Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Each of the two novel title transition metal coordination polymers, namely catena-poly[[bis­{[tris­(2-pyridyl­methyl)amine]cobalt(II)}-[mu]4-7,7,8,8-tetra­cyano­quinodimethanide(2-)] bis­[7,7,8,8-tetra­cyano­quino­dimethanide(1-)] methanol disolvate], {[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH3OH}n, (I), and catena-poly[[[[tris­(2-pyridyl­methyl)amine]iron(II)]-[mu]2-7,7,8,8-tetra­cyano­quino­dimethanide(2-)] methanol sol­vate], {[Fe(C12H4N4)(C18H18N4)]·CH3OH}n, (II), contains [eta]4-TPA and cis-bridging TCNQ2- ligands [TPA is tris­(2-pyridyl­methyl)amine and TCNQ is 7,7,8,8-tetra­cyano­quino­di­methane], but the two compounds adopt entirely different structural motifs. Compound (I) consists of a ribbon coordination polymer featuring [mu]4-TCNQ2- radical anion ligands bridging four different octa­hedral CoII centers. Each formula unit of the polymer is flanked by two uncoordinated TCNQ- anions and two methanol solvent mol­ecules. All three TCNQ anions have crystallographic inversion symmetry. In (II), the 21 symmetry operator generates a one-dimensional zigzag chain of octa­hedral FeII centers with [mu]2-TCNQ2- bridges. A methanol solvent mol­ecule forms hydrogen bonds to one of the terminal N atoms of the bridging TCNQ2- dianion. To the best of our knowledge, these are the first examples of one-dimensional coordination polymers forming from cis coordination of two TCNQ ligands to octa­hedral metal centers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108041152/sq3174sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108041152/sq3174Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108041152/sq3174IIsup3.hkl
Contains datablock II

CCDC references: 718109; 718110

Comment top

The ability of 7,7,8,8-tetracyanoquinodimethane anions (TCNQn-, n = 1 or 2) to coordinate to transition metal fragments and to act as bridging σ-donor ligands (µ2, µ3, or µ4) can be exploited to construct extended molecular assemblies. Interest in this area has been spurred, in part, by several observations of long-range magnetic order in TCNQ- bridged structures involving V, Mn, Fe, Co, and Ni ions (Vickers et al., 2004, 2005; Clérac et al., 2003). A review of this area includes descriptions of the various modes of coordination, as well as compilations of IR, X-ray, and electrochemical data (Kaim & Moscherosch, 1994).

For the case when exactly two TCNQ ligands coordinate to an octahedral metal center, a search of the Cambridge Structural Database (Version?; Allen, 2002) using CONQUEST (Macrae et al., 2006) indicates a preference for trans-TCNQ coordination to the metal center (Kunkeler et al., 1996; Cornelissen et al., 1992; Ballester et al., 1994; Oshio et al., 1995; Azcondo et al., 1996; Sugiura et al., 1999; Choi & Suh, 2003; Ballester, Gil et al., 1997; Ballester, Gutiérrez et al., 1997; Ballester et al., 2002, 2004). In this context, trans and cis refer to the relative geometry of two ligands about a single metal center, and syn, anti and gem describe the three possible µ2-bridging geometries of the TCNQ ligand. Additionally, there are examples of four TCNQ ligands or TCNQ–TCNQ σ-dimers coordinated equatorially to an octahedral metal center to form M(L2)(TCNQ)4 or ML2(TCNQ)2(TCNQ–TCNQ)2 (Zhao et al., 1999; Shimomura et al., 2006). These complexes form coordination polymers, three via µ2-TCNQ bridging (two gem and one syn) and one via µ4-TCNQ bridging. To the best of our knowledge, there is only one example of cis-geometry when only two TCNQ ligands are coordinated to an octahedral metal center (Ballester, Gutiérrez et al., 1997) and no examples that give rise to pseudo-one-dimensional coordination polymers, as occur in the title compounds, (I) and (II).

The µ4-bridging mode is also relatively rare, though not unprecedented. The discrete complex [(µ4-TCNQ){fac-Re(CO)3(bpy)}4]4+ has been formulated to contain neutral TCNQ (Hartmann et al., 2001). The compounds [{M2(O2CCF3)4}24-TCNQ).3(solvate)] (M = Rh, Ru or Mo) are reported to contain a partially reduced, but formally neutral, bridging TCNQ (Miyasaka et al., 2000, 2006; Campana et al., 1996). The ends of each {M2(O2CCF3)4}2 `barrel' are coordinated by two TCNQ ligands to give either a one-dimensional chain (Mo) or two-dimensional sheets (Rh, Ru). In contrast, [Ag(µ4-TCNQ)] (Shields, 1985) and a Cu analog (Heintz et al., 1999) possess the ligand in the radical anionic state and form three-dimensional structures comprised of two interpenetrating networks. Shimomura et al. (2006) have reported a porous framework consisting of ZnII ions bridged by µ4-TCNQ2- to form corrugated sheets that are connected by 4,4'-bipyridine pillars. Most relevant to the present work, [MnIII(salen)(µ4-TCNQ)0.5][MnIII(salen)(µ2-TCNQ)0.5(CH3OH)] contains two crystallographically independent TCNQs, one anti2-TCNQ2- and one µ4-bridging (Oshio et al., 1995).

Our original goal was to exploit the bridging propensity and radical property of TCNQ- to prepare discrete magnetic molecular squares with octahedral transition metal complexes as the corners and radical anions as the edges. One reason for this line of research was to prepare nanoscale fragments of the above-mentioned magnetically ordered phases. To achieve this, we chose the tripodal tetradentate ligand tris(2-pyridylmethyl)amine (TPA) to cap four of the available coordination sites, leaving two cis sites on each metal center open for the TCNQ- binding necessary to close the square. Oshio et al. (1993) have previously reported an Mn(TPA)(TCNQ)(CH3OH) complex in which the NTCNQ—Mn—O angle is 90.5°, seemingly ideal for our goal of coordinating two cis-TCNQ anions to form a corner building block.

Unfortunately, our first efforts in this area have not yielded the desired squares. Instead, we have discovered that LiTCNQ reacts with FeIITPA and CoIITPA complexes to give magnetically unremarkable but structurally interesting coordination polymers. In each case, a known reaction occurs involving disproportionation of two TCNQ radical anions to yield the diamagnetic TCNQ2- (Grossel et al., 2000). Although the goal of synthesizing molecular squares was not met, it is gratifying to see two TCNQ2- dianions coordinated cis to each metal center, as would be required for square construction.

The asymmetric unit of (I) comprises one Co(TPA)(TCNQ)0.5 formula unit, two uncoordinated 0.5TCNQ- located on inversion centers, and one methanol solvate molecule (Fig. 1). The CoII ion adopts a distorted octahedral geometry, with the TPA ligand occupying four coordination sites and two cis-coordinated TCNQ2- ligands occupying the remaining two sites. The Co—N bond lengths are all within expected ranges (Table 1) (Allen, 2002; Macrae et al., 2006). The coordinated TCNQ2- ligand adopts a µ4-bridging mode to four different Co atoms, forming an infinite ribbon (Fig. 2). The two non-bonded TCNQ- anions and the methanol solvate molecule flank the ribbon on all sides. One of these non-bonded TCNQ- anions is nearly coplanar with the µ4-TCNQ2- ligand (dihedral angle 2.0°; Fig. 3, TCNQ- A [Looks more like B?]) and the other TCNQ- anion is nearly coplanar with the pyridyl group of the TPA ligand (dihedral angle 7.3°; Fig. 3, TCNQ- B [Looks more like A?]). The hydroxide group of the methanol is hydrogen-bonded to an N atom of a non-bonded TCNQ- (Table 2). For charge balance, the three TCNQ entities in the formula unit must have a total charge of -4. The formal charges of -2 for the µ4-TCNQ and -1 for the two uncoordinated TCNQs are assigned based on the C—C bond lengths observed in the crystal structure (see below). [See query below regarding anion designators]

The asymmetric unit of (II) comprises one Fe(TPA)(TCNQ) unit and one methanol solvate molecule (Fig. 4). The FeII ion adopts a distorted octahedral geometry, with a tetradentate TPA ligand and two cis-coordinated TCNQ- [Should this be TCNQ2-?] coordinated to the metal. The Fe—N bond lengths (Table 3) are typical of other FeII low-spin TPA complexes (Allen, 2002; Macrae et al., 2006). Each µ2-TCNQ2- ligand adopts an anti bridging mode to form a zigzag chain propagating along the crystallographic b axis (Fig. 5). The infinite chain is generated by a 21 screw axis at (1/2, y, 1/4) (origin at 1) and neighboring chains are related by inversion symmetry. The hydroxy group of the methanol solvate molecule is hydrogen-bonded to a free N atom of the TCNQ- [Should this be TCNQ2-?] (Fig. 5; Table 4).

X-ray crystallography can be used to confirm the oxidation states of the TCNQ species in these materials. Successive reduction of TCNQ leads to a progressive and characteristic increase in benzoid character in the six-membered ring and a lengthening of the exocyclic C—C bonds (Fig. 6) (Zhao et al., 1996; Miyasaka et al., 2000). Table 5 lists selected intramolecular bond distances for the TCNQ anions in complexes (I) and (II), as well as typical values for TCNQ, TCNQ- and TCNQ2-. In (I), there are three unique TCNQ anions, A, B and C. The bond lengths in TCNQ A, which is coordinated to CoII in a µ4-bridging mode, are consistent with TCNQ2-. The bond lengths in the uncoordinated anions B and C are consistent with TCNQ-. These oxidation state assignments give a total charge of -4 to balance the +2 charge of the two CoII ions and give an empirical formula of [CoII2(TPA)24-TCNQ2-)][TCNQ-]2.CH3OH. In (II), the bond lengths in the one crystallographically independent TCNQ anion indicate a charge of -2, which balances the +2 charge of the FeII cation and gives an empirical formula of [FeII(TPA)(µ2-TCNQ2-)].CH3OH. [NB The anion designators A, B, C in this paragraph and in Table 5 (A = TCNQ2-) do not match those given two paragraphs above, or those in Fig. 3. Please clarify and render consistent]

Experimental top

Hazard warning: Perchlorate salts are potentially explosive and should be used in small amounts and handled with care. Preparations of air-sensitive compounds were carried out in a nitrogen-filled Vacuum Atmospheres glove box using standard Schlenk techniques. Reagents were used as received except as noted below. Solvents were distilled from the appropriate drying agent under nitrogen: dichloromethane and acetonitrile were distilled from P2O5; diethyl ether was distilled from Na/benzophenone; methanol was distilled from Na. All solvents were degassed with glove-box N2 prior to use. Tris(2-pyridylmethyl)amine and [Fe(TPA)(CH3CN)2](ClO4)2 were prepared according to literature procedures (Karlin et al., 1982; Zang et al., 1993, 1997). LiTCNQ was prepared by adding a boiling solution of LiI (400 mg, 3 mmol) in acetonitrile (20 ml) to a boiling solution of TCNQ (210 mg, 1.0 mmol) in acetonitrile (200 ml). A dark-purple precipitate was collected by suction (Bozio et al., 1975). IR spectra were measured using a MIDAC M-series FT–IR spectrometer equipped with an ATR attachment. Elemental analyses were performed by Desert Analytics, Tucson, Arizona.

The preparation of [Co2(TPA)24-TCNQ2-)][TCNQ-]2.CH3OH, (I), was carried out as follows. To a mixture of Co(NO3)2.6H2O (29.1 mg, 0.100 mmol) and TPA (29.0 mg, 0.100 mmol) in methanol (4 ml) was added LiTCNQ (42.2 mg, 0.200 mmol) in methanol (3 ml). The mixture was stirred for 3 h at room temperature, and the blue–black precipitate that formed was filtered off washed with methanol and ether, and dried in vacuo. Dark-green plates of (I) were crystallized from methanol–diethyl ether (Solvent ratio?) by vapor diffusion at room temperature (yield 7.0 mg, 10%). Analysis, calculated for C37H28CoN10O: C 64.63, H 4.10, N 20.34%; found: C 64.77, H 3.89, N 20.44%. Spectroscopic analysis: IR (Medium?, ν, cm-1): 2188, 2176, 2140, 2059, 824.

The preparation of [Fe(TPA)(µ2-TCNQ)].CH3OH, (II), was carried out as follows. The red solid [Fe(TPA)(CH3CN)2](ClO4)2 (62.7 mg, 0.100 mmol) was dissolved in CH2Cl2 (6 ml) to yield a yellow solution. A green solution of LiTCNQ (42.2 mg, 0.200 mmol) in CH3OH (6 ml) was added, leading to a deep-green solution. The solution was stirred for 3 h at room temperature and a dark-blue solid was filtered off, washed with methanol and ether, and dried in vacuo. Dark-orange bricks of (II) were crystallized from methanol–diethyl ether (Solvent ratio?) by vapor diffusion at room temperature (yield 6.2 mg, 11%). Analysis, calculated for C31H26FeN8O: C 63.93, H 4.50, N 19.24%; found: C 64.01, H 3.50, N 20.50%. Spectroscopic analysis: IR (Medium?, ν, cm-1): 2187, 2180, 2155, 2106, 822.

Refinement top

H atoms were treated using a riding model, with C—Haromatic = 0.95 Å and Uiso(H) = 1.2Ueq(C), and C—Halkyl = 0.98–0.99 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

For both compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007). Program(s) used to solve structure: SHELXS86 (Sheldrick, 2008) and WinGX (Farrugia, 1999) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 3, -z + 1; (iv) -x, -y + 2, -z + 1.]
[Figure 2] Fig. 2. A view of the structure of (I) down the a* direction, showing the one-dimensional ribbon architecture. The methanol solvate molecules and uncoordinated TCNQ- anions have been omitted for clarity.
[Figure 3] Fig. 3. A view of (I) down the b axis, illustrating the hydrogen bonding (dotted lines) with the methanol molecules and the packing of the uncoordinated TCNQ- anions. [Please see query in text regarding anion designators]
[Figure 4] Fig. 4. A view of the asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probabilitylevel and H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.]
[Figure 5] Fig. 5. A view of (II) down the c axis, showing the one-dimensional zigzag chain architecture and the hydrogen bonding (dotted lines) with the methanol molecules.
[Figure 6] Fig. 6. The bond labeling used in Table 5.
(I) catena-poly[[bis{[tris(2-pyridylmethyl)amine]cobalt(II)}- µ4-7,7',8,8'-tetracyanoquinodimethanide(2-)] bis[7,7',8,8'-tetracyanoquinodimethanide(1-)] methanol disolvate] top
Crystal data top
[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH4OZ = 1
Mr = 1375.24F(000) = 710
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.954 (2) ÅCell parameters from 1930 reflections
b = 11.371 (3) Åθ = 2.0–18.9°
c = 17.066 (4) ŵ = 0.58 mm1
α = 73.45 (2)°T = 100 K
β = 85.55 (2)°Plate, dark green
γ = 74.93 (2)°0.14 × 0.11 × 0.03 mm
V = 1608.3 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3386 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.3°, θmin = 3.8°
Detector resolution: 16.0355 pixels mm-1h = 109
ϕ and ω scansk = 1311
11614 measured reflectionsl = 2020
5716 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
5716 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH4Oγ = 74.93 (2)°
Mr = 1375.24V = 1608.3 (7) Å3
Triclinic, P1Z = 1
a = 8.954 (2) ÅMo Kα radiation
b = 11.371 (3) ŵ = 0.58 mm1
c = 17.066 (4) ÅT = 100 K
α = 73.45 (2)°0.14 × 0.11 × 0.03 mm
β = 85.55 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3386 reflections with I > 2σ(I)
11614 measured reflectionsRint = 0.046
5716 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.86Δρmax = 0.47 e Å3
5716 reflectionsΔρmin = 0.51 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The chosen crystals of (I) and (II) were centered on the goniometer of an Oxford Diffraction Xcalibur S diffractometer. The data collection routine, unit cell refinement, and data processing were carried out with the program CrysAlisPro (Oxford Diffraction, 2007)

The Laue symmetry of (I) was consistent with the triclinic space group P1. The structure was solved by direct methods using SHELXS86 (Sheldrick, 2008) via the WinGX graphical interface (Farrugia, 1999) and refined using SHELXTL NT (Sheldrick, 2008). The asymmetric unit of the structure comprises one Co atom, one TPA molecule, three half-TCNQ molecules, and one methanol solvate. The final refinement model involved anisotropic displacement parameters for all non-H atoms and a riding model for the H atoms.

For compound (II), the Laue symmetry and systematic absences were consistent with the monoclinic space group P21/c. The structure was solved by direct methods and refined using SHELXTL NT. The asymmetric unit of the structure comprises one crystallographically independent Fe(TPA)(TCNQ) formula unit and one methanol solvate. The final refinement model involved anisotropic displacement parameters for all non-H atoms and a riding model for the H atoms.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.20784 (5)0.87358 (4)0.68868 (3)0.02379 (15)
N10.2500 (3)0.9471 (2)0.78647 (16)0.0255 (7)
N20.4177 (3)0.9272 (3)0.65006 (17)0.0306 (7)
N30.3405 (3)0.7030 (2)0.76702 (16)0.0239 (6)
N40.0174 (3)0.8473 (2)0.76802 (16)0.0247 (6)
N50.0826 (3)1.0534 (2)0.61974 (17)0.0257 (7)
N60.1746 (3)1.2062 (2)0.39804 (17)0.0271 (7)
N70.2256 (4)0.7811 (3)0.2649 (2)0.0602 (10)
N80.2310 (4)0.3843 (3)0.3167 (2)0.0540 (9)
N90.1751 (4)0.8205 (3)0.05181 (19)0.0429 (8)
N100.1577 (4)0.6569 (3)0.2295 (2)0.0447 (8)
C10.3325 (4)1.0465 (3)0.7486 (2)0.0365 (9)
H1A0.38061.06730.79160.044*
H1B0.25871.12430.71790.044*
C20.4555 (4)0.9991 (3)0.6916 (2)0.0339 (9)
C30.5972 (5)1.0314 (4)0.6789 (3)0.0530 (12)
H30.62321.08130.70940.064*
C40.6986 (5)0.9902 (5)0.6221 (3)0.0648 (15)
H40.79491.01240.61210.078*
C50.6594 (5)0.9164 (5)0.5798 (3)0.0619 (14)
H50.72800.88680.54030.074*
C60.5186 (4)0.8861 (4)0.5957 (2)0.0439 (10)
H60.49220.83400.56690.053*
C70.3458 (4)0.8432 (3)0.8514 (2)0.0304 (8)
H7A0.28690.83510.90340.036*
H7B0.44040.86820.85910.036*
C80.3932 (3)0.7154 (3)0.8348 (2)0.0239 (8)
C90.4869 (4)0.6146 (3)0.8900 (2)0.0332 (9)
H90.52490.62620.93700.040*
C100.5241 (4)0.4972 (3)0.8758 (2)0.0375 (10)
H100.58710.42630.91320.045*
C110.4690 (4)0.4835 (3)0.8068 (2)0.0358 (9)
H110.49280.40320.79610.043*
C120.3788 (4)0.5884 (3)0.7534 (2)0.0296 (8)
H120.34240.57920.70520.036*
C130.0963 (4)0.9988 (3)0.8189 (2)0.0325 (9)
H13A0.04791.08270.78190.039*
H13B0.10821.01000.87330.039*
C140.0057 (4)0.9101 (3)0.8259 (2)0.0278 (8)
C150.1190 (4)0.8950 (3)0.8857 (2)0.0355 (9)
H150.13300.93940.92620.043*
C160.2100 (4)0.8156 (4)0.8855 (2)0.0398 (10)
H160.28810.80420.92590.048*
C170.1873 (4)0.7523 (4)0.8263 (2)0.0384 (10)
H170.25020.69730.82500.046*
C180.0717 (4)0.7697 (3)0.7686 (2)0.0305 (8)
H180.05540.72490.72820.037*
C190.0781 (4)1.5150 (3)0.56135 (19)0.0254 (8)
H190.13241.52450.60390.030*
C200.0595 (4)1.3975 (3)0.56439 (19)0.0228 (8)
H200.10091.32730.60930.027*
C210.0179 (4)1.3789 (3)0.50363 (19)0.0223 (7)
C220.0370 (4)1.2525 (3)0.50693 (19)0.0242 (8)
C230.0284 (4)1.1444 (3)0.5697 (2)0.0218 (7)
C240.1122 (4)1.2293 (3)0.4470 (2)0.0246 (8)
C250.4473 (4)0.4053 (3)0.4844 (2)0.0375 (9)
H250.41060.33990.47410.045*
C260.4047 (4)0.5287 (3)0.4305 (2)0.0344 (9)
C270.4613 (4)0.6228 (3)0.4496 (2)0.0376 (9)
H270.43460.70730.41550.045*
C280.3111 (4)0.5569 (3)0.3610 (2)0.0364 (9)
C290.2624 (4)0.6803 (4)0.3085 (3)0.0417 (10)
C300.2652 (4)0.4610 (4)0.3379 (2)0.0397 (10)
C310.1037 (4)0.5759 (3)0.0188 (2)0.0300 (8)
H310.17480.62790.03200.036*
C320.0048 (4)0.5800 (3)0.0500 (2)0.0273 (8)
C330.0986 (4)0.5012 (3)0.0663 (2)0.0308 (8)
H330.16680.50180.11170.037*
C340.0084 (4)0.6611 (3)0.0991 (2)0.0277 (8)
C350.0995 (4)0.7496 (3)0.0755 (2)0.0328 (9)
C360.0819 (4)0.6593 (3)0.1715 (2)0.0331 (9)
O10.4918 (4)0.8168 (4)0.0244 (2)0.0828 (10)
H10.39590.82580.03080.124*
C370.5486 (6)0.8571 (4)0.0831 (3)0.0683 (14)
H37A0.61970.90960.05720.102*
H37B0.60380.78330.12510.102*
H37C0.46240.90680.10830.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0212 (3)0.0230 (3)0.0266 (3)0.00421 (19)0.00074 (19)0.0070 (2)
N10.0255 (16)0.0242 (15)0.0270 (16)0.0099 (13)0.0008 (12)0.0039 (13)
N20.0233 (16)0.0316 (17)0.0321 (18)0.0043 (13)0.0014 (13)0.0037 (14)
N30.0205 (15)0.0227 (16)0.0283 (17)0.0060 (12)0.0045 (12)0.0074 (13)
N40.0247 (16)0.0218 (15)0.0263 (17)0.0053 (13)0.0025 (12)0.0047 (13)
N50.0248 (16)0.0210 (16)0.0296 (17)0.0049 (13)0.0028 (13)0.0040 (14)
N60.0312 (17)0.0210 (15)0.0277 (17)0.0042 (13)0.0044 (13)0.0052 (13)
N70.062 (3)0.049 (2)0.066 (3)0.005 (2)0.026 (2)0.023 (2)
N80.049 (2)0.058 (2)0.064 (3)0.0145 (19)0.0063 (18)0.028 (2)
N90.044 (2)0.044 (2)0.049 (2)0.0149 (17)0.0094 (16)0.0257 (17)
N100.047 (2)0.048 (2)0.038 (2)0.0056 (16)0.0043 (17)0.0167 (17)
C10.043 (2)0.030 (2)0.038 (2)0.0155 (18)0.0078 (18)0.0044 (18)
C20.030 (2)0.034 (2)0.034 (2)0.0137 (17)0.0106 (17)0.0049 (18)
C30.047 (3)0.055 (3)0.050 (3)0.032 (2)0.018 (2)0.019 (2)
C40.026 (2)0.083 (4)0.059 (3)0.022 (2)0.005 (2)0.030 (3)
C50.026 (2)0.078 (3)0.057 (3)0.006 (2)0.012 (2)0.011 (3)
C60.033 (2)0.045 (2)0.040 (2)0.0030 (19)0.0066 (19)0.000 (2)
C70.030 (2)0.036 (2)0.025 (2)0.0092 (17)0.0055 (15)0.0055 (16)
C80.0150 (17)0.0278 (19)0.027 (2)0.0072 (15)0.0026 (15)0.0029 (16)
C90.0224 (19)0.043 (2)0.030 (2)0.0089 (17)0.0002 (16)0.0018 (18)
C100.026 (2)0.034 (2)0.036 (2)0.0007 (17)0.0046 (17)0.0077 (18)
C110.032 (2)0.0205 (19)0.045 (2)0.0017 (16)0.0121 (18)0.0032 (17)
C120.029 (2)0.029 (2)0.032 (2)0.0067 (16)0.0089 (16)0.0122 (17)
C130.036 (2)0.028 (2)0.030 (2)0.0004 (17)0.0003 (16)0.0096 (16)
C140.027 (2)0.0261 (19)0.026 (2)0.0006 (16)0.0036 (16)0.0054 (16)
C150.031 (2)0.039 (2)0.031 (2)0.0005 (18)0.0048 (17)0.0099 (18)
C160.023 (2)0.052 (3)0.037 (2)0.0048 (19)0.0062 (17)0.006 (2)
C170.025 (2)0.049 (2)0.038 (2)0.0157 (18)0.0016 (17)0.001 (2)
C180.027 (2)0.031 (2)0.032 (2)0.0074 (17)0.0032 (16)0.0064 (17)
C190.0243 (18)0.029 (2)0.0231 (19)0.0046 (15)0.0006 (15)0.0091 (16)
C200.0251 (19)0.0195 (18)0.0217 (19)0.0023 (15)0.0023 (15)0.0046 (15)
C210.0215 (18)0.0237 (18)0.0195 (18)0.0029 (14)0.0045 (14)0.0062 (15)
C220.0259 (19)0.0226 (19)0.0230 (19)0.0045 (15)0.0017 (15)0.0062 (15)
C230.0214 (18)0.025 (2)0.023 (2)0.0098 (16)0.0032 (15)0.0114 (16)
C240.0241 (19)0.0147 (18)0.028 (2)0.0003 (14)0.0035 (16)0.0000 (15)
C250.035 (2)0.037 (2)0.047 (3)0.0100 (18)0.0011 (19)0.020 (2)
C260.028 (2)0.034 (2)0.040 (2)0.0010 (17)0.0055 (17)0.0166 (19)
C270.039 (2)0.031 (2)0.042 (2)0.0049 (18)0.0024 (19)0.0133 (18)
C280.028 (2)0.036 (2)0.047 (3)0.0021 (17)0.0003 (18)0.0195 (19)
C290.035 (2)0.042 (3)0.050 (3)0.003 (2)0.002 (2)0.022 (2)
C300.028 (2)0.046 (3)0.044 (3)0.0048 (19)0.0012 (18)0.016 (2)
C310.026 (2)0.032 (2)0.032 (2)0.0064 (16)0.0042 (16)0.0102 (17)
C320.0222 (19)0.0262 (19)0.027 (2)0.0022 (16)0.0016 (15)0.0045 (16)
C330.0260 (19)0.034 (2)0.028 (2)0.0038 (16)0.0080 (15)0.0067 (17)
C340.026 (2)0.027 (2)0.031 (2)0.0068 (16)0.0041 (16)0.0096 (16)
C350.035 (2)0.033 (2)0.028 (2)0.0024 (19)0.0004 (17)0.0136 (18)
C360.036 (2)0.030 (2)0.033 (2)0.0048 (17)0.0018 (19)0.0123 (18)
O10.063 (2)0.106 (3)0.084 (3)0.024 (2)0.006 (2)0.030 (2)
C370.085 (4)0.070 (3)0.057 (3)0.029 (3)0.038 (3)0.010 (3)
Geometric parameters (Å, º) top
Co1—N6i2.019 (3)C13—C141.503 (4)
Co1—N52.113 (3)C13—H13A0.99
Co1—N42.122 (3)C13—H13B0.99
Co1—N22.124 (3)C14—C151.389 (5)
Co1—N32.129 (3)C15—C161.365 (5)
Co1—N12.164 (3)C15—H150.95
N1—C11.478 (4)C16—C171.373 (5)
N1—C131.481 (4)C16—H160.95
N1—C71.494 (4)C17—C181.385 (5)
N2—C61.339 (4)C17—H170.95
N2—C21.340 (4)C18—H180.95
N3—C81.339 (4)C19—C201.375 (4)
N3—C121.340 (4)C19—C21ii1.403 (4)
N4—C181.332 (4)C19—H190.95
N4—C141.349 (4)C20—C211.383 (4)
N5—C231.156 (4)C20—H200.95
N6—C241.164 (4)C21—C19ii1.403 (4)
N6—Co1i2.019 (3)C21—C221.476 (4)
N7—C291.154 (5)C22—C241.386 (5)
N8—C301.149 (4)C22—C231.405 (4)
N9—C351.152 (4)C25—C27iii1.357 (5)
N10—C361.153 (4)C25—C261.414 (5)
C1—C21.509 (5)C25—H250.95
C1—H1A0.99C26—C281.417 (5)
C1—H1B0.99C26—C271.420 (5)
C2—C31.394 (5)C27—C25iii1.357 (5)
C3—C41.374 (6)C27—H270.95
C3—H30.95C28—C291.410 (5)
C4—C51.372 (6)C28—C301.420 (5)
C4—H40.95C31—C33iv1.363 (5)
C5—C61.379 (5)C31—C321.418 (4)
C5—H50.95C31—H310.95
C6—H60.95C32—C331.410 (4)
C7—C81.506 (4)C32—C341.419 (4)
C7—H7A0.99C33—C31iv1.363 (5)
C7—H7B0.99C33—H330.95
C8—C91.384 (4)C34—C351.409 (5)
C9—C101.376 (5)C34—C361.422 (5)
C9—H90.95O1—C371.390 (5)
C10—C111.373 (5)O1—H10.84
C10—H100.95C37—H37A0.98
C11—C121.378 (5)C37—H37B0.98
C11—H110.95C37—H37C0.98
C12—H120.95
N6i—Co1—N591.03 (11)N4—C14—C13115.1 (3)
N6i—Co1—N4101.59 (11)C15—C14—C13123.3 (3)
N5—Co1—N492.35 (10)C16—C15—C14119.3 (3)
N6i—Co1—N2102.31 (12)C16—C15—H15120.4
N5—Co1—N289.58 (10)C14—C15—H15120.4
N4—Co1—N2155.98 (11)C15—C16—C17119.3 (3)
N6i—Co1—N395.29 (11)C15—C16—C31v84.7 (2)
N5—Co1—N3173.62 (11)C17—C16—C31v84.4 (2)
N4—Co1—N387.24 (10)C15—C16—H16120.4
N2—Co1—N388.23 (10)C17—C16—H16120.4
N6i—Co1—N1176.35 (11)C31v—C16—H16100.8
N5—Co1—N192.60 (10)C16—C17—C18119.2 (3)
N4—Co1—N177.85 (10)C16—C17—C33vi94.7 (2)
N2—Co1—N178.15 (11)C18—C17—C33vi84.1 (2)
N3—Co1—N181.09 (10)C16—C17—H17120.4
C1—N1—C13112.3 (3)C18—C17—H17120.4
C1—N1—C7111.1 (3)C33vi—C17—H1791.1
C13—N1—C7111.0 (2)N4—C18—C17122.1 (3)
C1—N1—Co1105.9 (2)N4—C18—H18119.0
C13—N1—Co1106.39 (19)C17—C18—H18119.0
C7—N1—Co1109.89 (19)C20—C19—C21ii121.0 (3)
C6—N2—C2119.0 (3)C20—C19—C30i82.6 (2)
C6—N2—Co1126.3 (3)C21ii—C19—C30i92.7 (2)
C2—N2—Co1114.4 (2)C20—C19—H19119.5
C8—N3—C12118.5 (3)C21ii—C19—H19119.5
C8—N3—Co1115.1 (2)C30i—C19—H1994.8
C12—N3—Co1126.4 (2)C19—C20—C21121.6 (3)
C18—N4—C14118.6 (3)C19—C20—C28i96.7 (2)
C18—N4—Co1126.1 (2)C21—C20—C28i78.67 (19)
C14—N4—Co1115.1 (2)C19—C20—C30i74.44 (19)
C23—N5—Co1167.1 (3)C21—C20—C30i97.3 (2)
C24—N6—Co1i159.7 (3)C19—C20—H20119.2
N1—C1—C2109.1 (3)C21—C20—H20119.2
N1—C1—H1A109.9C28i—C20—H2094.7
C2—C1—H1A109.9C30i—C20—H2098.3
N1—C1—H1B109.9C20—C21—C19ii117.4 (3)
C2—C1—H1B109.9C20—C21—C22121.4 (3)
H1A—C1—H1B108.3C19ii—C21—C22121.2 (3)
N2—C2—C3121.2 (4)C20—C21—C28i78.05 (19)
N2—C2—C1115.5 (3)C19ii—C21—C28i96.0 (2)
C3—C2—C1123.2 (4)C22—C21—C28i95.67 (19)
C4—C3—C2119.3 (4)C24—C22—C23114.8 (3)
C4—C3—H3120.3C24—C22—C21123.3 (3)
C2—C3—H3120.3C23—C22—C21121.8 (3)
C5—C4—C3119.3 (4)N5—C23—C22177.9 (3)
C5—C4—H4120.4N6—C24—C22178.0 (3)
C3—C4—H4120.4C27iii—C25—C26122.2 (3)
C4—C5—C6118.8 (4)C27iii—C25—H25118.9
C4—C5—H5120.6C26—C25—H25118.9
C6—C5—H5120.6C25—C26—C28121.9 (3)
N2—C6—C5122.4 (4)C25—C26—C27116.3 (3)
N2—C6—H6118.8C28—C26—C27121.7 (3)
C5—C6—H6118.8C25iii—C27—C26121.4 (3)
N1—C7—C8115.5 (3)C25iii—C27—H27119.3
N1—C7—H7A108.4C26—C27—H27119.3
C8—C7—H7A108.4C29—C28—C26122.7 (3)
N1—C7—H7B108.4C29—C28—C30115.5 (3)
C8—C7—H7B108.4C26—C28—C30121.8 (3)
H7A—C7—H7B107.5N7—C29—C28178.6 (4)
N3—C8—C9122.1 (3)N8—C30—C28177.6 (4)
N3—C8—C7118.3 (3)C33iv—C31—C32121.2 (3)
C9—C8—C7119.6 (3)C33iv—C31—H31119.4
C10—C9—C8118.9 (3)C32—C31—H31119.4
C10—C9—H9120.6C33—C32—C31116.8 (3)
C8—C9—H9120.6C33—C32—C34121.8 (3)
C11—C10—C9119.3 (3)C31—C32—C34121.5 (3)
C11—C10—H10120.4C31iv—C33—C32122.0 (3)
C9—C10—H10120.4C31iv—C33—H33119.0
C10—C11—C12118.9 (3)C32—C33—H33119.0
C10—C11—H11120.5C35—C34—C32120.3 (3)
C12—C11—H11120.5C35—C34—C36117.7 (3)
N3—C12—C11122.3 (3)C32—C34—C36122.0 (3)
N3—C12—H12118.8N9—C35—C34175.9 (4)
C11—C12—H12118.8N10—C36—C34178.4 (4)
N1—C13—C14109.9 (3)C37—O1—H1109.5
N1—C13—H13A109.7O1—C37—H37A109.5
C14—C13—H13A109.7O1—C37—H37B109.5
N1—C13—H13B109.7H37A—C37—H37B109.5
C14—C13—H13B109.7O1—C37—H37C109.5
H13A—C13—H13B108.2H37A—C37—H37C109.5
N4—C14—C15121.6 (3)H37B—C37—H37C109.5
N5—Co1—N1—C158.3 (2)Co1—N3—C8—C74.1 (3)
N4—Co1—N1—C1150.1 (2)N1—C7—C8—N33.5 (4)
N2—Co1—N1—C130.8 (2)N1—C7—C8—C9177.6 (3)
N3—Co1—N1—C1120.8 (2)N3—C8—C9—C101.5 (5)
N5—Co1—N1—C1361.4 (2)C7—C8—C9—C10177.3 (3)
N4—Co1—N1—C1330.43 (19)C8—C9—C10—C110.8 (5)
N2—Co1—N1—C13150.4 (2)C9—C10—C11—C120.5 (5)
N3—Co1—N1—C13119.5 (2)C8—N3—C12—C110.5 (5)
N5—Co1—N1—C7178.4 (2)Co1—N3—C12—C11178.2 (2)
N4—Co1—N1—C789.8 (2)C10—C11—C12—N31.2 (5)
N2—Co1—N1—C789.4 (2)C1—N1—C13—C14157.9 (3)
N3—Co1—N1—C70.7 (2)C7—N1—C13—C1477.1 (3)
N6i—Co1—N2—C615.8 (3)Co1—N1—C13—C1442.4 (3)
N5—Co1—N2—C6106.8 (3)C18—N4—C14—C150.3 (5)
N4—Co1—N2—C6158.4 (3)Co1—N4—C14—C15175.4 (2)
N3—Co1—N2—C679.2 (3)C18—N4—C14—C13178.0 (3)
N1—Co1—N2—C6160.5 (3)Co1—N4—C14—C136.3 (3)
N6i—Co1—N2—C2171.2 (2)N1—C13—C14—N433.6 (4)
N5—Co1—N2—C280.2 (2)N1—C13—C14—C15148.1 (3)
N4—Co1—N2—C214.6 (4)N4—C14—C15—C160.5 (5)
N3—Co1—N2—C293.8 (2)C13—C14—C15—C16177.6 (3)
N1—Co1—N2—C212.5 (2)C14—C15—C16—C170.1 (5)
N6i—Co1—N3—C8177.9 (2)C14—C15—C16—C31v80.7 (3)
N4—Co1—N3—C880.7 (2)C15—C16—C17—C180.6 (5)
N2—Co1—N3—C875.7 (2)C31v—C16—C17—C1880.2 (3)
N1—Co1—N3—C82.6 (2)C15—C16—C17—C33vi86.4 (3)
N6i—Co1—N3—C120.2 (3)C31v—C16—C17—C33vi5.67 (11)
N4—Co1—N3—C12101.5 (3)C14—N4—C18—C170.4 (5)
N2—Co1—N3—C12102.0 (3)Co1—N4—C18—C17175.6 (2)
N1—Co1—N3—C12179.7 (3)C16—C17—C18—N40.8 (5)
N6i—Co1—N4—C1815.0 (3)C33vi—C17—C18—N493.0 (3)
N5—Co1—N4—C18106.5 (3)C21ii—C19—C20—C210.4 (5)
N2—Co1—N4—C18159.2 (3)C30i—C19—C20—C2189.1 (3)
N3—Co1—N4—C1879.8 (3)C21ii—C19—C20—C28i80.4 (3)
N1—Co1—N4—C18161.3 (3)C30i—C19—C20—C28i8.30 (12)
N6i—Co1—N4—C14169.7 (2)C21ii—C19—C20—C30i88.7 (3)
N5—Co1—N4—C1478.1 (2)C19—C20—C21—C19ii0.3 (5)
N2—Co1—N4—C1416.1 (4)C28i—C20—C21—C19ii90.6 (3)
N3—Co1—N4—C1495.5 (2)C30i—C20—C21—C19ii75.8 (3)
N1—Co1—N4—C1414.0 (2)C19—C20—C21—C22179.7 (3)
N6i—Co1—N5—C2339.4 (11)C28i—C20—C21—C2289.4 (3)
N4—Co1—N5—C23141.1 (11)C30i—C20—C21—C22104.1 (3)
N2—Co1—N5—C2362.9 (11)C19—C20—C21—C28i90.9 (3)
N1—Co1—N5—C23141.0 (11)C30i—C20—C21—C28i14.71 (10)
C13—N1—C1—C2159.6 (3)C20—C21—C22—C24179.3 (3)
C7—N1—C1—C275.5 (3)C19ii—C21—C22—C240.8 (5)
Co1—N1—C1—C243.8 (3)C28i—C21—C22—C24101.3 (3)
C6—N2—C2—C30.0 (5)C20—C21—C22—C232.9 (5)
Co1—N2—C2—C3173.6 (3)C19ii—C21—C22—C23177.2 (3)
C6—N2—C2—C1177.2 (3)C28i—C21—C22—C2382.4 (3)
Co1—N2—C2—C19.2 (4)C27iii—C25—C26—C28179.0 (4)
N1—C1—C2—N236.8 (4)C27iii—C25—C26—C270.8 (6)
N1—C1—C2—C3146.1 (3)C25—C26—C27—C25iii0.8 (6)
N2—C2—C3—C41.0 (5)C28—C26—C27—C25iii179.0 (4)
C1—C2—C3—C4176.0 (3)C25—C26—C28—C29177.4 (3)
C2—C3—C4—C51.0 (6)C27—C26—C28—C292.8 (5)
C3—C4—C5—C60.1 (6)C25—C26—C28—C305.2 (5)
C2—N2—C6—C50.9 (5)C27—C26—C28—C30174.6 (3)
Co1—N2—C6—C5173.7 (3)C33iv—C31—C32—C330.2 (5)
C4—C5—C6—N20.9 (6)C33iv—C31—C32—C34179.3 (3)
C1—N1—C7—C8115.8 (3)C31—C32—C33—C31iv0.2 (5)
C13—N1—C7—C8118.5 (3)C34—C32—C33—C31iv179.3 (3)
Co1—N1—C7—C81.1 (3)C33—C32—C34—C35172.3 (3)
C12—N3—C8—C90.8 (4)C31—C32—C34—C356.7 (5)
Co1—N3—C8—C9177.1 (2)C33—C32—C34—C365.7 (5)
C12—N3—C8—C7178.0 (3)C31—C32—C34—C36175.3 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.841.992.829 (5)172
(II) catena-poly[[[[tris(2-pyridylmethyl)amine]iron(II)]-µ2- 7,7',8,8'-tetracyanoquinodimethanide(2-)] methanol solvate] top
Crystal data top
[Fe(C12H4N4)(C18H18N4)]·CH4OF(000) = 1208
Mr = 582.45Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2713 reflections
a = 9.4197 (10) Åθ = 2.2–22.3°
b = 18.2526 (18) ŵ = 0.58 mm1
c = 17.0040 (18) ÅT = 100 K
β = 105.275 (9)°Brick, orange
V = 2820.3 (5) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3180 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.6°, θmin = 3.6°
Detector resolution: 16.0355 pixels mm-1h = 1111
ϕ and ω scansk = 1922
15228 measured reflectionsl = 2018
5257 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
5257 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Fe(C12H4N4)(C18H18N4)]·CH4OV = 2820.3 (5) Å3
Mr = 582.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4197 (10) ŵ = 0.58 mm1
b = 18.2526 (18) ÅT = 100 K
c = 17.0040 (18) Å0.14 × 0.12 × 0.10 mm
β = 105.275 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3180 reflections with I > 2σ(I)
15228 measured reflectionsRint = 0.036
5257 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.84Δρmax = 0.59 e Å3
5257 reflectionsΔρmin = 0.22 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.9601 (0.0020) x + 11.8396 (0.0052) y + 6.3030 (0.0059) z = 4.7795 (0.0026)

* 0.0287 (0.0020) C19 * 0.1633 (0.0020) C20 * 0.1278 (0.0020) C21 * -0.0292 (0.0020) C22 * -0.1783 (0.0020) C23 * -0.1488 (0.0020) C24 * 0.0550 (0.0022) C25 * -0.0799 (0.0021) C26 * 0.1159 (0.0022) C27 * -0.0032 (0.0021) C28 * -0.0270 (0.0020) C29 * 0.0298 (0.0021) C30 * -0.2320 (0.0018) N5 * 0.1576 (0.0020) N6 * -0.0610 (0.0017) N7 * 0.0812 (0.0019) N8

Rms deviation of fitted atoms = 0.1151

6.9601 (0.0020) x + 11.8396 (0.0052) y - 6.3030 (0.0059) z = 2.6683 (0.0014)

Angle to previous plane (with approximate e.s.d.) = 80.88 (0.02)

* 0.0287 (0.0020) C19_$2 * 0.1633 (0.0020) C20_$2 * 0.1278 (0.0020) C21_$2 * -0.0292 (0.0020) C22_$2 * -0.1783 (0.0020) C23_$2 * -0.1488 (0.0020) C24_$2 * 0.0550 (0.0022) C25_$2 * -0.0799 (0.0021) C26_$2 * 0.1159 (0.0022) C27_$2 * -0.0032 (0.0021) C28_$2 * -0.0270 (0.0020) C29_$2 * 0.0298 (0.0021) C30_$2 * -0.2320 (0.0018) N5_$2 * 0.1576 (0.0020) N6_$2 * -0.0610 (0.0017) N7_$2 * 0.0812 (0.0019) N8_$2

Rms deviation of fitted atoms = 0.1151 EQIV $2 - x + 1, y - 1/2, -z + 1/2

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00217 (3)0.253651 (19)0.171808 (19)0.02819 (11)
N10.09659 (19)0.15504 (10)0.19265 (11)0.0261 (4)
N20.1354 (2)0.23753 (10)0.05576 (11)0.0297 (5)
N30.1861 (2)0.29797 (10)0.19239 (11)0.0295 (5)
N40.1079 (2)0.23360 (10)0.29336 (12)0.0320 (5)
N50.0851 (2)0.35138 (14)0.15547 (12)0.0412 (6)
N60.1705 (3)0.52489 (13)0.01435 (15)0.0556 (6)
N70.8354 (2)0.69905 (11)0.35803 (11)0.0354 (5)
N80.7224 (2)0.55072 (13)0.53443 (14)0.0490 (6)
C10.1477 (3)0.11718 (13)0.11326 (14)0.0314 (6)
H1A0.22600.08170.11560.038*
H1B0.06500.08980.10140.038*
C20.2063 (2)0.17207 (13)0.04681 (14)0.0299 (5)
C30.3215 (3)0.15624 (15)0.02047 (15)0.0436 (7)
H30.37020.11020.02510.052*
C40.3643 (3)0.20840 (18)0.08062 (16)0.0560 (8)
H40.44260.19870.12760.067*
C50.2924 (3)0.27449 (17)0.07183 (17)0.0507 (8)
H50.32020.31100.11290.061*
C60.1793 (3)0.28764 (15)0.00280 (16)0.0391 (6)
H60.13110.33380.00310.047*
C70.2218 (3)0.17299 (13)0.22791 (15)0.0347 (6)
H7A0.18770.17030.28810.042*
H7B0.30060.13610.20940.042*
C80.2837 (2)0.24770 (13)0.20363 (12)0.0270 (5)
C90.4290 (3)0.26470 (14)0.19687 (14)0.0361 (6)
H90.49600.22810.20430.043*
C100.4751 (3)0.33591 (17)0.17917 (16)0.0481 (7)
H100.57460.34920.17420.058*
C110.3747 (3)0.38766 (15)0.16883 (18)0.0515 (8)
H110.40400.43720.15730.062*
C120.2318 (3)0.36670 (14)0.17546 (15)0.0396 (6)
H120.16340.40240.16770.047*
C130.0134 (2)0.11170 (12)0.25282 (14)0.0302 (5)
H13A0.08050.08640.22560.036*
H13B0.03650.07420.27810.036*
C140.0995 (3)0.16307 (14)0.31705 (14)0.0334 (6)
C150.1664 (3)0.13989 (17)0.39537 (16)0.0506 (7)
H150.15820.09040.41090.061*
C160.2455 (4)0.1899 (2)0.45074 (18)0.0710 (10)
H160.29300.17510.50480.085*
C170.2547 (3)0.26070 (19)0.42703 (18)0.0606 (9)
H170.30930.29570.46430.073*
C180.1841 (3)0.28099 (15)0.34842 (17)0.0456 (7)
H180.18970.33060.33270.055*
C190.3341 (2)0.49939 (13)0.19369 (14)0.0314 (6)
C200.3541 (2)0.47925 (13)0.27501 (14)0.0292 (5)
H200.28970.44420.28850.035*
C210.4658 (2)0.50907 (12)0.33665 (14)0.0287 (5)
H210.47660.49360.39120.034*
C220.5626 (2)0.56119 (12)0.32071 (14)0.0274 (5)
C230.5441 (2)0.58124 (13)0.23905 (14)0.0297 (5)
H230.60890.61610.22560.036*
C240.4329 (3)0.55101 (13)0.17767 (14)0.0324 (6)
H240.42320.56570.12290.039*
C250.2167 (3)0.46749 (14)0.12813 (15)0.0363 (6)
C260.1409 (3)0.40453 (16)0.14133 (14)0.0360 (6)
C270.1874 (3)0.49767 (15)0.04878 (17)0.0422 (7)
C280.6762 (2)0.59476 (13)0.38727 (14)0.0293 (5)
C290.7643 (3)0.65216 (13)0.37295 (13)0.0290 (5)
C300.7023 (3)0.57012 (14)0.46761 (16)0.0352 (6)
O10.9961 (2)0.54698 (11)0.66068 (11)0.0511 (5)
H10.90990.54590.63040.077*
C311.0910 (3)0.57864 (16)0.61782 (18)0.0542 (8)
H31A1.07700.55410.56500.081*
H31B1.19340.57280.64970.081*
H31C1.06830.63090.60900.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02775 (17)0.0286 (2)0.02662 (18)0.00636 (16)0.00429 (13)0.00020 (16)
N10.0259 (10)0.0226 (11)0.0293 (11)0.0002 (8)0.0065 (9)0.0004 (8)
N20.0291 (10)0.0282 (13)0.0332 (11)0.0049 (9)0.0108 (9)0.0045 (9)
N30.0351 (11)0.0220 (12)0.0302 (11)0.0019 (9)0.0065 (9)0.0002 (9)
N40.0385 (11)0.0259 (13)0.0350 (12)0.0004 (9)0.0154 (9)0.0051 (9)
N50.0257 (12)0.0638 (17)0.0314 (13)0.0020 (11)0.0027 (10)0.0058 (11)
N60.0706 (17)0.0380 (15)0.0443 (15)0.0026 (12)0.0094 (12)0.0021 (12)
N70.0422 (12)0.0296 (13)0.0288 (12)0.0095 (10)0.0006 (10)0.0021 (9)
N80.0500 (14)0.0514 (16)0.0387 (14)0.0196 (11)0.0005 (11)0.0109 (11)
C10.0314 (13)0.0243 (14)0.0355 (14)0.0042 (10)0.0035 (11)0.0025 (10)
C20.0292 (13)0.0295 (15)0.0302 (14)0.0029 (11)0.0063 (11)0.0027 (11)
C30.0458 (16)0.0387 (17)0.0404 (16)0.0038 (13)0.0010 (13)0.0074 (13)
C40.062 (2)0.063 (2)0.0329 (17)0.0181 (17)0.0058 (14)0.0039 (15)
C50.066 (2)0.055 (2)0.0335 (16)0.0260 (16)0.0177 (15)0.0152 (14)
C60.0450 (15)0.0321 (16)0.0461 (17)0.0088 (13)0.0226 (14)0.0128 (13)
C70.0320 (14)0.0311 (15)0.0429 (15)0.0029 (11)0.0130 (12)0.0020 (12)
C80.0283 (11)0.0270 (13)0.0264 (12)0.0002 (11)0.0086 (9)0.0000 (11)
C90.0291 (13)0.0440 (18)0.0365 (14)0.0002 (12)0.0110 (11)0.0014 (12)
C100.0385 (16)0.057 (2)0.0513 (18)0.0177 (14)0.0153 (14)0.0016 (15)
C110.064 (2)0.0319 (17)0.066 (2)0.0197 (15)0.0296 (16)0.0041 (14)
C120.0512 (17)0.0252 (15)0.0452 (16)0.0001 (12)0.0179 (13)0.0015 (12)
C130.0336 (13)0.0239 (14)0.0325 (14)0.0030 (11)0.0076 (11)0.0047 (10)
C140.0370 (14)0.0313 (15)0.0312 (14)0.0018 (11)0.0082 (11)0.0019 (11)
C150.072 (2)0.0422 (18)0.0320 (16)0.0041 (15)0.0042 (14)0.0052 (13)
C160.092 (3)0.075 (3)0.0323 (17)0.004 (2)0.0071 (16)0.0004 (17)
C170.073 (2)0.061 (2)0.0444 (18)0.0187 (18)0.0103 (16)0.0239 (16)
C180.0552 (17)0.0396 (17)0.0451 (18)0.0147 (14)0.0185 (15)0.0158 (13)
C190.0293 (13)0.0288 (14)0.0347 (15)0.0080 (11)0.0060 (11)0.0029 (11)
C200.0258 (12)0.0244 (14)0.0361 (15)0.0024 (10)0.0061 (11)0.0017 (11)
C210.0305 (13)0.0245 (14)0.0307 (13)0.0054 (10)0.0070 (11)0.0028 (10)
C220.0247 (12)0.0248 (14)0.0324 (14)0.0072 (10)0.0070 (10)0.0003 (10)
C230.0294 (13)0.0261 (14)0.0342 (14)0.0056 (10)0.0095 (11)0.0016 (11)
C240.0366 (14)0.0300 (15)0.0299 (14)0.0082 (11)0.0077 (11)0.0002 (11)
C250.0317 (14)0.0393 (17)0.0328 (15)0.0078 (12)0.0007 (11)0.0062 (12)
C260.0208 (13)0.054 (2)0.0293 (14)0.0065 (13)0.0005 (11)0.0102 (13)
C270.0432 (16)0.0325 (16)0.0424 (18)0.0022 (12)0.0037 (13)0.0078 (13)
C280.0278 (13)0.0283 (14)0.0301 (14)0.0002 (10)0.0045 (11)0.0034 (10)
C290.0310 (13)0.0280 (15)0.0241 (13)0.0045 (11)0.0004 (11)0.0020 (10)
C300.0274 (13)0.0338 (16)0.0400 (16)0.0078 (11)0.0013 (12)0.0042 (12)
O10.0543 (12)0.0468 (12)0.0484 (12)0.0086 (10)0.0070 (10)0.0074 (9)
C310.0546 (18)0.0502 (19)0.0593 (19)0.0045 (15)0.0175 (15)0.0030 (15)
Geometric parameters (Å, º) top
Fe1—N51.996 (3)C10—C111.380 (4)
Fe1—N7i2.000 (2)C10—H100.95
Fe1—N32.0611 (19)C11—C121.375 (3)
Fe1—N22.0767 (19)C11—H110.95
Fe1—N42.077 (2)C12—H120.95
Fe1—N12.0987 (18)C13—C141.504 (3)
N1—C131.479 (3)C13—H13A0.99
N1—C11.480 (3)C13—H13B0.99
N1—C71.494 (3)C14—C151.381 (3)
N2—C61.335 (3)C15—C161.380 (4)
N2—C21.357 (3)C15—H150.95
N3—C121.333 (3)C16—C171.364 (4)
N3—C81.348 (3)C16—H160.95
N4—C181.336 (3)C17—C181.378 (4)
N4—C141.358 (3)C17—H170.95
N5—C261.158 (3)C18—H180.95
N6—C271.155 (3)C19—C201.395 (3)
N7—C291.156 (3)C19—C241.401 (3)
N7—Fe1ii2.000 (2)C19—C251.468 (3)
N8—C301.157 (3)C20—C211.386 (3)
C1—C21.502 (3)C20—H200.95
C1—H1A0.99C21—C221.393 (3)
C1—H1B0.99C21—H210.95
C2—C31.384 (3)C22—C231.402 (3)
C3—C41.378 (4)C22—C281.471 (3)
C3—H30.95C23—C241.384 (3)
C4—C51.372 (4)C23—H230.95
C4—H40.95C24—H240.95
C5—C61.383 (4)C25—C261.402 (4)
C5—H50.95C25—C271.416 (4)
C6—H60.95C28—C301.397 (3)
C7—C81.497 (3)C28—C291.397 (3)
C7—H7A0.99O1—C311.417 (3)
C7—H7B0.99O1—H10.84
C8—C91.379 (3)C31—H31A0.98
C9—C101.378 (4)C31—H31B0.98
C9—H90.95C31—H31C0.98
N5—Fe1—N7i93.23 (8)C9—C10—C11119.1 (2)
N5—Fe1—N393.37 (8)C9—C10—H10120.5
N7i—Fe1—N3171.28 (8)C11—C10—H10120.5
N5—Fe1—N299.42 (8)C12—C11—C10119.2 (3)
N7i—Fe1—N290.92 (7)C12—C11—H11120.4
N3—Fe1—N282.38 (7)C10—C11—H11120.4
N5—Fe1—N4101.14 (8)N3—C12—C11122.2 (2)
N7i—Fe1—N488.06 (7)N3—C12—H12118.9
N3—Fe1—N496.24 (7)C11—C12—H12118.9
N2—Fe1—N4159.44 (7)N1—C13—C14108.30 (19)
N5—Fe1—N1175.69 (7)N1—C13—H13A110.0
N7i—Fe1—N191.04 (8)C14—C13—H13A110.0
N3—Fe1—N182.44 (7)N1—C13—H13B110.0
N2—Fe1—N181.11 (7)C14—C13—H13B110.0
N4—Fe1—N178.38 (7)H13A—C13—H13B108.4
C13—N1—C1112.43 (18)N4—C14—C15121.9 (2)
C13—N1—C7108.86 (17)N4—C14—C13116.0 (2)
C1—N1—C7111.53 (18)C15—C14—C13122.1 (2)
C13—N1—Fe1108.33 (13)C16—C15—C14118.9 (3)
C1—N1—Fe1107.38 (13)C16—C15—H15120.6
C7—N1—Fe1108.17 (13)C14—C15—H15120.6
C6—N2—C2118.2 (2)C17—C16—C15119.4 (3)
C6—N2—Fe1127.20 (18)C17—C16—H16120.3
C2—N2—Fe1113.37 (15)C15—C16—H16120.3
C12—N3—C8118.5 (2)C16—C17—C18119.3 (3)
C12—N3—Fe1125.19 (16)C16—C17—H17120.4
C8—N3—Fe1113.98 (15)C18—C17—H17120.4
C18—N4—C14118.0 (2)N4—C18—C17122.6 (3)
C18—N4—Fe1127.69 (18)N4—C18—H18118.7
C14—N4—Fe1114.34 (15)C17—C18—H18118.7
C26—N5—Fe1173.2 (2)C20—C19—C24116.5 (2)
C29—N7—Fe1ii162.0 (2)C20—C19—C25121.8 (2)
N1—C1—C2109.97 (19)C24—C19—C25121.7 (2)
N1—C1—H1A109.7C21—C20—C19121.6 (2)
C2—C1—H1A109.7C21—C20—H20119.2
N1—C1—H1B109.7C19—C20—H20119.2
C2—C1—H1B109.7C20—C21—C22121.8 (2)
H1A—C1—H1B108.2C20—C21—H21119.1
N2—C2—C3122.1 (2)C22—C21—H21119.1
N2—C2—C1115.5 (2)C21—C22—C23117.0 (2)
C3—C2—C1122.3 (2)C21—C22—C28121.0 (2)
C4—C3—C2118.8 (3)C23—C22—C28121.9 (2)
C4—C3—H3120.6C24—C23—C22121.0 (2)
C2—C3—H3120.6C24—C23—H23119.5
C5—C4—C3119.2 (3)C22—C23—H23119.5
C5—C4—H4120.4C23—C24—C19122.1 (2)
C3—C4—H4120.4C23—C24—H24118.9
C4—C5—C6119.5 (3)C19—C24—H24118.9
C4—C5—H5120.2C26—C25—C27119.5 (2)
C6—C5—H5120.2C26—C25—C19121.1 (2)
N2—C6—C5122.1 (3)C27—C25—C19119.2 (2)
N2—C6—H6118.9N5—C26—C25176.3 (3)
C5—C6—H6118.9N6—C27—C25176.0 (3)
N1—C7—C8112.33 (18)C30—C28—C29116.9 (2)
N1—C7—H7A109.1C30—C28—C22121.6 (2)
C8—C7—H7A109.1C29—C28—C22121.6 (2)
N1—C7—H7B109.1N7—C29—C28177.4 (2)
C8—C7—H7B109.1N8—C30—C28178.8 (3)
H7A—C7—H7B107.9C31—O1—H1109.5
N3—C8—C9122.3 (2)O1—C31—H31A109.5
N3—C8—C7115.40 (19)O1—C31—H31B109.5
C9—C8—C7122.2 (2)H31A—C31—H31B109.5
C10—C9—C8118.6 (2)O1—C31—H31C109.5
C10—C9—H9120.7H31A—C31—H31C109.5
C8—C9—H9120.7H31B—C31—H31C109.5
N7i—Fe1—N1—C1355.31 (14)C2—N2—C6—C50.7 (3)
N3—Fe1—N1—C13130.51 (14)Fe1—N2—C6—C5167.34 (17)
N2—Fe1—N1—C13146.07 (14)C4—C5—C6—N21.0 (4)
N4—Fe1—N1—C1332.50 (14)C13—N1—C7—C8143.7 (2)
N7i—Fe1—N1—C166.35 (14)C1—N1—C7—C891.7 (2)
N3—Fe1—N1—C1107.83 (14)Fe1—N1—C7—C826.2 (2)
N2—Fe1—N1—C124.42 (13)C12—N3—C8—C91.1 (3)
N4—Fe1—N1—C1154.16 (14)Fe1—N3—C8—C9162.57 (17)
N7i—Fe1—N1—C7173.16 (14)C12—N3—C8—C7176.1 (2)
N3—Fe1—N1—C712.66 (14)Fe1—N3—C8—C720.3 (2)
N2—Fe1—N1—C796.07 (14)N1—C7—C8—N331.7 (3)
N4—Fe1—N1—C785.35 (14)N1—C7—C8—C9151.1 (2)
N5—Fe1—N2—C614.83 (19)N3—C8—C9—C101.0 (3)
N7i—Fe1—N2—C6108.25 (19)C7—C8—C9—C10176.0 (2)
N3—Fe1—N2—C677.35 (18)C8—C9—C10—C110.0 (4)
N4—Fe1—N2—C6164.81 (19)C9—C10—C11—C120.8 (4)
N1—Fe1—N2—C6160.84 (19)C8—N3—C12—C110.3 (3)
N5—Fe1—N2—C2177.97 (15)Fe1—N3—C12—C11161.41 (19)
N7i—Fe1—N2—C284.55 (15)C10—C11—C12—N30.7 (4)
N3—Fe1—N2—C289.85 (15)C1—N1—C13—C14158.66 (17)
N4—Fe1—N2—C22.4 (3)C7—N1—C13—C1477.2 (2)
N1—Fe1—N2—C26.36 (14)Fe1—N1—C13—C1440.2 (2)
N5—Fe1—N3—C1214.8 (2)C18—N4—C14—C150.1 (3)
N2—Fe1—N3—C1284.3 (2)Fe1—N4—C14—C15178.56 (19)
N4—Fe1—N3—C12116.39 (19)C18—N4—C14—C13179.6 (2)
N1—Fe1—N3—C12166.3 (2)Fe1—N4—C14—C131.2 (2)
N5—Fe1—N3—C8177.20 (15)N1—C13—C14—N426.3 (3)
N2—Fe1—N3—C878.14 (15)N1—C13—C14—C15153.9 (2)
N4—Fe1—N3—C881.19 (15)N4—C14—C15—C160.7 (4)
N1—Fe1—N3—C83.84 (14)C13—C14—C15—C16179.0 (3)
N5—Fe1—N4—C1812.9 (2)C14—C15—C16—C170.4 (5)
N7i—Fe1—N4—C18105.8 (2)C15—C16—C17—C180.4 (5)
N3—Fe1—N4—C1881.8 (2)C14—N4—C18—C170.8 (4)
N2—Fe1—N4—C18166.7 (2)Fe1—N4—C18—C17177.42 (19)
N1—Fe1—N4—C18162.7 (2)C16—C17—C18—N41.1 (4)
N5—Fe1—N4—C14165.35 (16)C24—C19—C20—C210.2 (3)
N7i—Fe1—N4—C1472.45 (16)C25—C19—C20—C21179.5 (2)
N3—Fe1—N4—C1499.95 (16)C19—C20—C21—C220.7 (3)
N2—Fe1—N4—C1415.0 (3)C20—C21—C22—C231.3 (3)
N1—Fe1—N4—C1419.02 (15)C20—C21—C22—C28177.2 (2)
C13—N1—C1—C2156.75 (18)C21—C22—C23—C240.9 (3)
C7—N1—C1—C280.6 (2)C28—C22—C23—C24177.5 (2)
Fe1—N1—C1—C237.7 (2)C22—C23—C24—C190.0 (3)
C6—N2—C2—C30.2 (3)C20—C19—C24—C230.6 (3)
Fe1—N2—C2—C3168.25 (18)C25—C19—C24—C23179.8 (2)
C6—N2—C2—C1177.73 (19)C20—C19—C25—C2614.2 (3)
Fe1—N2—C2—C113.8 (2)C24—C19—C25—C26165.0 (2)
N1—C1—C2—N235.3 (3)C20—C19—C25—C27170.6 (2)
N1—C1—C2—C3146.8 (2)C24—C19—C25—C2710.2 (3)
N2—C2—C3—C40.8 (4)C21—C22—C28—C307.2 (3)
C1—C2—C3—C4177.0 (2)C23—C22—C28—C30174.4 (2)
C2—C3—C4—C50.5 (4)C21—C22—C28—C29173.6 (2)
C3—C4—C5—C60.3 (4)C23—C22—C28—C294.8 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N80.842.072.889 (3)166

Experimental details

(I)(II)
Crystal data
Chemical formula[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH4O[Fe(C12H4N4)(C18H18N4)]·CH4O
Mr1375.24582.45
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)100100
a, b, c (Å)8.954 (2), 11.371 (3), 17.066 (4)9.4197 (10), 18.2526 (18), 17.0040 (18)
α, β, γ (°)73.45 (2), 85.55 (2), 74.93 (2)90, 105.275 (9), 90
V3)1608.3 (7)2820.3 (5)
Z14
Radiation typeMo KαMo Kα
µ (mm1)0.580.58
Crystal size (mm)0.14 × 0.11 × 0.030.14 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Oxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11614, 5716, 3386 15228, 5257, 3180
Rint0.0460.036
(sin θ/λ)max1)0.6020.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.105, 0.86 0.037, 0.086, 0.84
No. of reflections57165257
No. of parameters444372
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.510.59, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL NT (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
Co1—N6i2.019 (3)Co1—N22.124 (3)
Co1—N52.113 (3)Co1—N32.129 (3)
Co1—N42.122 (3)Co1—N12.164 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.841.992.829 (5)171.9
Selected bond lengths (Å) for (II) top
Fe1—N51.996 (3)Fe1—N22.0767 (19)
Fe1—N7i2.000 (2)Fe1—N42.077 (2)
Fe1—N32.0611 (19)Fe1—N12.0987 (18)
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N80.842.072.889 (3)166.1
Intramolecular bond distances (Å) for the TCNQ species in (I) and (I) top
Speciesabcde
TCNQ1.3451.4481.3741.4411.140
TCNQ-1.3741.4231.4201.4161.153
TCNQ2-1.380 (9)1.395 (9)1.4919 (9)1.392 (9)1.167 (9)
TCNQ2- A in (I)1.375 (4)1.383 (4)1.476 (4)1.405 (4)1.156 (4)
1.403 (4)1.386 (5)1.164 (4)
TCNQ- B in (I)1.357 (5)1.414 (5)1.417 (5)1.410 (5)1.154 (5)
1.420 (5)1.420 (5)1.149 (4)
TCNQ- C in (I)1.363 (5)1.410 (4)1.419 (4)1.409 (5)1.153 (4)
1.418 (4)1.422 (5)1.152 (4)
TCNQ2- in (II)1.384 (3)1.401 (3)1.468 (3)1.416 (4)1.155 (3)
1.386 (3)1.402 (3)1.471 (3)1.402 (4)1.158 (3)
1.395 (3)1.397 (3)1.156 (3)
1.393 (3)1.397 (3)1.157 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds