hydrogenphosphate groups, while in (II) three vanadium octa­hedra share vertices leading to V3O15(H2O) trimers separated by hydrogenphosphate groups. Both structures show three-dimensional frameworks with tunnels in which Cs+ cations are located.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010905433X/sq3221sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010905433X/sq3221Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010905433X/sq3221IIsup3.hkl
Contains datablock II

Comment top

Vanadium phosphates and hydrogenphosphates have been extensively studied because of their interesting properties in catalysis, for example the oxidation of light hydrocarbons into maleic anhydride, in low-dimensional magnetism and in ion exchange (Boudin et al., 2000). Previous studies involving hydrothermal preparation of vanadium phosphate compounds with insertion of Cs+ cations led to the isolation of several different structural types. The VV phase Cs(VO2)(HPO4) was first isolated (Preuss et al., 1975) and then its structure proposed many years later (Amorós et al., 1988). Subsequently, the VIII compounds CsV(HP3O10) (Klinkert et al., 1988) and Cs[V2(PO4)(HPO4)2(H2O)2] (Haushalter et al., 1993), and the mixed-valence VIV/VV compounds Cs(V2O3)(HPO4)2(H2O) (Haushalter et al., 1994) and Cs5.9(VO)10(PO4)4(HPO4)8 (Le Fur et al., 2001) were also isolated. The most interesting remains, Cs3[V5O9(PO4)3].4.5H2O, due to its high degree of porosity which leads to ion-exchange properties (Khan et al., 1996). During our current investigations, the mixed phosphate/hydrogenphosphate Cs2V2O3(PO4)(HPO4), (I), and the hydrogenphosphate Cs2[(VO)3(HPO4)4(H2O)].H2O, (II), have been synthesized and their structures solved using single-crystal X-ray diffraction.

The asymmetric unit of (I) contains 17 crystallographically independent non-H atoms: two V atoms with different oxidation states (V1 +4, V2 +5), two P atoms P1 and P2 forming phosphate and hydrogenphosphate groups, respectively, and two Cs and 11 O atoms (Fig. 1a). The VPO framework consists of [V2V2O10] dimers connected through phosphate bridges to [V1IVO(HPO4)] infinite chains of corner-sharing VO6 octahedra that run along a (Fig. 2a). This results in a three-dimensional framework in which tunnels develop along c that interconnect tunnels running along a. The Cs ions are inside the tunnels (Fig. 2b). Within the dimer, the two VO6 octahedra [1.629 (2) Å dV—O 2.339 (2) Å] are connected by edge sharing. In the infinite chains, alternating VO···V bonds are observed [dVO = 1.618 (2) Å, dV···O = 2.389 (2) Å] with a V—O—V angle at the shared oxygen O1 of 129.11 (11)°. The four equatorial O atoms of the octahedra [1.958 (2) Å dV—O 2.002 (2) Å] are shared with phosphate and hydrogenphosphate groups. The phosphate groups share two O atoms with V2 atoms in the dimer and the other two with V1 atoms in the chain. In the hydrogenphosphate groups, two O atoms are shared with the vanadium chain and one with a dimer. The last O atom O7 is unshared and the P1—O7 distance 1.588 (2) Å is long enough to suggest the presence of an acidic H atom connected to this O atom. None of the H atoms were located in the structure analysis. The bond valence sum calculation gives values of 4.09 and 4.88 for V1 and V2, respectively, indicating formal oxidation states of +4 for V1 and +5 for V2. The structure of (I) can be compared to that of Cs(V2O3)(HPO4)2(H2O) described by Haushalter et al. (1994). Both structures are built up from infinite chains of corner-sharing vanadium octahedra and present tunnels, running along the infinite chain, occupied by Cs cations. In the case of Cs(V2O3)(HPO4)2(H2O) the chains are connected directly by hydrogenphosphate groups generating narrow tunnels while in (I) the tunnels are larger due to the presence of the V2O10 dimers which act as spacing agents. In both structures, mixed valence is observed. In (I) the tetravalent V atoms are observed in the chains and the pentavalent V atoms in the dimer while in the case of Cs(V2O3)(HPO4)2(H2O) there is an alternation of VV/VIV within the infinite chain which is evidenced by the quite distinct V···O distances.

The asymmetric unit of (II) contains three crystallographically independent VIV atoms in octahedral environments and four hydrogenphosphate anions (Fig. 1b). V1 is coordinated to one terminal oxo O atom, four phosphate O atoms and a water molecule, while V2 and V3 are coordinated to one terminal oxo O atom, four phosphate O atoms and one oxo O atom from an adjacent vanadyl group. The short VO bonds are in the range 1.592 (2) Å dV O 1.618 (2) Å and the equatorial distances are in the range 1.959 (2) Å dVO 2.018 (2) Å, while the long V···O distances are in the range 2.244 (2) Å dV···O 2.634 (2) Å. Within the hydrogenphosphate groups, two sets of distances are observed. The first corresponds to O atoms shared with V atoms [1.493 (2) Å dP—O 1.535 (2) Å] and the second to longer P—O distances to unshared O atoms [1.562 (2) Å dP—O 1.599 (2) Å] that are presumed to be protonated. No H atoms could be located in the structure analysis. The three vanadium octahedra share vertices to form a distorted trimer. Each phosphate group is linked to two vanadium octahedra of a trimer through µ2 oxo bridges. One O atom is shared with another trimer and the last one is a terminal OH group. This leads to a three- dimensional framework (Fig. 3) with tunnels running along a in which Cs cations and water molecules are located. Similar trimers have already been encountered in H3N(CH2)3NH3[(VO)3(OH)2(H2O)(PO4)2] (Soghomonian et al. 1993) in which the trimers are built up from a central square pyramid in which the vanadium shares O atoms from the basal plane with two adjacent V atoms in octahedral coordination. The trimer observed in (II) is actually more similar to that of the phosphite-containing compound [C2N2H10] [(VO)3(H2O)(HPO3)4].H2O (Zhang et al., 2005), as shown in Fig. 4. The differences between the two structures are in the slightly different tilting of the phosphorus–oxygen groups. This may have its origin in the nature of the counter cations: quasi- spherical Cs+ in our structure and non-symmetric propylene diammonium dication in the phosphite compound.

Related literature top

For related literature, see: Altomare et al. (1999); Amorós et al. (1988); Boudin et al. (2000); Brandenburg (2005); Duisenberg (1998); Farrugia (1999); Haushalter et al. (1993, 1994); Khan et al. (1996); Klinkert & Jansen (1988); Le Fur, De Villars, Tortelier & Pivan (2001); Nonius (1998); Preuss & Schug (1975); Sheldrick (2008); Soghomonian et al. (1993); Zhang et al. (2005).

Experimental top

Both compounds were prepared by hydrothermal treatment starting from mixtures of vanadium(V) oxide, caesium carbonate, oxalic acid, phosphoric acid and water. For the preparation of (I): a mixture of V2O5 (1 mmol), H2C2O4.2H2O (2 mmol), Cs2CO3 (2 mmol), H3PO4 (17 mmol) and water (170 mmol) were loaded in a 23 ml-capacity Teflon-lined stainless steel Parr hydrothermal reaction vessel and heated at 393 K for 3 d. After slowly being cooled to room temperature, pale- green crystals were recovered by vacuum filtration, washed with water and dried in a desiccator.

For the preparation of (II): a mixture of of V2O5 (1 mmol), H2C2O4.2H2O (0.92 mmol), Cs2CO3 (2 mmol), H3PO4 (0.25 ml of 85% solution) and water (4.75 ml) were loaded into a similar vessel as in the preparation of (I) and heated at 493 K for 72 h. The final product, a mixture of black and green crystals, was filtered, rinsed with water and dried in a desiccator. Green crystals, corresponding to (II), were manually selected for single-crystal X-ray data collection. Attempts to obtain a pure phase remain unsuccessful.

Refinement top

#Data collection: COLLECT (Nonius, 1998); cell refinement: #DIRAX/LSQ (Duisenberg, 1998); data reduction: EVALCCD #(Duisenberg, 1998); program(s) used to solve structure: #SIR97 #(Altomare et al., 1999); program(s) used to refine #structure: #SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND #(Brandenburg, 2005); software used to prepare material for publication: #WinGX (Farrugia, 1999)

Refinement text

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1998); data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and symmetry-related atoms of (a) Cs2V2O3(PO4)(HPO4) [symmetry codes: (i) -x, 1 - y, -z; (ii) 1 + x, y, z; (iii) 1 + x, 1 - y, 1/2 + z; (iv) x, 1/2 - y, -1/2 + z] and (b) Cs2[(VO)3H2O(HPO4)4].H2O [symmetry codes: (i) -x, -y, -z; (ii) x,-1/2 - y, -1/2 + z; (iii) 1 - x, -y, -z; (iv) x, 1/2 - y, 1/2 + z].
[Figure 2] Fig. 2. Projections along (a) the [001] direction and (b) the [100] direction of Cs2V2O3(PO4)(HPO4). The vanadium octahedra are in grey, the phosphate tetrahedra in yellow, the O atoms in red and the Cs cations in the channels in white.
[Figure 3] Fig. 3. Projection along the [100] direction of Cs2[(VO)3H2O(HPO4)4].H2O. The vanadium octahedra are in grey, the phosphate tetrahedra in yellow, the O atoms in red and the Cs cations (in the channels together with water molecules) in white.
[Figure 4] Fig. 4. Partial views of the trimers in (a) Cs2[(VO)3H2O(HPO4)4].H2O and (b) [C2N2H10][((VO)3(H2O)(HPO3)4].H2O. The vanadium octahedra are in grey, P atoms in yellow, O atoms in red and H atoms in white.
(I) Dicaesium divanadium trioxide phosphate hydrogenphosphate top
Crystal data top
Cs2V2O3(PO4)(HPO4)F(000) = 1096
Mr = 605.64Dx = 3.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19026 reflections
a = 8.9180 (2) Åθ = 2.9–35.0°
b = 16.9479 (4) ŵ = 8.74 mm1
c = 7.2199 (1) ÅT = 293 K
β = 99.092 (1)°Block, green
V = 1077.52 (4) Å30.16 × 0.15 × 0.15 mm
Z = 4
Data collection top
95mm CCD camera on κ-goniostat
diffractometer
4170 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
θmax = 36.9°, θmin = 3.6°
Tmin = 0.251, Tmax = 0.277h = 1214
18070 measured reflectionsk = 2727
5051 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters not defined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0137P)2 + 2.8067P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
5051 reflectionsΔρmax = 1.70 e Å3
154 parametersΔρmin = 2.53 e Å3
0 restraints
Crystal data top
Cs2V2O3(PO4)(HPO4)V = 1077.52 (4) Å3
Mr = 605.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9180 (2) ŵ = 8.74 mm1
b = 16.9479 (4) ÅT = 293 K
c = 7.2199 (1) Å0.16 × 0.15 × 0.15 mm
β = 99.092 (1)°
Data collection top
95mm CCD camera on κ-goniostat
diffractometer
5051 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4170 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.277Rint = 0.022
18070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.055H-atom parameters not defined
S = 1.14Δρmax = 1.70 e Å3
5051 reflectionsΔρmin = 2.53 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.41271 (2)0.478829 (11)0.71168 (3)0.02301 (5)
Cs20.01344 (2)0.338549 (11)0.45443 (2)0.02023 (4)
V10.37880 (5)0.26197 (2)0.29520 (5)0.00742 (7)
V20.13635 (5)0.46028 (2)0.11685 (6)0.00870 (7)
P10.17156 (7)0.36475 (4)0.01927 (8)0.00763 (10)
P20.36589 (7)0.32778 (4)0.05778 (8)0.00789 (10)
O10.1969 (2)0.31047 (11)0.1531 (2)0.0113 (3)
O20.2482 (2)0.33052 (10)0.1781 (2)0.0108 (3)
O30.0016 (2)0.36761 (11)0.0878 (3)0.0120 (3)
O40.2401 (2)0.44750 (10)0.0282 (3)0.0112 (3)
O50.4403 (2)0.30863 (11)0.1448 (2)0.0116 (3)
O60.4863 (2)0.33732 (11)0.1853 (2)0.0110 (3)
O70.2603 (2)0.25535 (12)0.1331 (3)0.0159 (4)
O80.2670 (2)0.39992 (11)0.0612 (3)0.0128 (3)
O90.2461 (2)0.43967 (12)0.3132 (3)0.0164 (4)
O100.0003 (2)0.51785 (11)0.1831 (3)0.0131 (3)
O110.3810 (2)0.30118 (11)0.4999 (2)0.0127 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02923 (10)0.01824 (8)0.02497 (9)0.00124 (7)0.01484 (7)0.00200 (7)
Cs20.01876 (8)0.02389 (9)0.01843 (8)0.00085 (7)0.00411 (6)0.00165 (6)
V10.00697 (16)0.00749 (16)0.00795 (16)0.00010 (13)0.00162 (12)0.00069 (12)
V20.00799 (17)0.00814 (16)0.00969 (17)0.00129 (13)0.00057 (12)0.00083 (13)
P10.0069 (2)0.0066 (2)0.0095 (2)0.0014 (2)0.00172 (18)0.00003 (19)
P20.0070 (3)0.0076 (2)0.0093 (2)0.0010 (2)0.00198 (18)0.00036 (19)
O10.0100 (8)0.0127 (8)0.0110 (8)0.0021 (6)0.0018 (6)0.0031 (6)
O20.0129 (8)0.0091 (8)0.0111 (7)0.0021 (6)0.0038 (6)0.0016 (6)
O30.0073 (8)0.0085 (8)0.0197 (9)0.0017 (6)0.0003 (6)0.0000 (6)
O40.0097 (8)0.0074 (7)0.0166 (8)0.0001 (6)0.0026 (6)0.0024 (6)
O50.0110 (8)0.0144 (8)0.0094 (7)0.0033 (7)0.0016 (6)0.0019 (6)
O60.0106 (8)0.0108 (8)0.0126 (8)0.0012 (6)0.0053 (6)0.0004 (6)
O70.0122 (9)0.0154 (9)0.0207 (9)0.0054 (7)0.0045 (7)0.0056 (7)
O80.0125 (8)0.0117 (8)0.0149 (8)0.0057 (7)0.0043 (6)0.0022 (6)
O90.0143 (9)0.0200 (10)0.0136 (8)0.0003 (7)0.0021 (6)0.0031 (7)
O100.0115 (8)0.0116 (8)0.0173 (8)0.0007 (7)0.0054 (6)0.0021 (7)
O110.0131 (8)0.0133 (8)0.0117 (8)0.0007 (7)0.0025 (6)0.0010 (6)
Geometric parameters (Å, º) top
Cs1—O4i2.998 (2)V2—O10iv2.339 (2)
Cs1—O8ii3.045 (2)P1—O11.535 (2)
Cs1—O2i3.078 (2)P1—O21.5383 (19)
Cs1—O9iii3.147 (3)P1—O41.5466 (19)
Cs1—O6ii3.246 (2)P1—O31.546 (2)
Cs1—O5iii3.269 (2)P2—O81.5053 (19)
Cs1—O9iv3.323 (3)P2—O61.5294 (19)
Cs1—O113.368 (2)P2—O51.542 (2)
Cs2—O13.126 (2)P2—O71.590 (2)
Cs2—O10iv3.138 (2)O1—Cs2viii3.332 (2)
Cs2—O7v3.153 (2)O2—V1viii1.9805 (19)
Cs2—O2i3.247 (2)O2—Cs1ix3.078 (2)
Cs2—O73.256 (2)O2—Cs2ix3.247 (2)
Cs2—O3i3.327 (3)O3—Cs2ix3.327 (3)
Cs2—O1v3.332 (2)O4—V2iv1.9738 (18)
Cs2—O9i3.340 (2)O4—Cs1ix2.998 (2)
Cs2—O83.497 (2)O5—V1x2.000 (2)
V1—O111.618 (2)O5—Cs1xi3.269 (2)
V1—O11.958 (2)O6—V1xii2.0024 (19)
V1—O2v1.9805 (19)O6—Cs1ii3.246 (2)
V1—O5vi2.000 (2)O7—Cs2viii3.153 (2)
V1—O6vii2.0024 (19)O8—Cs1ii3.045 (2)
V1—O11viii2.389 (2)O9—Cs1xi3.147 (3)
V2—O91.629 (2)O9—Cs1iv3.323 (3)
V2—O101.6883 (19)O9—Cs2ix3.340 (2)
V2—O31.9686 (19)O10—V2iv2.339 (2)
V2—O4iv1.9738 (19)O10—Cs2iv3.138 (2)
V2—O82.129 (2)O11—V1v2.389 (2)
O4i—Cs1—O8ii52.76 (5)Cs2—V1—Cs1viii116.208 (14)
O4i—Cs1—O2i48.32 (5)O11—V1—Cs2viii125.24 (7)
O8ii—Cs1—O2i98.66 (5)O1—V1—Cs2viii48.28 (6)
O4i—Cs1—O9iii128.60 (5)O2v—V1—Cs2viii45.89 (6)
O8ii—Cs1—O9iii132.20 (5)O5vi—V1—Cs2viii116.26 (6)
O2i—Cs1—O9iii110.32 (6)O6vii—V1—Cs2viii120.77 (7)
O4i—Cs1—O6ii96.02 (5)O11viii—V1—Cs2viii55.40 (5)
O8ii—Cs1—O6ii46.91 (5)Cs2—V1—Cs2viii68.25 (4)
O2i—Cs1—O6ii144.29 (5)Cs1viii—V1—Cs2viii66.284 (17)
O9iii—Cs1—O6ii93.06 (5)O9—V2—O10103.82 (11)
O4i—Cs1—O5iii80.24 (5)O9—V2—O3101.23 (10)
O8ii—Cs1—O5iii127.49 (6)O10—V2—O392.03 (9)
O2i—Cs1—O5iii51.76 (5)O9—V2—O4iv101.77 (10)
O9iii—Cs1—O5iii59.28 (5)O10—V2—O4iv91.76 (9)
O6ii—Cs1—O5iii135.89 (5)O3—V2—O4iv155.06 (8)
O4i—Cs1—O9iv121.37 (6)O9—V2—O896.40 (10)
O8ii—Cs1—O9iv90.88 (6)O10—V2—O8159.64 (9)
O2i—Cs1—O9iv113.40 (5)O3—V2—O886.30 (8)
O9iii—Cs1—O9iv110.01 (5)O4iv—V2—O881.68 (8)
O6ii—Cs1—O9iv81.13 (5)O9—V2—O10iv173.11 (9)
O5iii—Cs1—O9iv138.02 (5)O10—V2—O10iv83.04 (9)
O4i—Cs1—O1199.87 (5)O3—V2—O10iv78.99 (7)
O8ii—Cs1—O11146.64 (5)O4iv—V2—O10iv77.02 (8)
O2i—Cs1—O1151.55 (5)O8—V2—O10iv76.72 (8)
O9iii—Cs1—O1178.35 (5)O9—V2—V2iv153.47 (8)
O6ii—Cs1—O11164.02 (4)O10—V2—V2iv49.66 (7)
O5iii—Cs1—O1149.90 (5)O3—V2—V2iv82.71 (6)
O9iv—Cs1—O1189.11 (6)O4iv—V2—V2iv81.05 (6)
O4i—Cs1—O4xiii99.64 (6)O8—V2—V2iv110.08 (7)
O8ii—Cs1—O4xiii83.65 (6)O10iv—V2—V2iv33.38 (4)
O2i—Cs1—O4xiii123.84 (5)O9—V2—Cs2ix54.43 (8)
O9iii—Cs1—O4xiii48.72 (5)O10—V2—Cs2ix77.36 (7)
O6ii—Cs1—O4xiii54.46 (4)O3—V2—Cs2ix55.65 (6)
O5iii—Cs1—O4xiii82.61 (5)O4iv—V2—Cs2ix148.89 (6)
O9iv—Cs1—O4xiii122.69 (5)O8—V2—Cs2ix117.45 (6)
O11—Cs1—O4xiii123.58 (5)O10iv—V2—Cs2ix129.10 (6)
O4i—Cs1—P1i24.26 (4)V2iv—V2—Cs2ix111.28 (4)
O8ii—Cs1—P1i74.62 (5)O9—V2—Cs1xi46.81 (7)
O2i—Cs1—P1i24.40 (3)O10—V2—Cs1xi126.73 (7)
O9iii—Cs1—P1i124.90 (4)O3—V2—Cs1xi131.14 (6)
O6ii—Cs1—P1i119.92 (4)O4iv—V2—Cs1xi62.71 (6)
O5iii—Cs1—P1i66.81 (4)O8—V2—Cs1xi66.91 (6)
O9iv—Cs1—P1i117.28 (5)O10iv—V2—Cs1xi128.23 (5)
O11—Cs1—P1i75.82 (4)V2iv—V2—Cs1xi143.76 (3)
O4xiii—Cs1—P1i115.88 (5)Cs2ix—V2—Cs1xi100.61 (3)
O4i—Cs1—Cs1xiii173.98 (4)O9—V2—Cs1ii108.53 (9)
O8ii—Cs1—Cs1xiii125.66 (4)O10—V2—Cs1ii125.40 (7)
O2i—Cs1—Cs1xiii130.52 (3)O3—V2—Cs1ii122.16 (6)
O9iii—Cs1—Cs1xiii57.23 (4)O4iv—V2—Cs1ii39.66 (5)
O6ii—Cs1—Cs1xiii84.68 (4)O8—V2—Cs1ii42.85 (5)
O5iii—Cs1—Cs1xiii103.43 (4)O10iv—V2—Cs1ii66.14 (6)
O9iv—Cs1—Cs1xiii52.78 (5)V2iv—V2—Cs1ii90.60 (5)
O11—Cs1—Cs1xiii79.34 (4)Cs2ix—V2—Cs1ii156.426 (16)
O4xiii—Cs1—Cs1xiii85.65 (5)Cs1xi—V2—Cs1ii62.11 (4)
P1i—Cs1—Cs1xiii153.505 (14)O1—P1—O2110.63 (11)
O4i—Cs1—P2ii73.03 (4)O1—P1—O4111.18 (11)
O8ii—Cs1—P2ii22.95 (4)O2—P1—O4107.49 (10)
O2i—Cs1—P2ii120.72 (4)O1—P1—O3106.86 (10)
O9iii—Cs1—P2ii112.85 (4)O2—P1—O3108.19 (11)
O6ii—Cs1—P2ii24.07 (3)O4—P1—O3112.48 (10)
O5iii—Cs1—P2ii134.56 (4)O1—P1—Cs1ix136.16 (8)
O9iv—Cs1—P2ii87.41 (5)O2—P1—Cs1ix55.76 (7)
O11—Cs1—P2ii168.78 (3)O4—P1—Cs1ix52.78 (7)
O4xiii—Cs1—P2ii66.93 (4)O3—P1—Cs1ix116.98 (8)
P1i—Cs1—P2ii96.35 (3)O2—P1—Cs2viii82.05 (7)
Cs1xiii—Cs1—P2ii106.78 (3)O4—P1—Cs2viii169.58 (7)
O1—Cs2—O10iv66.29 (5)O3—P1—Cs2viii67.04 (7)
O1—Cs2—O7v137.96 (5)Cs1ix—P1—Cs2viii137.34 (2)
O10iv—Cs2—O7v138.10 (5)O2—P1—Cs2ix53.36 (8)
O1—Cs2—O2i97.44 (7)O4—P1—Cs2ix114.11 (7)
O10iv—Cs2—O2i116.72 (5)O3—P1—Cs2ix56.47 (7)
O7v—Cs2—O2i95.89 (6)Cs1ix—P1—Cs2ix74.85 (4)
O1—Cs2—O781.41 (7)Cs2viii—P1—Cs2ix74.744 (17)
O10iv—Cs2—O788.78 (6)O2—P1—Cs2151.23 (7)
O7v—Cs2—O768.64 (5)O4—P1—Cs296.42 (7)
O2i—Cs2—O7151.83 (5)O3—P1—Cs275.76 (8)
O1—Cs2—O3i141.79 (5)Cs1ix—P1—Cs2148.89 (2)
O10iv—Cs2—O3i120.46 (5)Cs2viii—P1—Cs273.267 (19)
O7v—Cs2—O3i65.35 (5)Cs2ix—P1—Cs2129.85 (4)
O2i—Cs2—O3i44.65 (5)O8—P2—O6111.67 (11)
O7—Cs2—O3i133.14 (5)O8—P2—O5110.47 (10)
O1—Cs2—O1v79.93 (5)O6—P2—O5110.82 (11)
O10iv—Cs2—O1v141.49 (5)O8—P2—O7107.92 (12)
O7v—Cs2—O1v79.83 (6)O6—P2—O7108.07 (11)
O2i—Cs2—O1v48.21 (5)O5—P2—O7107.74 (11)
O7—Cs2—O1v104.46 (5)O8—P2—Cs1ii52.08 (8)
O3i—Cs2—O1v75.95 (5)O6—P2—Cs1ii59.97 (7)
O1—Cs2—O9i156.42 (5)O5—P2—Cs1ii123.13 (8)
O10iv—Cs2—O9i90.17 (6)O7—P2—Cs1ii128.91 (9)
O7v—Cs2—O9i61.59 (6)O8—P2—Cs1xi73.29 (8)
O2i—Cs2—O9i91.97 (6)O6—P2—Cs1xi89.07 (8)
O7—Cs2—O9i100.16 (6)O5—P2—Cs1xi55.30 (8)
O3i—Cs2—O9i49.45 (5)O7—P2—Cs1xi160.17 (8)
O1v—Cs2—O9i121.66 (6)Cs1ii—P2—Cs1xi68.11 (4)
O1—Cs2—O882.09 (7)O8—P2—Cs263.18 (8)
O10iv—Cs2—O849.13 (5)O6—P2—Cs296.53 (9)
O7v—Cs2—O894.50 (6)O5—P2—Cs2151.72 (7)
O2i—Cs2—O8164.76 (4)O7—P2—Cs254.62 (8)
O7—Cs2—O843.33 (5)Cs1ii—P2—Cs276.45 (3)
O3i—Cs2—O8132.65 (5)Cs1xi—P2—Cs2135.05 (2)
O1v—Cs2—O8145.36 (4)P1—O1—V1132.87 (11)
O9i—Cs2—O883.21 (6)P1—O1—Cs2116.43 (10)
O1—Cs2—O3v76.02 (5)V1—O1—Cs2103.75 (8)
O10iv—Cs2—O3v135.50 (5)P1—O1—Cs2viii95.99 (9)
O7v—Cs2—O3v64.25 (5)V1—O1—Cs2viii105.71 (8)
O2i—Cs2—O3v90.09 (4)Cs2—O1—Cs2viii93.20 (6)
O7—Cs2—O3v62.18 (5)P1—O2—V1viii135.10 (11)
O3i—Cs2—O3v103.70 (5)P1—O2—Cs1ix99.84 (9)
O1v—Cs2—O3v42.30 (5)V1viii—O2—Cs1ix108.03 (8)
O9i—Cs2—O3v125.72 (5)P1—O2—Cs2ix104.29 (10)
O8—Cs2—O3v104.48 (5)V1viii—O2—Cs2ix108.15 (7)
O1—Cs2—O1148.70 (5)Cs1ix—O2—Cs2ix93.72 (6)
O10iv—Cs2—O1193.56 (5)P1—O3—V2128.40 (11)
O7v—Cs2—O11128.31 (5)P1—O3—Cs2ix100.75 (8)
O2i—Cs2—O1148.80 (5)V2—O3—Cs2ix95.11 (7)
O7—Cs2—O11122.60 (5)P1—O3—Cs2viii89.04 (8)
O3i—Cs2—O1193.40 (4)V2—O3—Cs2viii141.00 (8)
O1v—Cs2—O1148.74 (4)Cs2ix—O3—Cs2viii86.69 (4)
O9i—Cs2—O11137.12 (5)P1—O4—V2iv126.93 (11)
O8—Cs2—O11129.38 (5)P1—O4—Cs1ix102.96 (9)
O3v—Cs2—O1177.69 (4)V2iv—O4—Cs1ix115.50 (8)
O1—Cs2—P1v66.07 (4)P1—O4—Cs1xiii135.30 (9)
O10iv—Cs2—P1v132.35 (4)V2iv—O4—Cs1xiii87.97 (7)
O7v—Cs2—P1v81.26 (5)Cs1ix—O4—Cs1xiii80.36 (6)
O2i—Cs2—P1v70.85 (4)P2—O5—V1x122.88 (10)
O7—Cs2—P1v83.26 (4)P2—O5—Cs1xi101.88 (9)
O3i—Cs2—P1v97.98 (3)V1x—O5—Cs1xi100.95 (7)
O1v—Cs2—P1v23.61 (3)P2—O6—V1xii133.95 (11)
O9i—Cs2—P1v137.48 (4)P2—O6—Cs1ii95.96 (8)
O8—Cs2—P1v121.91 (4)V1xii—O6—Cs1ii129.33 (8)
O3v—Cs2—P1v23.92 (3)P2—O7—Cs2viii131.62 (10)
O11—Cs2—P1v54.37 (3)P2—O7—Cs2101.92 (10)
O11—V1—O1101.29 (9)Cs2viii—O7—Cs294.19 (6)
O11—V1—O2v99.13 (9)P2—O8—V2139.08 (11)
O1—V1—O2v86.10 (8)P2—O8—Cs1ii104.97 (9)
O11—V1—O5vi98.91 (9)V2—O8—Cs1ii108.77 (8)
O1—V1—O5vi159.66 (8)P2—O8—Cs294.23 (9)
O2v—V1—O5vi88.40 (9)V2—O8—Cs2106.72 (8)
O11—V1—O6vii100.29 (9)Cs1ii—O8—Cs292.28 (6)
O1—V1—O6vii91.40 (8)P2—O8—Cs1xi84.07 (8)
O2v—V1—O6vii160.53 (8)V2—O8—Cs1xi81.58 (7)
O5vi—V1—O6vii87.29 (8)Cs1ii—O8—Cs1xi77.12 (6)
O11—V1—O11viii177.37 (7)Cs2—O8—Cs1xi168.36 (6)
O1—V1—O11viii80.98 (8)V2—O9—Cs1xi111.02 (9)
O2v—V1—O11viii79.63 (7)V2—O9—Cs1iv142.15 (11)
O5vi—V1—O11viii78.77 (7)Cs1xi—O9—Cs1iv69.99 (5)
O6vii—V1—O11viii80.90 (7)V2—O9—Cs2ix102.21 (10)
O11—V1—Cs259.80 (7)Cs1xi—O9—Cs2ix145.08 (7)
O1—V1—Cs248.35 (6)Cs1iv—O9—Cs2ix90.39 (6)
O2v—V1—Cs271.30 (6)V2—O10—V2iv96.96 (9)
O5vi—V1—Cs2146.16 (6)V2—O10—Cs2iv136.47 (10)
O6vii—V1—Cs2120.42 (6)V2iv—O10—Cs2iv112.96 (7)
O11viii—V1—Cs2121.63 (5)V1—O11—V1v129.11 (11)
O11—V1—Cs1viii123.16 (7)V1—O11—Cs1140.35 (9)
O1—V1—Cs1viii114.25 (6)V1v—O11—Cs190.41 (6)
O2v—V1—Cs1viii44.94 (6)V1—O11—Cs296.92 (8)
O5vi—V1—Cs1viii50.76 (6)V1v—O11—Cs290.84 (5)
O6vii—V1—Cs1viii120.55 (6)Cs1—O11—Cs283.86 (4)
O11viii—V1—Cs1viii54.38 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y+1/2, z1/2; (ix) x, y, z1; (x) x1, y+1/2, z1/2; (xi) x1, y, z1; (xii) x1, y, z; (xiii) x+1, y+1, z+1.
(II) dicaesium tris[oxidovanadate(IV)] hydrogenphosphate dihydrate top
Crystal data top
Cs2[(VO)3(HPO4)4(H2O)]·H2OF(000) = 1628
Mr = 878.52Dx = 3.106 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5465 (1) ÅCell parameters from 29575 reflections
b = 11.9181 (1) Åθ = 2.9–42.1°
c = 12.6531 (1) ŵ = 5.72 mm1
β = 96.7859 (6)°T = 293 K
V = 1878.77 (3) Å3Block, light green
Z = 40.30 × 0.25 × 0.19 mm
Data collection top
95mm CCD camera on κ-goniostat
diffractometer
9367 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.050
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2002)
θmax = 42.0°, θmin = 3.2°
Tmin = 0.208, Tmax = 0.293h = 1623
40158 measured reflectionsk = 2122
12989 independent reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0332P)2 + 3.923P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.002
S = 1.02Δρmax = 3.64 e Å3
12989 reflectionsΔρmin = 3.14 e Å3
272 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0059 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
Cs2[(VO)3(HPO4)4(H2O)]·H2OV = 1878.77 (3) Å3
Mr = 878.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5465 (1) ŵ = 5.72 mm1
b = 11.9181 (1) ÅT = 293 K
c = 12.6531 (1) Å0.30 × 0.25 × 0.19 mm
β = 96.7859 (6)°
Data collection top
95mm CCD camera on κ-goniostat
diffractometer
12989 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2002)
9367 reflections with I > 2σ(I)
Tmin = 0.208, Tmax = 0.293Rint = 0.050
40158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H-atom parameters not defined
S = 1.02Δρmax = 3.64 e Å3
12989 reflectionsΔρmin = 3.14 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.066873 (15)0.106653 (15)0.153615 (14)0.02412 (4)
Cs20.390468 (15)0.502184 (14)0.142059 (17)0.02623 (5)
V10.14945 (2)0.22911 (3)0.09619 (2)0.00620 (5)
V20.27630 (3)0.00570 (3)0.04448 (3)0.00725 (5)
V30.34623 (2)0.29060 (3)0.13017 (3)0.00733 (5)
P10.36996 (4)0.18651 (4)0.11850 (4)0.00779 (8)
P20.39995 (4)0.18934 (4)0.11256 (4)0.00739 (8)
P30.20471 (4)0.25328 (4)0.14225 (4)0.00746 (8)
P40.10119 (4)0.17968 (4)0.13049 (4)0.00804 (8)
O10.33324 (13)0.24234 (14)0.21541 (12)0.0125 (3)
O20.35621 (16)0.26587 (15)0.02539 (13)0.0167 (3)
O30.30944 (14)0.07573 (14)0.09448 (13)0.0142 (3)
O40.49207 (14)0.15706 (19)0.14799 (15)0.0208 (4)
O50.49990 (12)0.25837 (15)0.12218 (15)0.0154 (3)
O60.38564 (12)0.11858 (13)0.01134 (12)0.0103 (2)
O70.30442 (11)0.26547 (13)0.12418 (13)0.0116 (2)
O80.40734 (16)0.10192 (15)0.20901 (14)0.0166 (3)
O90.14094 (12)0.28822 (14)0.05221 (12)0.0112 (2)
O100.21781 (13)0.12590 (13)0.14772 (12)0.0115 (2)
O110.14399 (12)0.29432 (14)0.24716 (11)0.0110 (2)
O120.31557 (13)0.31397 (16)0.12162 (14)0.0158 (3)
O130.18970 (12)0.26416 (15)0.13833 (15)0.0155 (3)
O140.13744 (13)0.07427 (15)0.06985 (15)0.0159 (3)
O150.00929 (11)0.23386 (14)0.08067 (13)0.0112 (2)
O160.05831 (15)0.1423 (2)0.24791 (15)0.0228 (4)
O170.16945 (13)0.10020 (13)0.06365 (13)0.0113 (2)
O180.34260 (13)0.07011 (15)0.11878 (13)0.0152 (3)
O190.34966 (15)0.42412 (15)0.13020 (15)0.0172 (3)
O200.13741 (15)0.41144 (15)0.13744 (14)0.0161 (3)
O210.0740 (2)0.4816 (2)0.1034 (2)0.0312 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02818 (8)0.02387 (8)0.02180 (7)0.00230 (6)0.00916 (6)0.00571 (6)
Cs20.02880 (8)0.01398 (7)0.03550 (10)0.00155 (6)0.00211 (7)0.00033 (6)
V10.00595 (10)0.00711 (11)0.00575 (11)0.00029 (9)0.00154 (8)0.00071 (9)
V20.00805 (11)0.00673 (11)0.00698 (11)0.00009 (9)0.00092 (9)0.00044 (9)
V30.00672 (10)0.00896 (12)0.00655 (11)0.00048 (9)0.00172 (9)0.00135 (9)
P10.00986 (17)0.00852 (18)0.00522 (17)0.00086 (15)0.00184 (14)0.00079 (15)
P20.00601 (16)0.00900 (18)0.00720 (17)0.00034 (14)0.00093 (14)0.00140 (15)
P30.00773 (17)0.00970 (19)0.00499 (17)0.00070 (15)0.00095 (14)0.00139 (15)
P40.00551 (16)0.00943 (19)0.00935 (18)0.00098 (14)0.00160 (14)0.00142 (15)
O10.0174 (6)0.0144 (6)0.0060 (5)0.0026 (5)0.0035 (5)0.0022 (5)
O20.0312 (9)0.0123 (6)0.0068 (6)0.0015 (6)0.0032 (6)0.0014 (5)
O30.0220 (7)0.0114 (6)0.0097 (6)0.0063 (6)0.0037 (5)0.0033 (5)
O40.0121 (6)0.0368 (11)0.0138 (7)0.0054 (7)0.0028 (5)0.0024 (7)
O50.0065 (5)0.0194 (7)0.0203 (7)0.0036 (5)0.0019 (5)0.0065 (6)
O60.0107 (5)0.0122 (6)0.0080 (5)0.0018 (5)0.0019 (4)0.0026 (5)
O70.0064 (5)0.0118 (6)0.0168 (6)0.0003 (4)0.0022 (5)0.0032 (5)
O80.0259 (8)0.0142 (7)0.0098 (6)0.0037 (6)0.0026 (6)0.0025 (5)
O90.0133 (6)0.0139 (6)0.0070 (5)0.0033 (5)0.0038 (5)0.0021 (5)
O100.0154 (6)0.0096 (6)0.0091 (5)0.0014 (5)0.0003 (5)0.0008 (5)
O110.0126 (5)0.0151 (6)0.0052 (5)0.0041 (5)0.0006 (4)0.0016 (5)
O120.0130 (6)0.0207 (8)0.0133 (6)0.0058 (6)0.0000 (5)0.0030 (6)
O130.0084 (5)0.0144 (7)0.0242 (8)0.0012 (5)0.0043 (5)0.0045 (6)
O140.0128 (6)0.0123 (6)0.0235 (8)0.0045 (5)0.0052 (6)0.0078 (6)
O150.0062 (5)0.0151 (6)0.0127 (6)0.0017 (5)0.0022 (4)0.0016 (5)
O160.0175 (7)0.0359 (11)0.0143 (7)0.0067 (7)0.0016 (6)0.0092 (7)
O170.0138 (6)0.0087 (6)0.0117 (6)0.0003 (5)0.0024 (5)0.0007 (5)
O180.0161 (6)0.0166 (7)0.0136 (6)0.0034 (6)0.0047 (5)0.0036 (6)
O190.0204 (7)0.0107 (6)0.0205 (8)0.0006 (6)0.0031 (6)0.0020 (6)
O200.0200 (7)0.0120 (6)0.0166 (7)0.0010 (6)0.0036 (6)0.0026 (6)
O210.0307 (11)0.0225 (10)0.0386 (13)0.0042 (8)0.0037 (10)0.0034 (9)
Geometric parameters (Å, º) top
Cs1—O173.0619 (18)V3—O21.9796 (18)
Cs1—O143.085 (2)V3—O1viii1.9806 (17)
Cs1—O33.240 (2)P1—O21.5047 (18)
Cs1—O21i3.241 (3)P1—O11.5140 (16)
Cs1—O16ii3.248 (3)P1—O31.5354 (18)
Cs1—O13ii3.274 (2)P1—O41.5730 (19)
Cs1—O153.332 (2)P2—O51.4927 (17)
Cs1—O14iii3.421 (2)P2—O71.5242 (16)
Cs2—O73.0196 (19)P2—O61.5262 (16)
Cs2—O2iv3.139 (2)P2—O81.5989 (18)
Cs2—O8v3.205 (2)P3—O91.5254 (15)
Cs2—O53.236 (2)P3—O101.5295 (18)
Cs2—O18vi3.256 (2)P3—O111.5306 (16)
Cs2—O1iv3.287 (2)P3—O121.5621 (18)
Cs2—O203.348 (2)P4—O131.5108 (17)
Cs2—O19vii3.411 (2)P4—O141.5138 (18)
Cs2—O4v3.450 (2)P4—O151.5217 (15)
V1—O171.6178 (17)P4—O161.583 (2)
V1—O15iii1.9788 (16)O1—V3ii1.9806 (17)
V1—O71.9826 (16)O1—Cs2ix3.287 (2)
V1—O91.9965 (16)O2—Cs2ix3.139 (2)
V1—O11vi2.0108 (16)O4—Cs2x3.450 (2)
V1—O202.244 (2)O5—V3vii1.9592 (17)
V2—O181.6053 (16)O8—Cs2x3.205 (2)
V2—O141.9784 (18)O11—V1xi2.0108 (16)
V2—O61.9904 (16)O13—Cs1viii3.274 (2)
V2—O32.0083 (17)O14—Cs1iii3.421 (2)
V2—O102.0176 (17)O15—V1iii1.9788 (16)
V2—O172.3175 (16)O16—Cs1viii3.248 (3)
V3—O191.5919 (19)O18—Cs2xi3.256 (2)
V3—O5vii1.9592 (17)O19—Cs2vii3.411 (2)
V3—O131.9795 (17)O21—Cs1xii3.241 (3)
O17—Cs1—O1451.67 (4)O18—V2—O1498.11 (8)
O17—Cs1—O351.32 (4)O18—V2—O6101.84 (8)
O14—Cs1—O352.77 (4)O14—V2—O6160.04 (6)
O17—Cs1—O21i97.22 (6)O18—V2—O399.95 (8)
O14—Cs1—O21i148.23 (6)O14—V2—O389.80 (8)
O3—Cs1—O21i105.13 (5)O6—V2—O387.32 (7)
O17—Cs1—O16ii156.75 (5)O18—V2—O10101.21 (8)
O14—Cs1—O16ii119.53 (5)O14—V2—O1089.49 (8)
O3—Cs1—O16ii105.54 (4)O6—V2—O1086.13 (7)
O21i—Cs1—O16ii86.19 (6)O3—V2—O10158.72 (6)
O17—Cs1—O13ii119.94 (5)O18—V2—O17174.38 (8)
O14—Cs1—O13ii129.57 (5)O14—V2—O1776.71 (7)
O3—Cs1—O13ii82.73 (4)O6—V2—O1783.37 (6)
O21i—Cs1—O13ii55.40 (6)O3—V2—O1778.02 (7)
O16ii—Cs1—O13ii44.92 (5)O10—V2—O1781.12 (7)
O17—Cs1—O1595.28 (5)O18—V2—Cs1126.37 (7)
O14—Cs1—O1545.34 (4)O14—V2—Cs147.21 (6)
O3—Cs1—O1587.54 (4)O6—V2—Cs1118.18 (5)
O21i—Cs1—O15166.05 (5)O3—V2—Cs151.92 (5)
O16ii—Cs1—O1584.76 (5)O10—V2—Cs1114.89 (5)
O13ii—Cs1—O15122.24 (5)O17—V2—Cs148.33 (4)
O17—Cs1—O14iii73.13 (5)O18—V2—Cs2xi37.72 (7)
O14—Cs1—O14iii85.58 (4)O14—V2—Cs2xi102.65 (5)
O3—Cs1—O14iii123.14 (4)O6—V2—Cs2xi92.89 (5)
O21i—Cs1—O14iii91.43 (6)O3—V2—Cs2xi136.66 (5)
O16ii—Cs1—O14iii129.94 (5)O10—V2—Cs2xi63.97 (5)
O13ii—Cs1—O14iii144.09 (4)O17—V2—Cs2xi145.08 (4)
O15—Cs1—O14iii86.29 (4)Cs1—V2—Cs2xi148.925 (12)
O17—Cs1—O9iii133.37 (4)O19—V3—O5vii99.75 (9)
O14—Cs1—O9iii91.33 (4)O19—V3—O13100.71 (8)
O3—Cs1—O9iii131.51 (4)O5vii—V3—O13159.53 (8)
O21i—Cs1—O9iii118.85 (5)O19—V3—O298.66 (9)
O16ii—Cs1—O9iii61.04 (5)O5vii—V3—O288.47 (8)
O13ii—Cs1—O9iii105.22 (4)O13—V3—O288.51 (8)
O15—Cs1—O9iii47.24 (3)O19—V3—O1viii101.36 (9)
O14iii—Cs1—O9iii77.20 (5)O5vii—V3—O1viii88.73 (7)
O17—Cs1—O10iii120.48 (4)O13—V3—O1viii87.22 (7)
O14—Cs1—O10iii112.55 (4)O2—V3—O1viii159.97 (7)
O3—Cs1—O10iii165.24 (4)O19—V3—Cs2vii51.27 (7)
O21i—Cs1—O10iii87.48 (5)O5vii—V3—Cs2vii48.77 (6)
O16ii—Cs1—O10iii82.56 (4)O13—V3—Cs2vii151.53 (5)
O13ii—Cs1—O10iii111.17 (4)O2—V3—Cs2vii99.70 (6)
O15—Cs1—O10iii80.85 (4)O1viii—V3—Cs2vii93.29 (5)
O14iii—Cs1—O10iii47.39 (4)O19—V3—Cs2ix54.16 (7)
O9iii—Cs1—O10iii41.87 (4)O5vii—V3—Cs2ix92.22 (6)
O17—Cs1—O16iii71.38 (5)O13—V3—Cs2ix99.77 (6)
O14—Cs1—O16iii112.44 (5)O2—V3—Cs2ix44.68 (5)
O3—Cs1—O16iii116.00 (5)O1viii—V3—Cs2ix155.29 (5)
O21i—Cs1—O16iii52.15 (5)Cs2vii—V3—Cs2ix69.362 (17)
O16ii—Cs1—O16iii126.34 (3)O19—V3—Cs1viii74.86 (7)
O13ii—Cs1—O16iii107.54 (5)O5vii—V3—Cs1viii143.30 (6)
O15—Cs1—O16iii127.48 (4)O13—V3—Cs1viii45.00 (6)
O14iii—Cs1—O16iii41.24 (4)O2—V3—Cs1viii128.14 (6)
O9iii—Cs1—O16iii107.02 (5)O1viii—V3—Cs1viii58.01 (5)
O10iii—Cs1—O16iii65.68 (4)Cs2vii—V3—Cs1viii112.88 (3)
O17—Cs1—O191.24 (5)Cs2ix—V3—Cs1viii111.48 (2)
O14—Cs1—O184.19 (4)O2—P1—O1109.89 (10)
O3—Cs1—O141.52 (4)O2—P1—O3112.16 (10)
O21i—Cs1—O191.06 (5)O1—P1—O3110.34 (9)
O16ii—Cs1—O165.64 (4)O2—P1—O4110.14 (11)
O13ii—Cs1—O145.50 (4)O1—P1—O4106.68 (10)
O15—Cs1—O194.84 (4)O3—P1—O4107.46 (12)
O14iii—Cs1—O1164.36 (4)O2—P1—Cs2ix55.78 (7)
O9iii—Cs1—O1114.81 (5)O3—P1—Cs2ix154.07 (8)
O10iii—Cs1—O1148.19 (4)O4—P1—Cs2ix98.45 (9)
O16iii—Cs1—O1134.56 (4)O2—P1—Cs1102.37 (8)
O7—Cs2—O2iv139.43 (5)O1—P1—Cs168.28 (7)
O7—Cs2—O8v129.92 (5)O3—P1—Cs150.38 (7)
O2iv—Cs2—O8v90.27 (5)O4—P1—Cs1146.47 (8)
O7—Cs2—O546.09 (4)Cs2ix—P1—Cs1106.604 (15)
O2iv—Cs2—O5142.17 (5)O5—P2—O7109.07 (10)
O8v—Cs2—O593.74 (5)O5—P2—O6112.79 (9)
O7—Cs2—O18vi101.44 (4)O7—P2—O6113.20 (9)
O2iv—Cs2—O18vi100.84 (5)O5—P2—O8108.94 (11)
O8v—Cs2—O18vi65.25 (5)O7—P2—O8106.83 (9)
O5—Cs2—O18vi114.96 (5)O6—P2—O8105.72 (10)
O7—Cs2—O1iv142.98 (4)O5—P2—Cs258.68 (7)
O2iv—Cs2—O1iv45.16 (4)O7—P2—Cs250.51 (6)
O8v—Cs2—O1iv71.00 (5)O6—P2—Cs2129.11 (7)
O5—Cs2—O1iv164.25 (4)O8—P2—Cs2124.85 (7)
O18vi—Cs2—O1iv55.73 (4)O9—P3—O10111.93 (9)
O7—Cs2—O2050.73 (4)O9—P3—O11108.02 (9)
O2iv—Cs2—O20101.50 (5)O10—P3—O11108.85 (9)
O8v—Cs2—O20144.41 (5)O9—P3—O12106.50 (10)
O5—Cs2—O2096.82 (5)O10—P3—O12111.64 (10)
O18vi—Cs2—O2079.51 (4)O11—P3—O12109.82 (9)
O1iv—Cs2—O2093.77 (4)O9—P3—Cs1iii66.95 (7)
O7—Cs2—O19vii94.42 (4)O10—P3—Cs1iii69.15 (7)
O2iv—Cs2—O19vii107.34 (5)O11—P3—Cs1iii76.29 (6)
O8v—Cs2—O19vii55.44 (5)O12—P3—Cs1iii172.56 (7)
O5—Cs2—O19vii48.33 (4)O13—P4—O14114.03 (10)
O18vi—Cs2—O19vii113.01 (5)O13—P4—O15110.07 (10)
O1iv—Cs2—O19vii120.46 (4)O14—P4—O15109.83 (9)
O20—Cs2—O19vii145.14 (5)O13—P4—O16107.26 (11)
O7—Cs2—O4v70.13 (5)O14—P4—O16106.89 (12)
O2iv—Cs2—O4v150.30 (5)O15—P4—O16108.55 (10)
O8v—Cs2—O4v60.98 (5)O13—P4—Cs1viii61.19 (7)
O5—Cs2—O4v54.51 (5)O14—P4—Cs1viii160.32 (7)
O18vi—Cs2—O4v61.98 (5)O15—P4—Cs1viii89.20 (7)
O1iv—Cs2—O4v112.32 (5)O16—P4—Cs1viii60.44 (9)
O20—Cs2—O4v98.84 (5)O13—P4—Cs1112.57 (8)
O19vii—Cs2—O4v63.92 (4)O14—P4—Cs152.18 (7)
O7—Cs2—O19iv98.62 (5)O15—P4—Cs161.69 (7)
O2iv—Cs2—O19iv47.67 (4)O16—P4—Cs1139.90 (9)
O8v—Cs2—O19iv119.64 (5)Cs1viii—P4—Cs1147.232 (18)
O5—Cs2—O19iv99.28 (5)O13—P4—Cs1iii161.44 (7)
O18vi—Cs2—O19iv145.38 (5)O14—P4—Cs1iii56.89 (8)
O1iv—Cs2—O19iv91.93 (4)O15—P4—Cs1iii88.49 (7)
O20—Cs2—O19iv92.03 (4)O16—P4—Cs1iii64.79 (9)
O19vii—Cs2—O19iv93.10 (5)Cs1viii—P4—Cs1iii121.01 (2)
O4v—Cs2—O19iv152.48 (4)Cs1—P4—Cs1iii75.793 (14)
O7—Cs2—P1iv154.56 (3)P1—O1—V3ii135.59 (11)
O2iv—Cs2—P1iv23.35 (3)P1—O1—Cs2ix94.64 (7)
O8v—Cs2—P1iv73.75 (4)V3ii—O1—Cs2ix117.83 (7)
O5—Cs2—P1iv155.94 (3)P1—O1—Cs189.45 (8)
O18vi—Cs2—P1iv78.95 (3)V3ii—O1—Cs195.08 (6)
O1iv—Cs2—P1iv23.87 (3)Cs2ix—O1—Cs1124.43 (5)
O20—Cs2—P1iv105.29 (3)P1—O2—V3149.32 (11)
O19vii—Cs2—P1iv108.98 (3)P1—O2—Cs2ix100.87 (8)
O4v—Cs2—P1iv128.90 (4)V3—O2—Cs2ix109.00 (7)
O19iv—Cs2—P1iv70.98 (3)P1—O3—V2129.44 (9)
O7—Cs2—P222.93 (3)P1—O3—Cs1108.21 (8)
O2iv—Cs2—P2146.39 (4)V2—O3—Cs198.87 (7)
O8v—Cs2—P2113.27 (4)P1—O4—Cs2x128.37 (9)
O5—Cs2—P223.20 (3)P2—O5—V3vii157.73 (12)
O18vi—Cs2—P2110.56 (3)P2—O5—Cs298.12 (8)
O1iv—Cs2—P2163.64 (3)V3vii—O5—Cs2104.15 (7)
O20—Cs2—P273.64 (3)P2—O6—V2132.77 (9)
O19vii—Cs2—P271.50 (3)P2—O7—V1128.20 (10)
O4v—Cs2—P260.93 (4)P2—O7—Cs2106.57 (8)
O19iv—Cs2—P298.79 (3)V1—O7—Cs2123.50 (7)
P1iv—Cs2—P2169.735 (14)P2—O8—Cs2x131.37 (10)
O17—V1—O15iii100.74 (8)P3—O9—V1129.17 (10)
O17—V1—O794.29 (7)P3—O9—Cs1iii89.49 (7)
O15iii—V1—O7164.96 (7)V1—O9—Cs1iii94.65 (6)
O17—V1—O995.07 (8)P3—O10—V2135.10 (10)
O15iii—V1—O987.43 (6)P3—O10—Cs1iii87.26 (7)
O7—V1—O991.90 (7)V2—O10—Cs1iii104.73 (6)
O17—V1—O11vi98.24 (8)P3—O11—V1xi137.65 (9)
O15iii—V1—O11vi87.17 (6)P3—O11—Cs1iii80.41 (6)
O7—V1—O11vi90.07 (7)V1xi—O11—Cs1iii109.56 (6)
O9—V1—O11vi166.36 (7)P4—O13—V3146.61 (11)
O17—V1—O20174.57 (7)P4—O13—Cs1viii94.96 (8)
O15iii—V1—O2084.31 (7)V3—O13—Cs1viii109.69 (7)
O7—V1—O2080.70 (7)P4—O14—V2133.48 (10)
O9—V1—O2083.08 (7)P4—O14—Cs1105.02 (8)
O11vi—V1—O2083.93 (7)V2—O14—Cs1104.72 (7)
O17—V1—Cs1iii65.30 (6)P4—O14—Cs1iii101.35 (9)
O15iii—V1—Cs1iii51.59 (5)V2—O14—Cs1iii111.09 (8)
O7—V1—Cs1iii138.34 (5)Cs1—O14—Cs1iii94.42 (4)
O9—V1—Cs1iii56.91 (5)P4—O15—V1iii138.57 (10)
O11vi—V1—Cs1iii127.04 (5)P4—O15—Cs194.60 (8)
O20—V1—Cs1iii117.30 (5)V1iii—O15—Cs1100.67 (6)
O17—V1—Cs136.05 (6)P4—O16—Cs1viii94.47 (10)
O15iii—V1—Cs177.26 (5)P4—O16—Cs1iii91.94 (9)
O7—V1—Cs1115.61 (5)Cs1viii—O16—Cs1iii156.31 (6)
O9—V1—Cs1120.65 (5)V1—O17—V2136.86 (9)
O11vi—V1—Cs170.17 (5)V1—O17—Cs1125.83 (8)
O20—V1—Cs1148.64 (5)V2—O17—Cs197.24 (6)
Cs1iii—V1—Cs169.399 (16)V1—O17—Cs1iii91.93 (7)
O17—V1—Cs2127.34 (6)V2—O17—Cs1iii92.24 (6)
O15iii—V1—Cs2130.91 (5)Cs1—O17—Cs1iii87.65 (4)
O7—V1—Cs234.61 (5)V2—O18—Cs2xi124.72 (9)
O9—V1—Cs279.86 (5)V3—O19—Cs2vii107.38 (8)
O11vi—V1—Cs294.31 (5)V3—O19—Cs2ix104.42 (8)
O20—V1—Cs247.34 (5)Cs2vii—O19—Cs2ix86.90 (5)
Cs1iii—V1—Cs2136.668 (14)V1—O20—Cs2103.13 (6)
Cs1—V1—Cs2148.367 (13)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y1/2, z1/2; (ix) x, y1, z; (x) x+1, y1/2, z+1/2; (xi) x, y+1/2, z1/2; (xii) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaCs2V2O3(PO4)(HPO4)Cs2[(VO)3(HPO4)4(H2O)]·H2O
Mr605.64878.52
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)8.9180 (2), 16.9479 (4), 7.2199 (1)12.5465 (1), 11.9181 (1), 12.6531 (1)
β (°) 99.092 (1) 96.7859 (6)
V3)1077.52 (4)1878.77 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)8.745.72
Crystal size (mm)0.16 × 0.15 × 0.150.30 × 0.25 × 0.19
Data collection
Diffractometer95mm CCD camera on κ-goniostat
diffractometer
95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.251, 0.2770.208, 0.293
No. of measured, independent and
observed [I > 2σ(I)] reflections
18070, 5051, 4170 40158, 12989, 9367
Rint0.0220.050
(sin θ/λ)max1)0.8450.941
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.055, 1.14 0.039, 0.095, 1.02
No. of reflections505112989
No. of parameters154272
H-atom treatmentH-atom parameters not definedH-atom parameters not defined
Δρmax, Δρmin (e Å3)1.70, 2.533.64, 3.14

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1998), EVALCCD (Duisenberg, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX publication routines (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds