Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of a manganese(II) complex of terpyridine functionalized with acetyl­sulfanyl-terminated hex­yloxy chains, [Mn(C23H25N3O2S)2](PF6)2, is described. This type of complex is of interest in the study of single-mol­ecule transport properties in open-shell systems. The manganese coordination environment is distorted octa­hedral but, importantly, with no larger deviations from the idealized geometry than those observed for other metal-terpyridine complexes. The Mn-N bond lengths range from 2.192 (2) to 2.272 (3) Å. The title compound crystallizes with the cation and anions all on general positions, with the hexa­fluoro­phosphate anions exhibiting orientational disorder. When compared with other bis-terpyridine complexes, this structure demonstrates that manganese(II) is no more prone to undergo low-symmetry distortions than systems with ligand field stabilization energy contributions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010804016X/sq3166sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010804016X/sq3166Isup2.hkl
Contains datablock I

CCDC reference: 718104

Comment top

Transition metal complexes of terpyrine have recently attracted attention as robust and geometrically well defined systems for the study of electron transport at the single-molecule level (Park, 2002; Albrecht, Moth-Poulsen, Guckian et al., 2006; Albrecht, Moth-Poulsen, Christensen et al., 2006). The title compound, (I), was functionalized with an acetyl-protected thiol via a 6-acetylsulfanylhexyloxy ether linkage to the 4-position of the central pyridine ring to facilitate attachment to gold surfaces and leads. The acetyl-protected thiol has been shown to be stable at room temperature and permits the formation of self-assembled monolayers of the compound on a gold surface (Albrecht, Moth-Poulsen, Guckian et al., 2006; Albrecht, Moth-Poulsen, Christensen et al., 2006). The coordination around the manganese(II) center is distorted octahedral, governed by the steric requirements of the terpyridine units (Fig. 1). The terpyridine ligands are quite rigid and, accordingly, the manganese–nitrogen bond lengths (Table 1) deviate only slightly from the values reported for the dithionate, (II), and triiodide, (III), salts of the parent bis(2,2':6',2''-terpyridine-N,N',N'')manganese(II) ion (Bhula & Weatherburn, 1991; Freire et al., 2001). In (II) and (III), the outer Mn—N bond lengths are 2.249 (11) and 2.249 (7) Å, respectively while the central Mn—N bond lengths are 2.192 (6) and 2.186 (6) Å. Whereas the bond lengths are effectively fixed in terpyridine complexes of a given central metal ion, angular distortions are frequently observed. For example, the angles between trans-situated donor atoms include some significant distortions: N42—Mn1—N44 = 145.03 (10)° and N24—Mn1—N26 = 144.13 (9)°.

In Fig. 2, the magnitudes of the two most common low-symmetry distortions of bis-terpyridine complexes, the wag and the twist, are shown for all monomeric MnII, FeII and ZnII bis-terpyridine complexes in the Cambridge Structural Database (CSD;Version 5.29, update of 2 August 2008; Allen, 2002). Only systems without bulky ortho-substituents have been included to isolate the importance of the electronic structure of the metal in determining its coordination geometry. MnII and ZnII have spherical d-electron density and no ligand field stabilization energy (LFSE), while FeII has maximal LFSE among the divalent transition metals. The plot illustrates that the two distortion modes have a mutually quenching relationship, with relatively few systems falling on the diagonal. It also shows, most importantly, that all three metal centers deliver examples of systems with nearly idealized D2d symmetry as well as significantly distorted complexes. For manganese(II) a couple of systems that contain 4'-substituted terpyridines with wag angles of more than 15° particularly stand out (Jeitler et al., 2003).

In the title compound, the terpyridine ligands are both close to planar. The r.m.s. deviation from planarity in the C9—C23/N24–N26 ring system is 0.0480 Å, with a largest deviation (for atom C11) of 0.098 (4) Å, while C27—C41/N42–N44 system has an r.m.s. deviation from planarity of 0.0392 Å and a largest deviation (C30) of 0.0778 (31) Å. The two ligand planes are almost perpendicular [88.06 (3)°], amounting to a twist angle of 1.94°. In this respect, the present complex differs significantly from the close analog bis(4'-methylthio-2,2':6',2''-terpyridine)manganese(II) perchlorate (Jeitler et al., 2003), which is significantly more distorted with twist angles of 23.8 and 15.1° for the two independent molecules. The wag angle in the present system is relatively large at 10.6°, but is exceeded by that in at least one FeII system with a similar substitution pattern (Constable et al., 2000). In the study by Jeitler et al. structures were determined for the MnII, FeII and NiII complexes, and it was found that the absolute differences in bond lengths between the outer and inner pyridine rings were 0.06–0.12 Å, with the manganese complex having the smallest bond-length difference. If one considers systems with substituents in the ortho positions to the nitrogen ligators, larger distortions are also found for FeII systems (Constable et al., 1999; Pelascini et al., 2004) than for MnII, albeit with different substituents.

Contrary to the common assumption that the large ionic radius of the manganese(II) ion and the lack of ligand field stabilization in high-spin d5 systems result in pronounced deviations from idealized geometries (Erre et al., 2000; Figgins & Busch 1961), the crystallographically characterized bis-terpyridine manganese(II) complexes do not constitute a structurally distinct class, but span the full range from undistorted to highly distorted. The title compound differs significantly from other 4'-substituted bis-terpyridine manganese(II) complexes by its low twist angle. It may be speculated that the fairly dense packing (cf. Fig. 3) of the long side chains in the present system suppresses this degree of freedom and thus contributes to the quite symmetrical coordination of the manganese(II) centre.

In conclusion, comparison between bis-terpyridine complexes of different divalent transition metal centers need not treat manganese(II) as a special case owing to the lack of LFSE.

Related literature top

For related literature, see: Albrecht, Moth-Poulsen, Christensen, Hjelm, Bjørnholm & Ulstrup (2006); Bhula & Weatherburn (1991); Constable et al. (1999, 2000); Erre et al. (2000); Figgins & Busch (1961); Freire et al. (2001); Jeitler et al. (2003); Park, Coulomb blockade & the Kondo effect in single-atom transistors (2002); Pelascini et al. (2004).

Experimental top

Synthesis of the title compound was accomplished by combining the ligand, 4'-(6-acetylsulfanylhexyloxy)-2,2':6',2''-terpyridine (Albrecht, Moth-Poulsen, Guckian et al., 2006 and/or??? Albrecht, Moth-Poulsen, Christensen et al., 2006) and manganese(II) acetate in an acetone/water mixture. The compound was precipitated as a white powder by the addition of an aqueous solution of potassium hexafluorophosphate. Crystals suitable for X-ray study were obtained by slow diffusion of water into an acetonitrile solution of the compound.

Refinement top

Most H atoms were identified in a difference Fourier map. All H atoms were subsequently placed in idealized positions with Uiso(H) parameters constrained to 1.2Ueq of the connected non-H atom in all cases. Disorder of the hexafluorophosphate ions was modelled with two different orientations but identical structures for each of the sites. The major populations were refined to 0.814 (7) and 0.842 (7). Short F12A···F12A inter-cell distances of 2.23 Å indicate that the disorder modelling could be simplified and that long-range correlations between the orientations of the anions could be relevant.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg & Schreurs, 1989–2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. a) Molecular structure of the cation in the title compound including labelling of the atoms. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with an arbitrary radii. b) View along the N25–N43 axis illustrating the regular coordination around the manganese centre.
[Figure 2] Fig. 2. Top: illustrations of the wag and twist modes of distortion from idealized D2d symmetry. Bottom: Plot of twist and wag angles for all monomeric Mn(II), Zn(II), and Fe(II) bis-terpyridine complexes in the CSD. Only systems without ortho substituents on the terpyridine rings are included in the plot.
[Figure 3] Fig. 3. The crystal packing in the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
Bis[S-6-(2,2:6',2''-terpyridin-4'-yloxy)hexyl thioacetate]manganese(II) bis(hexafluorophosphate) top
Crystal data top
[Mn(C23H25N3O2S)2](PF6)2Z = 2
Mr = 1159.94F(000) = 1190
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1270 (16) ÅCell parameters from 24366 reflections
b = 11.403 (3) Åθ = 1.6–28.5°
c = 25.822 (2) ŵ = 0.49 mm1
α = 96.302 (12)°T = 122 K
β = 94.287 (11)°Needle, colorless
γ = 105.312 (14)°0.63 × 0.14 × 0.03 mm
V = 2561.2 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
12876 independent reflections
Radiation source: fine-focus sealed tube9290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
θ and ϕ scansθmax = 28.5°, θmin = 1.6°
Absorption correction: gaussian
(Coppens, 1970)
h = 1112
Tmin = 0.717, Tmax = 0.979k = 1515
55194 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0597P)2 + 6.2908P]
where P = (Fo2 + 2Fc2)/3
12876 reflections(Δ/σ)max = 0.007
692 parametersΔρmax = 1.93 e Å3
12 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Mn(C23H25N3O2S)2](PF6)2γ = 105.312 (14)°
Mr = 1159.94V = 2561.2 (8) Å3
Triclinic, P1Z = 2
a = 9.1270 (16) ÅMo Kα radiation
b = 11.403 (3) ŵ = 0.49 mm1
c = 25.822 (2) ÅT = 122 K
α = 96.302 (12)°0.63 × 0.14 × 0.03 mm
β = 94.287 (11)°
Data collection top
Nonius KappaCCD
diffractometer
12876 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
9290 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.979Rint = 0.102
55194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06812 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.04Δρmax = 1.93 e Å3
12876 reflectionsΔρmin = 0.99 e Å3
692 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.6283 (0.0029) x + 7.9014 (0.0040) y - 13.7646 (0.0122) z = 6.8068 (0.0059)

* 0.0488 (0.0031) C9 * -0.0397 (0.0036) C10 * -0.0975 (0.0042) C11 * -0.0592 (0.0040) C12 * 0.0195 (0.0031) C13 * 0.0196 (0.0029) C14 * 0.0052 (0.0029) C15 * 0.0044 (0.0028) C16 * 0.0246 (0.0029) C17 * 0.0300 (0.0029) C18 * 0.0233 (0.0030) C19 * -0.0391 (0.0037) C20 * -0.0712 (0.0041) C21 * -0.0607 (0.0036) C22 * 0.0121 (0.0033) C23 * 0.0755 (0.0026) N24 * 0.0431 (0.0025) N25 * 0.0611 (0.0027) N26

Rms deviation of fitted atoms = 0.0480

- 8.2411 (0.0024) x + 6.7811 (0.0032) y - 5.1448 (0.0129) z = 0.9849 (0.0033)

Angle to previous plane (with approximate esd) = 88.06 ( 0.03 )

* -0.0483 (0.0030) C27 * -0.0138 (0.0032) C28 * 0.0365 (0.0033) C29 * 0.0778 (0.0031) C30 * 0.0225 (0.0029) C31 * 0.0241 (0.0028) C32 * 0.0139 (0.0029) C33 * -0.0374 (0.0028) C34 * -0.0573 (0.0029) C35 * -0.0266 (0.0029) C36 * -0.0270 (0.0029) C37 * 0.0166 (0.0032) C38 * 0.0596 (0.0032) C39 * 0.0467 (0.0030) C40 * -0.0111 (0.0028) C41 * -0.0414 (0.0026) N42 * 0.0137 (0.0025) N43 * -0.0485 (0.0025) N44

Rms deviation of fitted atoms = 0.0392

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.55805 (5)0.94328 (4)0.173146 (17)0.02023 (12)
P20.90119 (11)0.67886 (9)0.05315 (3)0.0305 (2)
S570.69834 (12)1.89143 (9)0.57218 (4)0.0395 (2)
S590.32543 (16)0.29891 (11)0.38146 (4)0.0551 (3)
N260.3554 (3)1.0217 (3)0.18127 (10)0.0238 (5)
N250.5845 (3)1.0394 (2)0.25306 (9)0.0206 (5)
N240.7580 (3)0.9030 (2)0.21815 (9)0.0221 (5)
N440.7056 (3)1.0992 (3)0.13657 (10)0.0235 (5)
N430.5482 (3)0.8812 (2)0.08919 (9)0.0214 (5)
O450.5584 (3)0.7650 (2)0.06636 (9)0.0346 (6)
N420.4061 (3)0.7524 (3)0.15775 (10)0.0249 (6)
O460.6489 (3)1.2520 (2)0.39649 (9)0.0300 (5)
F160.8352 (3)0.6842 (3)0.00507 (8)0.0522 (7)
C180.4876 (4)1.1061 (3)0.26678 (11)0.0211 (6)
C190.3570 (4)1.0948 (3)0.22635 (12)0.0233 (6)
C310.3821 (4)0.6947 (3)0.10768 (12)0.0232 (6)
C130.8008 (4)0.9624 (3)0.26765 (12)0.0234 (6)
C330.4613 (4)0.7205 (3)0.01658 (12)0.0274 (7)
H330.40050.64020.00290.033*
C140.7039 (3)1.0409 (3)0.28715 (11)0.0209 (6)
C170.5105 (4)1.1786 (3)0.31483 (12)0.0244 (6)
H170.44271.22640.32370.029*
C320.4655 (4)0.7670 (3)0.06909 (12)0.0227 (6)
C160.6347 (4)1.1803 (3)0.35003 (12)0.0239 (6)
C90.8376 (4)0.8292 (3)0.19869 (12)0.0284 (7)
H90.80730.78810.16400.034*
C370.7180 (4)1.0783 (3)0.08486 (12)0.0235 (6)
C360.6321 (4)0.9537 (3)0.05827 (12)0.0233 (6)
F150.9678 (4)0.6740 (4)0.11137 (9)0.0845 (12)
C470.7790 (4)1.2616 (3)0.43435 (12)0.0311 (7)
H47A0.87531.30300.42080.037*
H47B0.78381.17910.44150.037*
C150.7339 (4)1.1107 (3)0.33614 (11)0.0231 (6)
H150.81951.11100.35960.028*
C410.7766 (4)1.2108 (3)0.16257 (13)0.0263 (7)
H410.76791.22580.19900.032*
C490.7524 (5)1.4664 (3)0.47756 (13)0.0315 (8)
H49A0.66411.46320.45220.038*
H49B0.84661.50860.46310.038*
C380.8033 (4)1.1682 (3)0.05833 (13)0.0304 (7)
H380.81171.15090.02200.037*
C480.7563 (5)1.3366 (3)0.48413 (13)0.0321 (8)
H48A0.65911.29350.49670.039*
H48B0.84001.34050.51150.039*
C350.6353 (4)0.9135 (3)0.00600 (12)0.0271 (7)
H350.69570.96560.01530.033*
C510.7312 (5)1.6698 (3)0.52399 (13)0.0325 (8)
H51A0.82241.71380.50840.039*
H51B0.63971.66590.50000.039*
C500.7397 (5)1.5397 (3)0.52948 (13)0.0328 (8)
H50A0.64721.49560.54440.039*
H50B0.82941.54420.55450.039*
C550.4489 (5)0.5283 (3)0.23963 (13)0.0345 (8)
H55A0.41690.59830.25150.041*
H55B0.56030.54500.24150.041*
C540.4173 (5)0.5209 (3)0.18231 (13)0.0332 (8)
H54A0.30670.50830.17960.040*
H54B0.44700.45030.17010.040*
C300.2866 (4)0.5767 (3)0.09438 (14)0.0304 (7)
H300.26910.53820.05910.036*
C400.8622 (4)1.3052 (3)0.13867 (14)0.0312 (7)
H400.91061.38330.15820.037*
C220.1205 (4)1.0586 (4)0.14935 (15)0.0399 (9)
H220.03881.04380.12230.048*
C340.5491 (4)0.7956 (3)0.01511 (12)0.0280 (7)
C200.2435 (4)1.1530 (4)0.23438 (15)0.0352 (8)
H200.24681.20440.26620.042*
C520.4823 (5)0.6408 (3)0.09062 (13)0.0342 (8)
H52A0.37180.62000.08650.041*
H52B0.52700.58120.07470.041*
C230.2386 (4)1.0040 (3)0.14384 (13)0.0321 (8)
H230.23660.95190.11230.039*
C390.8755 (4)1.2829 (4)0.08557 (14)0.0346 (8)
H390.93351.34570.06810.041*
C111.0066 (5)0.8696 (4)0.27709 (15)0.0455 (11)
H111.09140.85770.29740.055*
C280.2397 (4)0.5745 (4)0.18449 (15)0.0374 (8)
H280.19120.53460.21160.045*
C270.3347 (4)0.6927 (3)0.19485 (14)0.0311 (7)
H270.35020.73360.22970.037*
C530.5078 (5)0.6392 (3)0.14791 (12)0.0326 (8)
H53A0.61800.65080.15110.039*
H53B0.47890.70920.16110.039*
C290.2174 (4)0.5161 (4)0.13350 (16)0.0368 (8)
H290.15430.43420.12530.044*
C100.9626 (5)0.8093 (4)0.22666 (14)0.0378 (9)
H101.01640.75570.21160.045*
C560.3675 (5)0.4125 (4)0.27706 (14)0.0385 (9)
H56A0.25550.39740.27750.046*
H56B0.39570.34100.26510.046*
C120.9260 (4)0.9473 (4)0.29768 (13)0.0381 (9)
H120.95580.99020.33210.046*
C210.1247 (5)1.1345 (4)0.19480 (17)0.0450 (10)
H210.04651.17440.19920.054*
P610.01947 (13)0.42903 (13)0.30770 (4)0.0532 (3)
O740.9949 (3)1.9364 (3)0.56851 (11)0.0435 (7)
C690.8858 (5)1.9774 (3)0.56676 (13)0.0345 (8)
F260.0141 (4)0.5463 (3)0.28187 (15)0.0846 (11)
C600.7232 (5)1.7401 (3)0.57669 (14)0.0357 (8)
H60A0.81851.74870.59960.043*
H60B0.63711.69200.59340.043*
O730.5460 (5)0.2198 (4)0.33727 (16)0.0758 (11)
F250.0266 (4)0.3093 (5)0.33281 (19)0.136 (2)
C680.4138 (6)0.4283 (4)0.33258 (16)0.0500 (11)
H68A0.52610.44410.33130.060*
H68B0.38730.50140.34340.060*
C700.8984 (6)2.1101 (4)0.56038 (18)0.0488 (10)
H70A1.00512.15310.55760.059*
H70B0.86322.14950.59090.059*
H70C0.83492.11350.52860.059*
C710.4460 (6)0.2051 (5)0.37387 (18)0.0551 (12)
C720.4123 (7)0.0988 (4)0.4187 (2)0.0653 (15)
H72A0.48210.04810.41320.078*
H72B0.42650.13160.45210.078*
H72C0.30660.04870.41960.078*
F110.9234 (8)0.8226 (4)0.06539 (19)0.102 (2)0.814 (7)
F121.0668 (4)0.6989 (5)0.03434 (15)0.0623 (14)0.814 (7)
F130.8762 (6)0.5368 (3)0.04328 (17)0.0744 (14)0.814 (7)
F140.7403 (5)0.6622 (6)0.07469 (15)0.091 (2)0.814 (7)
F210.0336 (7)0.4759 (8)0.35922 (18)0.158 (3)0.842 (7)
F220.1939 (4)0.4813 (6)0.3256 (2)0.119 (2)0.842 (7)
F230.0673 (6)0.3695 (3)0.25374 (14)0.0692 (13)0.842 (7)
F240.1549 (4)0.3626 (4)0.28576 (17)0.0726 (15)0.842 (7)
F11A1.0580 (17)0.7618 (14)0.0557 (7)0.052 (4)*0.186 (7)
F12A0.9546 (17)0.5648 (14)0.0255 (6)0.047 (4)*0.186 (7)
F13A0.7239 (15)0.5861 (13)0.0454 (6)0.050 (4)*0.186 (7)
F14A0.8245 (15)0.7747 (13)0.0711 (5)0.034 (3)*0.186 (7)
F21A0.101 (3)0.536 (2)0.3607 (10)0.109 (10)*0.158 (7)
F22A0.181 (3)0.441 (2)0.2884 (11)0.085 (8)*0.158 (7)
F23A0.046 (3)0.350 (3)0.2612 (10)0.109 (10)*0.158 (7)
F24A0.1438 (18)0.4247 (16)0.3253 (7)0.053 (5)*0.158 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0235 (2)0.0246 (2)0.0125 (2)0.00785 (19)0.00074 (17)0.00029 (17)
P20.0385 (5)0.0348 (5)0.0220 (4)0.0197 (4)0.0008 (4)0.0015 (3)
S570.0491 (6)0.0324 (5)0.0417 (5)0.0190 (4)0.0104 (4)0.0023 (4)
S590.0818 (9)0.0530 (7)0.0261 (5)0.0199 (6)0.0089 (5)0.0070 (4)
N260.0227 (13)0.0286 (14)0.0195 (12)0.0072 (11)0.0005 (10)0.0015 (10)
N250.0240 (13)0.0232 (13)0.0146 (11)0.0072 (11)0.0014 (10)0.0010 (9)
N240.0276 (14)0.0268 (14)0.0142 (11)0.0119 (11)0.0035 (10)0.0009 (10)
N440.0236 (13)0.0305 (14)0.0168 (12)0.0089 (11)0.0005 (10)0.0027 (10)
N430.0243 (13)0.0264 (13)0.0138 (11)0.0094 (11)0.0011 (10)0.0001 (10)
O450.0565 (16)0.0354 (14)0.0140 (10)0.0181 (12)0.0039 (10)0.0016 (9)
N420.0268 (14)0.0293 (14)0.0190 (12)0.0087 (12)0.0019 (10)0.0028 (11)
O460.0373 (13)0.0344 (13)0.0186 (11)0.0164 (11)0.0013 (9)0.0082 (9)
F160.0635 (16)0.0714 (17)0.0249 (11)0.0347 (14)0.0126 (11)0.0073 (11)
C180.0240 (15)0.0219 (15)0.0183 (14)0.0079 (12)0.0044 (11)0.0017 (11)
C190.0224 (15)0.0261 (16)0.0215 (15)0.0074 (13)0.0012 (12)0.0026 (12)
C310.0234 (15)0.0272 (16)0.0199 (14)0.0100 (13)0.0008 (12)0.0011 (12)
C130.0272 (16)0.0281 (16)0.0168 (14)0.0121 (13)0.0028 (12)0.0000 (12)
C330.0378 (18)0.0287 (17)0.0168 (14)0.0152 (15)0.0036 (13)0.0027 (12)
C140.0226 (15)0.0248 (15)0.0164 (13)0.0088 (12)0.0011 (11)0.0026 (11)
C170.0275 (16)0.0261 (16)0.0217 (15)0.0119 (13)0.0052 (12)0.0001 (12)
C320.0252 (15)0.0286 (16)0.0169 (14)0.0137 (13)0.0016 (11)0.0013 (12)
C160.0307 (17)0.0238 (15)0.0159 (14)0.0064 (13)0.0032 (12)0.0014 (11)
C90.0362 (18)0.0336 (18)0.0184 (15)0.0159 (15)0.0050 (13)0.0004 (13)
C370.0213 (15)0.0315 (17)0.0181 (14)0.0088 (13)0.0014 (11)0.0040 (12)
C360.0261 (16)0.0299 (17)0.0176 (14)0.0140 (13)0.0004 (12)0.0054 (12)
F150.114 (3)0.157 (3)0.0230 (12)0.109 (3)0.0069 (14)0.0119 (16)
C470.041 (2)0.0334 (18)0.0189 (15)0.0163 (16)0.0046 (14)0.0050 (13)
C150.0259 (16)0.0295 (16)0.0136 (13)0.0086 (13)0.0001 (11)0.0004 (11)
C410.0228 (15)0.0321 (17)0.0219 (15)0.0064 (13)0.0021 (12)0.0002 (13)
C490.048 (2)0.0276 (17)0.0184 (15)0.0119 (16)0.0015 (14)0.0037 (13)
C380.0280 (17)0.0393 (19)0.0226 (16)0.0056 (15)0.0007 (13)0.0085 (14)
C480.048 (2)0.0300 (18)0.0173 (15)0.0134 (16)0.0034 (14)0.0044 (13)
C350.0358 (18)0.0358 (18)0.0158 (14)0.0176 (15)0.0057 (13)0.0084 (13)
C510.045 (2)0.0299 (18)0.0228 (16)0.0121 (16)0.0028 (15)0.0008 (13)
C500.049 (2)0.0269 (17)0.0224 (16)0.0132 (16)0.0009 (15)0.0012 (13)
C550.054 (2)0.0324 (19)0.0177 (15)0.0158 (17)0.0007 (15)0.0002 (13)
C540.047 (2)0.0349 (19)0.0197 (15)0.0177 (17)0.0004 (14)0.0005 (13)
C300.0272 (17)0.0329 (18)0.0280 (17)0.0074 (14)0.0044 (13)0.0011 (14)
C400.0262 (17)0.0300 (18)0.0321 (18)0.0018 (14)0.0052 (14)0.0021 (14)
C220.0308 (19)0.051 (2)0.036 (2)0.0142 (17)0.0108 (16)0.0000 (17)
C340.0379 (18)0.0367 (19)0.0136 (14)0.0196 (15)0.0013 (13)0.0009 (13)
C200.0337 (19)0.041 (2)0.0330 (19)0.0190 (16)0.0001 (15)0.0031 (15)
C520.053 (2)0.0364 (19)0.0169 (15)0.0219 (17)0.0020 (15)0.0005 (13)
C230.0299 (18)0.039 (2)0.0241 (16)0.0087 (15)0.0056 (13)0.0002 (14)
C390.0280 (17)0.040 (2)0.0328 (18)0.0009 (15)0.0002 (14)0.0145 (16)
C110.048 (2)0.073 (3)0.0282 (18)0.043 (2)0.0026 (17)0.0008 (18)
C280.0313 (19)0.042 (2)0.038 (2)0.0052 (16)0.0081 (16)0.0136 (17)
C270.0322 (18)0.0372 (19)0.0262 (17)0.0119 (15)0.0071 (14)0.0059 (14)
C530.051 (2)0.0361 (19)0.0158 (14)0.0222 (17)0.0025 (14)0.0001 (13)
C290.0278 (18)0.0326 (19)0.045 (2)0.0007 (15)0.0015 (16)0.0057 (16)
C100.043 (2)0.051 (2)0.0300 (18)0.0319 (19)0.0068 (16)0.0004 (16)
C560.053 (2)0.036 (2)0.0223 (17)0.0064 (18)0.0012 (16)0.0021 (14)
C120.042 (2)0.059 (2)0.0184 (15)0.0299 (19)0.0037 (14)0.0059 (15)
C210.032 (2)0.056 (3)0.051 (2)0.0250 (19)0.0052 (17)0.001 (2)
P610.0407 (6)0.0810 (9)0.0285 (5)0.0035 (6)0.0030 (4)0.0173 (5)
O740.0451 (16)0.0456 (16)0.0392 (15)0.0164 (13)0.0069 (12)0.0011 (12)
C690.046 (2)0.037 (2)0.0200 (16)0.0154 (17)0.0029 (15)0.0003 (14)
F260.098 (3)0.0549 (18)0.115 (3)0.0282 (18)0.057 (2)0.0231 (18)
C600.056 (2)0.0293 (18)0.0264 (17)0.0184 (17)0.0098 (16)0.0022 (14)
O730.082 (3)0.071 (3)0.071 (3)0.023 (2)0.009 (2)0.003 (2)
F250.0511 (19)0.213 (5)0.166 (4)0.017 (2)0.008 (2)0.164 (4)
C680.073 (3)0.033 (2)0.033 (2)0.001 (2)0.010 (2)0.0017 (16)
C700.061 (3)0.037 (2)0.047 (2)0.012 (2)0.002 (2)0.0090 (18)
C710.068 (3)0.052 (3)0.039 (2)0.005 (2)0.004 (2)0.005 (2)
C720.102 (4)0.044 (3)0.052 (3)0.018 (3)0.027 (3)0.007 (2)
F110.159 (6)0.038 (2)0.098 (3)0.046 (3)0.077 (4)0.033 (2)
F120.0390 (18)0.108 (4)0.048 (2)0.0210 (19)0.0088 (15)0.043 (2)
F130.108 (4)0.0299 (17)0.083 (3)0.013 (2)0.012 (3)0.0140 (17)
F140.061 (2)0.189 (6)0.048 (2)0.072 (3)0.0154 (18)0.016 (3)
F210.126 (5)0.260 (8)0.051 (3)0.006 (5)0.048 (3)0.021 (4)
F220.041 (2)0.156 (5)0.118 (5)0.035 (3)0.012 (2)0.009 (4)
F230.111 (4)0.0441 (19)0.058 (2)0.028 (2)0.018 (2)0.0100 (16)
F240.051 (2)0.071 (3)0.084 (3)0.0035 (18)0.0251 (19)0.033 (2)
Geometric parameters (Å, º) top
Mn1—N252.192 (2)C55—C561.525 (5)
Mn1—N432.193 (2)C55—C541.536 (5)
Mn1—N422.226 (3)C55—H55A0.9900
Mn1—N242.266 (3)C55—H55B0.9900
Mn1—N262.270 (3)C54—C531.526 (5)
Mn1—N442.272 (3)C54—H54A0.9900
P2—F11A1.485 (14)C54—H54B0.9900
P2—F14A1.497 (12)C30—C291.384 (5)
P2—F131.564 (3)C30—H300.9500
P2—F141.581 (4)C40—C391.387 (5)
P2—F121.588 (3)C40—H400.9500
P2—F111.590 (4)C22—C211.371 (6)
P2—F161.591 (2)C22—C231.388 (5)
P2—F151.591 (3)C22—H220.9500
P2—F12A1.619 (13)C20—C211.389 (5)
P2—F13A1.667 (13)C20—H200.9500
S57—C691.757 (4)C52—C531.513 (4)
S57—C601.814 (4)C52—H52A0.9900
S59—C711.741 (6)C52—H52B0.9900
S59—C681.797 (4)C23—H230.9500
N26—C231.342 (4)C39—H390.9500
N26—C191.352 (4)C11—C121.381 (5)
N25—C141.344 (4)C11—C101.382 (5)
N25—C181.352 (4)C11—H110.9500
N24—C91.332 (4)C28—C271.381 (5)
N24—C131.357 (4)C28—C291.384 (6)
N44—C411.342 (4)C28—H280.9500
N44—C371.349 (4)C27—H270.9500
N43—C321.345 (4)C53—H53A0.9900
N43—C361.345 (4)C53—H53B0.9900
O45—C341.346 (4)C29—H290.9500
O45—C521.450 (4)C10—H100.9500
N42—C271.345 (4)C56—C681.541 (5)
N42—C311.359 (4)C56—H56A0.9900
O46—C161.352 (4)C56—H56B0.9900
O46—C471.453 (4)C12—H120.9500
C18—C171.383 (4)C21—H210.9500
C18—C191.494 (4)P61—F23A1.41 (2)
C19—C201.387 (5)P61—F211.538 (5)
C31—C301.386 (5)P61—F221.559 (4)
C31—C321.488 (4)P61—F261.569 (3)
C13—C121.392 (5)P61—F22A1.57 (2)
C13—C141.491 (4)P61—F24A1.580 (16)
C33—C341.391 (5)P61—F251.588 (4)
C33—C321.395 (4)P61—F241.601 (3)
C33—H330.9500P61—F231.622 (4)
C14—C151.386 (4)P61—F21A1.71 (2)
C17—C161.394 (4)O74—C691.207 (5)
C17—H170.9500C69—C701.515 (5)
C16—C151.395 (4)C60—H60A0.9900
C9—C101.387 (5)C60—H60B0.9900
C9—H90.9500O73—C711.228 (6)
C37—C381.392 (5)C68—H68A0.9900
C37—C361.490 (5)C68—H68B0.9900
C36—C351.382 (4)C70—H70A0.9800
C47—C481.523 (4)C70—H70B0.9800
C47—H47A0.9900C70—H70C0.9800
C47—H47B0.9900C71—C721.531 (7)
C15—H150.9500C72—H72A0.9800
C41—C401.387 (5)C72—H72B0.9800
C41—H410.9500C72—H72C0.9800
C49—C481.517 (5)F11—F14A0.955 (12)
C49—C501.529 (4)F11—F11A1.584 (16)
C49—H49A0.9900F12—F11A0.880 (15)
C49—H49B0.9900F12—F12A1.582 (15)
C38—C391.384 (5)F13—F12A0.885 (14)
C38—H380.9500F13—F13A1.633 (14)
C48—H48A0.9900F14—F13A1.057 (14)
C48—H48B0.9900F14—F14A1.327 (13)
C35—C341.392 (5)F21—F21A1.23 (3)
C35—H350.9500F21—F24A1.251 (18)
C51—C601.519 (5)F22—F22A1.00 (2)
C51—C501.527 (5)F22—F21A1.48 (3)
C51—H51A0.9900F23—F23A1.04 (3)
C51—H51B0.9900F23—F22A1.34 (3)
C50—H50A0.9900F24—F24A1.158 (18)
C50—H50B0.9900F24—F23A1.24 (3)
N25—Mn1—N43169.40 (10)C21—C22—C23118.4 (3)
N25—Mn1—N42117.30 (10)C21—C22—H22120.8
N43—Mn1—N4272.83 (10)C23—C22—H22120.8
N25—Mn1—N2472.45 (9)O45—C34—C33125.4 (3)
N43—Mn1—N24110.53 (9)O45—C34—C35115.0 (3)
N42—Mn1—N2497.74 (10)C33—C34—C35119.7 (3)
N25—Mn1—N2672.48 (10)C19—C20—C21118.5 (3)
N43—Mn1—N26105.32 (9)C19—C20—H20120.7
N42—Mn1—N2691.66 (10)C21—C20—H20120.7
N24—Mn1—N26144.13 (9)O45—C52—C53105.3 (3)
N25—Mn1—N4497.60 (10)O45—C52—H52A110.7
N43—Mn1—N4472.21 (10)C53—C52—H52A110.7
N42—Mn1—N44145.03 (10)O45—C52—H52B110.7
N24—Mn1—N4494.61 (10)C53—C52—H52B110.7
N26—Mn1—N4497.20 (10)H52A—C52—H52B108.8
F11A—P2—F14A97.2 (8)N26—C23—C22122.7 (3)
F11A—P2—F13119.4 (6)N26—C23—H23118.7
F14A—P2—F13142.4 (6)C22—C23—H23118.7
F11A—P2—F14144.7 (7)C38—C39—C40119.2 (3)
F14A—P2—F1451.0 (5)C38—C39—H39120.4
F13—P2—F1491.5 (3)C40—C39—H39120.4
F11A—P2—F1233.1 (6)C12—C11—C10119.3 (3)
F14A—P2—F12127.8 (5)C12—C11—H11120.3
F13—P2—F1289.8 (2)C10—C11—H11120.3
F14—P2—F12177.1 (2)C27—C28—C29118.0 (3)
F11A—P2—F1161.9 (6)C27—C28—H28121.0
F14A—P2—F1135.9 (5)C29—C28—H28121.0
F13—P2—F11177.6 (3)N42—C27—C28122.9 (3)
F14—P2—F1186.7 (3)N42—C27—H27118.5
F12—P2—F1192.0 (3)C28—C27—H27118.5
F11A—P2—F16101.1 (6)C52—C53—C54113.7 (3)
F14A—P2—F1687.7 (5)C52—C53—H53A108.8
F13—P2—F1693.09 (19)C54—C53—H53A108.8
F14—P2—F1693.31 (18)C52—C53—H53B108.8
F12—P2—F1689.20 (16)C54—C53—H53B108.8
F11—P2—F1688.53 (18)H53A—C53—H53B107.7
F11A—P2—F1578.7 (7)C28—C29—C30120.1 (3)
F14A—P2—F1592.2 (5)C28—C29—H29119.9
F13—P2—F1587.1 (2)C30—C29—H29119.9
F14—P2—F1586.87 (19)C11—C10—C9118.2 (3)
F12—P2—F1590.62 (17)C11—C10—H10120.9
F11—P2—F1591.3 (2)C9—C10—H10120.9
F16—P2—F15179.8 (2)C55—C56—C68109.4 (3)
F11A—P2—F12A91.3 (8)C55—C56—H56A109.8
F14A—P2—F12A168.8 (7)C68—C56—H56A109.8
F13—P2—F12A32.2 (5)C55—C56—H56B109.8
F14—P2—F12A122.6 (6)C68—C56—H56B109.8
F12—P2—F12A59.1 (6)H56A—C56—H56B108.3
F11—P2—F12A149.9 (6)C11—C12—C13119.6 (3)
F16—P2—F12A83.4 (5)C11—C12—H12120.2
F15—P2—F12A96.7 (5)C13—C12—H12120.2
F11A—P2—F13A175.6 (8)C22—C21—C20120.0 (4)
F14A—P2—F13A83.6 (7)C22—C21—H21120.0
F13—P2—F13A60.6 (5)C20—C21—H21120.0
F14—P2—F13A37.9 (5)F23A—P61—F21137.6 (13)
F12—P2—F13A144.6 (6)F23A—P61—F22125.9 (13)
F11—P2—F13A118.2 (5)F21—P61—F2295.8 (3)
F16—P2—F13A74.6 (5)F23A—P61—F2692.4 (13)
F15—P2—F13A105.6 (5)F21—P61—F2693.5 (4)
F12A—P2—F13A87.4 (7)F22—P61—F2692.0 (3)
C69—S57—C60101.76 (19)F23A—P61—F22A89.0 (14)
C71—S59—C68101.9 (2)F21—P61—F22A133.1 (11)
C23—N26—C19118.5 (3)F22—P61—F22A37.3 (9)
C23—N26—Mn1124.5 (2)F26—P61—F22A88.0 (9)
C19—N26—Mn1117.0 (2)F23A—P61—F24A91.1 (13)
C14—N25—C18119.6 (3)F21—P61—F24A47.3 (7)
C14—N25—Mn1120.4 (2)F22—P61—F24A143.0 (7)
C18—N25—Mn1119.82 (19)F26—P61—F24A88.0 (6)
C9—N24—C13118.8 (3)F22A—P61—F24A175.9 (11)
C9—N24—Mn1124.5 (2)F23A—P61—F2586.8 (13)
C13—N24—Mn1116.6 (2)F21—P61—F2587.7 (4)
C41—N44—C37118.4 (3)F22—P61—F2587.7 (3)
C41—N44—Mn1124.4 (2)F26—P61—F25178.8 (3)
C37—N44—Mn1117.2 (2)F22A—P61—F2591.1 (9)
C32—N43—C36119.6 (3)F24A—P61—F2593.0 (6)
C32—N43—Mn1119.8 (2)F23A—P61—F2448.4 (12)
C36—N43—Mn1120.4 (2)F21—P61—F2489.5 (3)
C34—O45—C52118.7 (3)F22—P61—F24173.5 (3)
C27—N42—C31118.6 (3)F26—P61—F2491.3 (2)
C27—N42—Mn1123.7 (2)F22A—P61—F24137.4 (10)
C31—N42—Mn1117.7 (2)F24A—P61—F2442.7 (7)
C16—O46—C47118.5 (3)F25—P61—F2488.84 (19)
N25—C18—C17121.5 (3)F23A—P61—F2339.3 (12)
N25—C18—C19114.9 (3)F21—P61—F23175.7 (3)
C17—C18—C19123.6 (3)F22—P61—F2386.8 (3)
N26—C19—C20121.9 (3)F26—P61—F2389.80 (18)
N26—C19—C18115.2 (3)F22A—P61—F2349.7 (10)
C20—C19—C18122.9 (3)F24A—P61—F23130.2 (7)
N42—C31—C30121.5 (3)F25—P61—F2389.0 (3)
N42—C31—C32115.2 (3)F24—P61—F2387.7 (2)
C30—C31—C32123.3 (3)F23A—P61—F21A174.5 (16)
N24—C13—C12120.9 (3)F21—P61—F21A44.3 (9)
N24—C13—C14115.7 (3)F22—P61—F21A53.8 (9)
C12—C13—C14123.4 (3)F26—P61—F21A82.2 (10)
C34—C33—C32117.8 (3)F22A—P61—F21A89.9 (12)
C34—C33—H33121.1F24A—P61—F21A89.6 (11)
C32—C33—H33121.1F25—P61—F21A98.6 (10)
N25—C14—C15122.3 (3)F24—P61—F21A132.2 (10)
N25—C14—C13114.4 (3)F23—P61—F21A139.2 (10)
C15—C14—C13123.2 (3)O74—C69—C70122.7 (4)
C18—C17—C16118.7 (3)O74—C69—S57124.0 (3)
C18—C17—H17120.6C70—C69—S57113.3 (3)
C16—C17—H17120.6C51—C60—S57113.5 (2)
N43—C32—C33122.3 (3)C51—C60—H60A108.9
N43—C32—C31114.4 (3)S57—C60—H60A108.9
C33—C32—C31123.3 (3)C51—C60—H60B108.9
O46—C16—C17115.6 (3)S57—C60—H60B108.9
O46—C16—C15124.6 (3)H60A—C60—H60B107.7
C17—C16—C15119.8 (3)C56—C68—S59114.6 (3)
N24—C9—C10123.2 (3)C56—C68—H68A108.6
N24—C9—H9118.4S59—C68—H68A108.6
C10—C9—H9118.4C56—C68—H68B108.6
N44—C37—C38121.9 (3)S59—C68—H68B108.6
N44—C37—C36115.4 (3)H68A—C68—H68B107.6
C38—C37—C36122.7 (3)C69—C70—H70A109.5
N43—C36—C35121.4 (3)C69—C70—H70B109.5
N43—C36—C37114.7 (3)H70A—C70—H70B109.5
C35—C36—C37123.9 (3)C69—C70—H70C109.5
O46—C47—C48106.7 (3)H70A—C70—H70C109.5
O46—C47—H47A110.4H70B—C70—H70C109.5
C48—C47—H47A110.4O73—C71—C72123.1 (5)
O46—C47—H47B110.4O73—C71—S59125.3 (4)
C48—C47—H47B110.4C72—C71—S59111.7 (4)
H47A—C47—H47B108.6C71—C72—H72A109.5
C14—C15—C16118.0 (3)C71—C72—H72B109.5
C14—C15—H15121.0H72A—C72—H72B109.5
C16—C15—H15121.0C71—C72—H72C109.5
N44—C41—C40123.0 (3)H72A—C72—H72C109.5
N44—C41—H41118.5H72B—C72—H72C109.5
C40—C41—H41118.5F14A—F11—F11A121.4 (9)
C48—C49—C50111.9 (3)F14A—F11—P266.7 (7)
C48—C49—H49A109.2F11A—F11—P255.8 (5)
C50—C49—H49A109.2F11A—F12—F12A126.5 (11)
C48—C49—H49B109.2F11A—F12—P267.0 (10)
C50—C49—H49B109.2F12A—F12—P261.4 (5)
H49A—C49—H49B107.9F12A—F13—P277.3 (9)
C39—C38—C37119.1 (3)F12A—F13—F13A126.2 (11)
C39—C38—H38120.4P2—F13—F13A62.8 (5)
C37—C38—H38120.4F13A—F14—F14A124.4 (10)
C49—C48—C47114.3 (3)F13A—F14—P275.5 (7)
C49—C48—H48A108.7F14A—F14—P261.2 (5)
C47—C48—H48A108.7F21A—F21—F24A137.9 (15)
C49—C48—H48B108.7F21A—F21—P6175.1 (11)
C47—C48—H48B108.7F24A—F21—P6168.1 (8)
H48A—C48—H48B107.6F22A—F22—F21A136.7 (17)
C36—C35—C34119.2 (3)F22A—F22—P6171.9 (12)
C36—C35—H35120.4F21A—F22—P6168.2 (10)
C34—C35—H35120.4F23A—F23—F22A122.1 (17)
C60—C51—C50111.4 (3)F23A—F23—P6159.0 (13)
C60—C51—H51A109.3F22A—F23—P6163.1 (9)
C50—C51—H51A109.4F24A—F24—F23A125.3 (14)
C60—C51—H51B109.4F24A—F24—P6167.7 (8)
C50—C51—H51B109.3F23A—F24—P6157.6 (11)
H51A—C51—H51B108.0F12—F11A—P280.0 (11)
C51—C50—C49113.3 (3)F12—F11A—F11134.2 (14)
C51—C50—H50A108.9P2—F11A—F1162.3 (6)
C49—C50—H50A108.9F13—F12A—F12126.5 (13)
C51—C50—H50B108.9F13—F12A—P270.5 (9)
C49—C50—H50B108.9F12—F12A—P259.5 (5)
H50A—C50—H50B107.7F14—F13A—F13111.9 (10)
C56—C55—C54114.1 (3)F14—F13A—P266.7 (7)
C56—C55—H55A108.7F13—F13A—P256.6 (4)
C54—C55—H55A108.7F11—F14A—F14144.6 (12)
C56—C55—H55B108.7F11—F14A—P277.4 (8)
C54—C55—H55B108.7F14—F14A—P267.8 (6)
H55A—C55—H55B107.6F21—F21A—F22115.2 (17)
C53—C54—C55110.0 (3)F21—F21A—P6160.6 (10)
C53—C54—H54A109.7F22—F21A—P6158.0 (8)
C55—C54—H54A109.7F22—F22A—F23137.4 (19)
C53—C54—H54B109.7F22—F22A—P6170.8 (12)
C55—C54—H54B109.7F23—F22A—P6167.2 (10)
H54A—C54—H54B108.2F23—F23A—F24155 (2)
C29—C30—C31118.7 (3)F23—F23A—P6181.7 (16)
C29—C30—H30120.6F24—F23A—P6174.0 (13)
C31—C30—H30120.6F24—F24A—F21133.0 (14)
C41—C40—C39118.4 (3)F24—F24A—P6169.6 (8)
C41—C40—H40120.8F21—F24A—P6164.6 (7)
C39—C40—H40120.8

Experimental details

Crystal data
Chemical formula[Mn(C23H25N3O2S)2](PF6)2
Mr1159.94
Crystal system, space groupTriclinic, P1
Temperature (K)122
a, b, c (Å)9.1270 (16), 11.403 (3), 25.822 (2)
α, β, γ (°)96.302 (12), 94.287 (11), 105.312 (14)
V3)2561.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.63 × 0.14 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.717, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
55194, 12876, 9290
Rint0.102
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.185, 1.04
No. of reflections12876
No. of parameters692
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.93, 0.99

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg & Schreurs, 1989–2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Mn1—N252.192 (2)Mn1—N242.266 (3)
Mn1—N432.193 (2)Mn1—N262.270 (3)
Mn1—N422.226 (3)Mn1—N442.272 (3)
N25—Mn1—N43169.40 (10)N43—Mn1—N24110.53 (9)
N43—Mn1—N4272.83 (10)N42—Mn1—N2497.74 (10)
N25—Mn1—N2472.45 (9)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds