Download citation
Download citation
link to html
X-ray diffraction analysis of single crystals of three new arsenates adopting apatite-type structures yielded formula Sr5(AsO4)3F for strontium arsenate fluoride, (I), (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl for strontium barium arsenate chloride, (II), and Cd5(AsO4)3Cl0.58(OH)0.42 for cadmium arsenate hydroxide chloride, (III). All three structures are built up of isolated slightly distorted AsO4 tetra­hedra that are bridged by Sr2+ in (I), by Sr2+/Ba2+ in (II) and by Cd2+ in (III). Compounds (I) and (II) represent typical fluorapatites and chlorapatites, respectively, with F- at the 2a (0, 0, {1 \over 4}) site and Cl- at the 2b (0, 0, 0) site of P63/m. In contrast, in (III), due to the requirement that the smaller Cd2+ cation is positioned closer to the channel Cl- anion (partially substituted by OH-), the anion occupies the unusual 2a (0, 0, {1 \over 4}) site. Therefore, Cl- is similar to F- in (I), coordinated by three A2 cations, unlike the octa­hedrally coordinated Cl- in (II) and other ordinary chlorapatites. Furthermore, in (III), using FT-IR studies, we have inferred the existence of H+ outside the channel in oxyhydroxy­apatites and provided possible atomic coordinates for a H atom in HAsO42-, leading to a proposed formulation of the compound as Cd5(AsO4)3-x(HAsO4)xCl0.58(OH)0.42-x-(y/2)Ox+(y/2)[white square]y/2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108023457/sq3149sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108023457/sq3149Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108023457/sq3149IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108023457/sq3149IIIsup4.hkl
Contains datablock III

Comment top

Minerals of composition Ca5(PO4)3X, where X = OH-, F-, Cl-, CO32- etc., have been investigated for a long time and classified as apatites. The same name has also been used to represent the structural type of compounds with the general formula (A1)2(A2)3(ZO4)3X, where A1 and A2 are distinct crystallographic sites that usually accommodate large divalent (Ca2+, Sr2+, Pb2+, Ba2+, Cd2+ etc.), monovalent (Li+, Na+, K+ etc.) or trivalent (Y3+, La3+, Ce3+, Nd3+, Sm3+ etc.) cations. The Z sites are filled with small highly charged cations (P5+, As5+, V5+, Si4+, S6+ etc.) and the X anion site is occupied by halides, OH- or O2-, CO32-, SO42-, water molecules, vacancies etc. The structure type allows complex chemical substitutions, with the charge balance being achieved by coupled cation substitutions or by the mixing of monovalent and divalent X anions and/or X-site vacancies (Mercier et al., 2005). Natural and synthetic apatite-type materials have applications in geochronology, catalysis, environmental remediation, bone replacement, dentistry and soil treatment. Members of the apatite family are emerging as important immobilization matrices because they can incorporate a range of toxic elements (Baikie et al., 2008). The crystal structures of apatites and related compounds have recently been reviewed (White & ZhiLi, 2003).

The large majority of the compounds belonging to the apatite family are hexagonal. The most common space group is P63/m with Z = 2 and unit-cell contents (A1)4(A2)6(ZO4)6X2. A characteristic feature of the apatite structure type is the presence of channels along the 63 axes, where the X anions are situated. The A1 cations have site symmetry 3 and are located at the 4f Wyckoff position. They are connected to six ZO4 tetrahedra, three of which chelate to A1 while the other three are corner-connected to the cation (Fig. 1). Therefore, the coordination number of A1 is nine with six shorter and three longer bonds to O atoms. The six shorter bonds (three to O1 and three to O2) define a distorted trigonal-prismatic geometry, i.e. a polyhedron that is intermediate between a trigonal prism and an octahedron. Capping the prism faces, three O3 atoms at longer distances are located near the equatorial plane of the tricapped trigonal prism. The (A1)O6 polyhedra share basal trigonal faces to form chains parallel to the c axis. According to a recent contribution (Mercier et al., 2005), the lattice parameter a is determined by the (A1)O6ZO4 polyhedral arrangement. Neighbouring A1- and A2-centred polyhedra are linked through O atoms of the ZO4 tetrahedra. The A2 cations situated in the 6h Wyckoff position are usually coordinated by six O atoms (O1, O2 and four O3) and one or two X anions. The coordination of A2 depends on the identity and atomic position of X. Generally, the 2a site (0, 0, 1/4) is occupied by F- in fluorapatites, while the 2b site (0, 0, 0) is occupied by Cl- in chlorapatites. The F- anion is coordinated by three A2 atoms in a trigonal planar geometry, while the Cl- anion is coordinated by six A2 atoms in a regular octahedral environment. Therefore, when X is a smaller anion such as F- or OH-, the coordination number of A2 is seven, and when X is a larger anion such as Cl-, Br- or I-, the coordination number of A2 is eight. A2 bridges five ZO4 tetrahedra, one of which also has chelating character. According to Mercier et al. (2005), the –A2—O3—Z—O3—A2– chains, located in the channels extending along the hexagonal axis, control the magnitude of the c lattice parameter.

As part of a comprehensive study of the hydrothermal synthesis, crystallography and properties of arsenate and vanadate compounds in the system M1–M2–Z–O–H (M1 = Sr2+, Cd2+, Ba2+, Bi3+, Hg2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+; Z = As5+, V5+), this paper reports the hydrothermal synthesis of three new compounds belonging to the apatite structure type, Sr5(AsO4)3F, (I), (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl, (II), and Cd5(AsO4)3Cl0.58(OH)0.42, (III), which have been characterized chemically, structurally and, for (I) and (III), by FT–IR spectroscopy.

In all three compounds, the A1 atom is coordinated by nine O atoms. The coordination polyhedra have the form of a slightly distorted tricapped trigonal prism. Bond distances in (I) and (III) are similar to those found in Sr5(PO4)3Br (Nötzold & Wulff, 1998), as well as in Cd5(AsO4)3Cl1-2x-y OxxOHy (Johnson et al., 2004) and Cd5(PO4)3Cl (Sudarsanan et al., 1973). In (II), the A1 crystallographic site is jointly occupied by Sr2+ and Ba2+. Due to the presence of 17% Ba2+, which is a larger cation than Sr2+, the A1—O distances are longer than those found in (I).

According to White & ZhiLi (2003), systematic crystallographic changes in apatite-type solid solution series may be described practically as deviations from regular anion nets, with particular focus on the O1—A1—O2 twist angle ϕ projected on (001) of the (A1)O6 prism. Therefore, the coordination polyhedron around A1 can also be described as a disordered trigonal prism with two bases formed by O13 and O23 triangles twisted with respect to one other by an angle of ϕ. For apatites that contain the same A cation, it is shown [Reference?] that ϕ decreases linearly as a function of increasing average ionic radius of the formula and for the idealized fluorapatite [Ca5(PO4)3F] and chlorapatite [Ca5(PO4)3Cl] structures it should be 23.3 and 19.1°, respectively. In the title structures these angles are 22.7, 14.4 and 14.1° for (I), (II) and (III), respectively (Fig. 2). The substitution of larger cations for smaller (As for P, as well as Ba and Sr for Ca) increases the unit-cell volume and decreases the ϕ value. In addition, a further decrease of ϕ is due to mixed ion occupancies in positions A1 and A2 in (II), and X in (III).

The (A2)O6X1,2 polyhedra are basically irregular (Fig. 3). The A2 site is coordinated by O2- and X- anions and its coordination number depends on the individual structures. The Sr2 cations in (I) are coordinated by six O atoms (O1, O2 and four O3) and one F1. The A2 position in (II) is shared by 87% Ba2+ and 13% Sr2+ and the mean A2—O distance is 2.855 Å. The Cd2 atom located on the A2 site in (III) is coordinated by five O atoms and one Cl/O, (Cd2)O2(O3)4(Cl1,O4), with one pair of O3 atoms closer to Cd2 [2.208 (3) Å] than the other pair [2.426 (3) Å]. The sixth O atom is at a long distance [Cd2—O1 = 3.372 (5) Å] and contributes to the bond valence by approximately 2%.

In the channels extending along the c axis, F1- anions occupy the 2a (0, 0, 1/4) position in (I) and are coordinated by three equidistant Sr2 atoms. The Sr2—F1 bond lengths are a little shorter than 2.51 Å, the value calculated from ionic radii (Shannon, 1976), but similar to the value of 2.441 (5) Å found in Sr5(CrO4)3F (Baikie et al., 2007). The F atom in (I) shows an elongated ellipsoid [principal mean square atomic displacements U 0.016 (2), 0.016 (2), 0.083 (5) Å2], with the axis of elongation oriented normal to the F1(Sr2)3 plane, which suggests a statistical positional disorder and a potential splitting of this position.

In (II), the Cl1- anion, located at 2b (0, 0, 0), is coordinated by six A2 atoms. The Cl1(A2)6 coordination is a regular octahedron with a Cl1—A2 distance of 3.2298 (5) Å, which agrees well with the calculated Cl—Ba distance of 3.23 Å, as well as with the Cl—Ba distance of 3.230 (1) Å found in Ba5(PO4)3Cl (Hata et al., 1979).

In (III), atoms Cl1 and O4 share the same 2a (0, 0, 1/4) position with refined occupancies of 0.58 (1) and 0.42 (1), respectively, which results in the formula Cd5(AsO4)3Cl0.58(OH)0.42 (Fig. 4). The bond-valence analysis of the X site in (III) showed an almost ideal value (1.02 v.u.), contrary to the value of 1.29 v.u. found for the X position fully occupied by Cl (Johnson et al., 2004). The incorporation of the smaller OH- group at this anion site is reflected by the short XX distance (observed 3.26 Å versus calculated 3.62 Å for the sum of Cl- + Cl- ionic radii, and 3.21 Å for the sum of Cl- + O2- ionic radii). Similar to the H positions in Ca10(PO4)6-x(HPO4)x(OH)yOz (Arcos et al., 2004), we located and included atom H4 in the refinement as a riding atom at the same occupancy as the attached O4 atom and with a restrained distance to O4. If the amount of hydrogen bonding in the channel were 100%, the results of the structure refinement would show that approximately 2/3 Cl1 receives one hydrogen bond. If atom O4 in the structure of (III) was interpreted as an oxide, not as a hydroxide, then the charge balance would lead to the creation of vacancies in the 2a (0, 0, 1/4) position and/or additional OH- groups somewhere else in the structure.

The somewhat longer As1—O2 bond distance of 1.706 (4) Å, together with a broad band of low intensity at approximately 3491 cm-1 in the IR spectrum, which correlates with an Oh—H···O distance of 2.95 Å, also suggest that at least a small portion of the (As1)O4 tetrahedra may be protonated. The O—As1—O angles are consistent with this interpretation. Compared with the ideal tetrahedral angle of 109.47°, two O—As1—O angles are smaller [103.3 (2)–105.73 (15)°] and two are larger [111.0 (2)–115.09 (14)°]. Similar crystal chemical behaviour was found for protonated phosphates (Baur, 1974). This theory is also in accordance with the bond valences (Brese & O'Keeffe, 1991).

Considering only the contributions of Cd and As, atom O2 is under-saturated (1.74 v.u.), as is characteristic of donor O atoms of hydroxyl groups involved in hydrogen bonds with O—O distances > 2.90 Å. Therefore, the most probable formula for (III) is Cd5(AsO4)3-x(HAsO4)x Cl0.58(OH)0.42-xOx. Because the possibility of additional minor vacancies at the 2a site (2OH- O2– + □) cannot be excluded, the formula of (III) is finally proposed to be Cd5(AsO4)3-x(HAsO4)xCl0.58 (OH)0.42-x-(y/2)Ox+(y/2)y/2.

A feature was observed in the difference map at approximately x = 0.70, y = 0.50 and z = 0.25 that could be interpreted as an H atom belonging to the partly protonated (As1O4)3- group [O2—O2i = 2.970 (2) Å; symmetry code: (i) -y + 1, x - y, z]. However, because of the low scattering power of the H atoms it was impossible to determine partial occupancies from the X-ray data. Therefore, we did not attempt to include this H atom in the refinement.

Experimental top

Single crystals of Sr5(AsO4)3F, (I), (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl, (II), and Cd5(AsO4)3Cl0.58(OH)0.42, (III), were obtained as reaction products from mixtures of Sr(OH)2.8H2O (Merck, >97%), Co(OH)2 (Alfa Products) and As2O5 (Alfa Products, >99.9%) for (I); Ba(OH)2.8H2O (Mallinckrodt, >97%), Co(OH)2 and As2O5 for (II); and Cd(OH)2 (Alfa Products), Cu powder, and 3As2O5.5H2O (Merck, 99%) for (III) [Mole ratios of mixtures?]. The mixtures were transferred into Teflon vessels and filled to approximately 70% of their inner volume with distilled water. Finally, they were enclosed in stainless steel autoclaves. The subsequently determined presence of F in (I), Sr and Cl in (II) and Cl in (III) is caused by either impurities from the chemicals themselves or from residual impurities in the Teflon vessels, or by extraction of F- from the Teflon vessels by the hydrothermal fluid.

The mixture for (I) was heated under autogeneous pressure from 293 to 493 K (4 h), held at this temperature (48 h), cooled to 423 K (10 h), kept at this temperature (10 h), cooled to 373 K (10 h), kept at this temperature (10 h), and finally cooled to room temperature (10 h). Compound (I) crystallizes as colourless prismatic crystals up to 0.11 mm in length, together with a volumetrically similar quantity of pink prismatic crystals of SrCo(AsO4)(OH) (Brese & O'Keeffe, 1991). The mixture for (II) was heated under autogeneous pressure from room temperature to 493 K [In how many hours?], held at that temperature for 6 d and slowly cooled to room temperature overnight. Compound (II) crystallizes as colourless prismatic crystals up to 0.12 mm in length, accompanied by a greater quantity of hexagonal tabular dark-pink crystals of BaCo2(AsO4)2 (Mihajlović, 2005). The mixture for (III) was heated under autogeneous pressure from room temperature to 493 K [In how many hours?], held at that temperature for 4 d and spontaneously cooled to room temperature. Compound (III) crystallizes as colourless transparent prismatic crystals up to 0.20 mm in length, together with pink prismatic crystals of CdCo(AsO4)(OH) (Brese & O'Keeffe, 1991) and Co1-x(OH)3(AsO4H2x/3)(HAsO4) (Hughes et al., 2003). All reaction products were filtered, washed thoroughly with distilled water and dried in air at room temperature.

Qualitative chemical analyses performed using a Jeol JSM-6400LV scanning electron microscope (SEM) connected to a LINK energy-dispersive X-ray analysis (EDX) unit confirmed the presence of Sr and As in (I), Ba, Sr, As and Cl in (II), and Cd, As and Cl in (III). The sensitivity of the instrument did not allow F in (I) to be observed.

In order to investigate the water content of compounds (I) and (III), polarized single-crystal FT–IR spectra in the range 4000–400 cm-1 were recorded on a Bruker Tensor 27 spectrophotometer coupled with a Hyperion microscope. The presence of hydrogen bonding can be detected by IR spectroscopy in the domains of the OH- stretching modes. As expected for an OH-free apatite, OH- stretching bands were not observed for (I), while for (III) OH- stretching vibrations at approximately 3715, 3437, 3414, 3405 and 3396 cm-1 were observed when the polarization beam was parallel to the elongation of the crystal (Fig. 5). In the spectrum, a high-wavenumber band of low intensity is observed at 3491 cm-1, which may be attributed to the stretching vibration of an (HAsO4)2- unit. According to dν correlations for hydrogen bonds (Libowitzky, 1999), the OH- stretching vibrations around 3490 cm-1 correlate with Oh—H···O interactions of ~2.95 Å. It is quite characteristic that O—H stretching bands can only be observed in one of the polarized spectra, whereas they are absent in the other polarization directions (when elongation of the crystal was perpendicular to the polarization of the beam). The orientation dependence is caused by the preferred orientation of the OH- groups (O—H vectors) in the crystal structure. Broadening bands attributed to absorbed water were also observed at about 3330 and 1650 cm-1. Due to the strong absorption and the small amount of sample, bands under 1000 cm-1 could not be analyzed. Crystals of (II) were not investigated by FT–IR spectroscopy, because chemical analyses and structure refinements indicate that the X site is fully occupied by Cl-.

Refinement top

The refinements were started from the reported parameters of fluorapatite and chlorapatite (White & ZhiLi, 2003). In (II), a substitutional disorder was apparent and the occupancies of Ba2+ and Sr2+ in both the A1 and A2 positions were refined, keeping the occupancy sum of Ba1+Sr1 fixed at 4 and Ba2+Sr2 fixed at 6 atoms per unit cell to satisfy the charge balance. The atomic coordinates and displacement parameters of Ba1 and Sr1 and of Ba2 and Sr2 were kept equal. Occupancy factors of 0.17 (1) and 0.83 (1) for Ba1 and Sr1, and 0.87 (1) and 0.13 (1) for Ba2 and Sr2, respectively, were obtained. A similar procedure was applied for Cl1 and O4 which both occupy the X site in (III). In this structure, Cl1 [0.58 (1)] and O4 [0.42 (1)] were found at the same (0, 0, 1/4) position and their sum was fixed at 2 atoms per unit cell. Occupancy refinements of the F1 (X) site in (I) gave a value of 100%, which, along with the FT–IR spectrum (see above), confirm that no (or only negligible) OH is located on this site.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of apatite-type compounds.
[Figure 2] Fig. 2. Metaprism twist angles in the A1-centred polyhedra of (I) (left), (II) (centre) and (III) (right). [Symmetry codes: (i) -x + y, -x + 1, z; (ii) -y + 1, x - y + 1, z; (iii) x - y, x, -z; (iv) y, -x + y + 1, -z; (v) -x + 1, -y + 1, -z].
[Figure 3] Fig. 3. Coordination polyhedra around the A2 site in (I) (left), (II) (centre) and (III) (right). [Symmetry codes: (i) -x + y, -x + 1, z; (ii) -y + 1, x - y + 1, z; (iii) x - y, x, -z; (iv) y, -x + y + 1, -z; (v) x, y + 1, z; (vi) y, -x + y + 1, z + 1/2; (vii) x, y + 1, -z + 1/2; (viii) -x, -y + 1, z + 1/2; (ia) -x + y, -x, z; (iia) -y + 1, x - y, z; (iva) y, -x + y, -z; (via) y, -x + y, z + 1/2; (viia) x, y, -z + 1/2].
[Figure 4] Fig. 4. Coordination environment of the X site in (I) (left), (II) (centre) and (III) (right). [Symmetry codes: (i) -x + y - 1, -x, z; (ii) -y + 1, x - y + 1, z; (iii) x, y - 1, z; (iv) y - 1, -x + y - 1, -z; (v) -x, -y + 1, -z; (vi) x - y + 1, x, -z; (vii) -x + y + 1, -x, z; (viii) -y + 1, x - y, z].
[Figure 5] Fig. 5. Polarized single-crystal FTIR spectra of (I) (bold) and (III).
(I) strontium arsenate fluoride top
Crystal data top
Sr5(AsO4)3FDx = 4.545 Mg m3
Mr = 873.86Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 3683 reflections
Hall symbol: -P 6cθ = 1.0–30.0°
a = 9.990 (1) ŵ = 28.51 mm1
c = 7.395 (1) ÅT = 294 K
V = 639.15 (13) Å3Prismatic, colourless
Z = 20.09 × 0.04 × 0.02 mm
F(000) = 788
Data collection top
Nonius KappaCCD
diffractometer
438 independent reflections
Radiation source: fine-focus sealed X-ray tube421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.6°, θmin = 2.4°
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
h = 1212
Tmin = 0.263, Tmax = 0.567k = 1212
4782 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0152P)2 + 1.2009P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.59 e Å3
438 reflectionsΔρmin = 0.53 e Å3
40 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0023 (3)
Crystal data top
Sr5(AsO4)3FZ = 2
Mr = 873.86Mo Kα radiation
Hexagonal, P63/mµ = 28.51 mm1
a = 9.990 (1) ÅT = 294 K
c = 7.395 (1) Å0.09 × 0.04 × 0.02 mm
V = 639.15 (13) Å3
Data collection top
Nonius KappaCCD
diffractometer
438 independent reflections
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
421 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 0.567Rint = 0.036
4782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01740 parameters
wR(F2) = 0.0370 restraints
S = 1.22Δρmax = 0.59 e Å3
438 reflectionsΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.33330.66670.00132 (7)0.01060 (17)
Sr20.23777 (5)0.98886 (5)0.25000.01059 (15)
As10.40023 (5)0.37000 (5)0.25000.00793 (16)
O10.3236 (4)0.4861 (4)0.25000.0138 (7)
O20.5940 (4)0.4701 (4)0.25000.0159 (7)
O30.3438 (3)0.2541 (3)0.0688 (3)0.0202 (6)
F10.00000.00000.25000.0387 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0126 (2)0.0126 (2)0.0067 (3)0.00628 (10)0.0000.000
Sr20.0121 (2)0.0095 (2)0.0096 (2)0.00497 (18)0.0000.000
As10.0086 (3)0.0081 (2)0.0077 (2)0.00463 (18)0.0000.000
O10.0193 (17)0.0125 (16)0.0158 (17)0.0124 (14)0.0000.000
O20.0090 (16)0.0115 (16)0.0262 (19)0.0043 (14)0.0000.000
O30.0365 (15)0.0164 (12)0.0127 (12)0.0170 (11)0.0120 (11)0.0074 (10)
F10.0163 (17)0.0163 (17)0.083 (5)0.0082 (8)0.0000.000
Geometric parameters (Å, º) top
Sr1—O1i2.543 (2)Sr2—Sr1ix4.2103 (6)
Sr1—O1ii2.543 (2)As1—O31.674 (2)
Sr1—O12.543 (2)As1—O3ix1.674 (2)
Sr1—O2iii2.616 (2)As1—O21.677 (3)
Sr1—O2iv2.616 (2)As1—O11.680 (3)
Sr1—O2v2.616 (2)As1—Sr2x3.3094 (7)
Sr1—O3iv2.957 (3)As1—Sr1xi3.4129 (5)
Sr1—O3iii2.957 (3)As1—Sr1v3.4129 (5)
Sr1—O3v2.957 (3)As1—Sr2ii3.4453 (7)
Sr1—As1iii3.4129 (5)As1—Sr2i3.7290 (7)
Sr1—As1iv3.4129 (5)As1—Sr1ix3.8200 (6)
Sr1—As1v3.4129 (5)O1—Sr1ix2.543 (2)
Sr2—F1vi2.4328 (5)O1—Sr2ii2.821 (3)
Sr2—O3vii2.515 (2)O2—Sr2i2.530 (3)
Sr2—O3iv2.515 (2)O2—Sr1xi2.616 (2)
Sr2—O2ii2.530 (3)O2—Sr1v2.616 (2)
Sr2—O3viii2.671 (2)O3—Sr2xii2.515 (2)
Sr2—O3vi2.671 (2)O3—Sr2x2.671 (2)
Sr2—O1i2.821 (3)O3—Sr1v2.957 (3)
Sr2—As1vi3.3094 (7)F1—Sr2xiii2.4328 (5)
Sr2—As1i3.4453 (7)F1—Sr2ii2.4328 (5)
Sr2—As1ii3.7290 (7)F1—Sr2x2.4328 (5)
O1i—Sr1—O1ii73.48 (8)O3vii—Sr2—As1ii78.81 (6)
O1i—Sr1—O173.48 (8)O3iv—Sr2—As1ii78.81 (6)
O1ii—Sr1—O173.48 (8)O2ii—Sr2—As1ii21.99 (7)
O1i—Sr1—O2iii93.76 (7)O3viii—Sr2—As1ii90.95 (6)
O1ii—Sr1—O2iii154.24 (10)O3vi—Sr2—As1ii90.95 (6)
O1—Sr1—O2iii125.12 (9)O1i—Sr2—As1ii78.84 (6)
O1i—Sr1—O2iv125.12 (9)As1vi—Sr2—As1ii89.361 (17)
O1ii—Sr1—O2iv93.76 (7)As1i—Sr2—As1ii107.803 (17)
O1—Sr1—O2iv154.24 (10)F1vi—Sr2—Sr1129.401 (12)
O2iii—Sr1—O2iv75.09 (8)O3vii—Sr2—Sr195.50 (6)
O1i—Sr1—O2v154.24 (10)O3iv—Sr2—Sr143.72 (6)
O1ii—Sr1—O2v125.12 (9)O2ii—Sr2—Sr176.44 (6)
O1—Sr1—O2v93.76 (7)O3viii—Sr2—Sr1148.06 (6)
O2iii—Sr1—O2v75.09 (8)O3vi—Sr2—Sr1114.22 (5)
O2iv—Sr1—O2v75.09 (8)O1i—Sr2—Sr136.01 (4)
O1i—Sr1—O3iv68.56 (8)As1vi—Sr2—Sr1135.346 (12)
O1ii—Sr1—O3iv88.08 (9)As1i—Sr2—Sr158.857 (9)
O1—Sr1—O3iv141.19 (8)As1ii—Sr2—Sr157.136 (8)
O2iii—Sr1—O3iv66.28 (8)F1vi—Sr2—Sr1ix129.401 (12)
O2iv—Sr1—O3iv57.64 (8)O3vii—Sr2—Sr1ix43.72 (6)
O2v—Sr1—O3iv124.33 (7)O3iv—Sr2—Sr1ix95.50 (6)
O1i—Sr1—O3iii88.08 (9)O2ii—Sr2—Sr1ix76.44 (6)
O1ii—Sr1—O3iii141.19 (8)O3viii—Sr2—Sr1ix114.22 (5)
O1—Sr1—O3iii68.56 (8)O3vi—Sr2—Sr1ix148.06 (6)
O2iii—Sr1—O3iii57.64 (8)O1i—Sr2—Sr1ix36.01 (4)
O2iv—Sr1—O3iii124.33 (7)As1vi—Sr2—Sr1ix135.346 (12)
O2v—Sr1—O3iii66.28 (8)As1i—Sr2—Sr1ix58.857 (9)
O3iv—Sr1—O3iii117.00 (3)As1ii—Sr2—Sr1ix57.136 (8)
O1i—Sr1—O3v141.19 (8)Sr1—Sr2—Sr1ix51.798 (16)
O1ii—Sr1—O3v68.56 (8)O3—As1—O3ix106.40 (17)
O1—Sr1—O3v88.08 (9)O3—As1—O2107.56 (11)
O2iii—Sr1—O3v124.33 (7)O3ix—As1—O2107.56 (11)
O2iv—Sr1—O3v66.28 (8)O3—As1—O1111.44 (10)
O2v—Sr1—O3v57.64 (8)O3ix—As1—O1111.44 (10)
O3iv—Sr1—O3v117.00 (3)O2—As1—O1112.15 (16)
O3iii—Sr1—O3v117.00 (3)O3—As1—Sr2x53.30 (8)
O1i—Sr1—As1iii94.19 (6)O3ix—As1—Sr2x53.30 (8)
O1ii—Sr1—As1iii166.40 (5)O2—As1—Sr2x116.24 (11)
O1—Sr1—As1iii97.83 (7)O1—As1—Sr2x131.61 (11)
O2iii—Sr1—As1iii28.58 (7)O3—As1—Sr1xi111.89 (8)
O2iv—Sr1—As1iii98.16 (6)O3ix—As1—Sr1xi60.05 (9)
O2v—Sr1—As1iii64.87 (7)O2—As1—Sr1xi48.27 (8)
O3iv—Sr1—As1iii92.77 (5)O1—As1—Sr1xi136.35 (7)
O3iii—Sr1—As1iii29.37 (5)Sr2x—As1—Sr1xi80.599 (11)
O3v—Sr1—As1iii122.47 (5)O3—As1—Sr1v60.05 (9)
O1i—Sr1—As1iv97.83 (7)O3ix—As1—Sr1v111.89 (8)
O1ii—Sr1—As1iv94.19 (6)O2—As1—Sr1v48.27 (8)
O1—Sr1—As1iv166.40 (5)O1—As1—Sr1v136.35 (7)
O2iii—Sr1—As1iv64.87 (7)Sr2x—As1—Sr1v80.599 (11)
O2iv—Sr1—As1iv28.58 (7)Sr1xi—As1—Sr1v65.988 (19)
O2v—Sr1—As1iv98.16 (6)O3—As1—Sr2ii80.01 (9)
O3iv—Sr1—As1iv29.37 (5)O3ix—As1—Sr2ii80.01 (9)
O3iii—Sr1—As1iv122.47 (5)O2—As1—Sr2ii166.59 (11)
O3v—Sr1—As1iv92.77 (5)O1—As1—Sr2ii54.44 (11)
As1iii—Sr1—As1iv93.164 (13)Sr2x—As1—Sr2ii77.164 (17)
O1i—Sr1—As1v166.40 (5)Sr1xi—As1—Sr2ii139.980 (11)
O1ii—Sr1—As1v97.83 (7)Sr1v—As1—Sr2ii139.980 (12)
O1—Sr1—As1v94.19 (6)O3—As1—Sr2i122.77 (9)
O2iii—Sr1—As1v98.16 (6)O3ix—As1—Sr2i122.77 (9)
O2iv—Sr1—As1v64.87 (7)O1—As1—Sr2i77.76 (11)
O2v—Sr1—As1v28.58 (7)Sr2x—As1—Sr2i150.639 (17)
O3iv—Sr1—As1v122.47 (5)Sr1xi—As1—Sr2i74.871 (10)
O3iii—Sr1—As1v92.77 (5)Sr1v—As1—Sr2i74.871 (10)
O3v—Sr1—As1v29.37 (5)Sr2ii—As1—Sr2i132.197 (17)
As1iii—Sr1—As1v93.164 (13)O3—As1—Sr1ix142.47 (8)
As1iv—Sr1—As1v93.164 (13)O3ix—As1—Sr1ix91.26 (8)
F1vi—Sr2—O3vii103.38 (6)O2—As1—Sr1ix97.74 (10)
F1vi—Sr2—O3iv103.38 (6)Sr2x—As1—Sr1ix135.826 (12)
O3vii—Sr2—O3iv139.15 (12)Sr1xi—As1—Sr1ix105.633 (9)
F1vi—Sr2—O2ii150.23 (7)Sr1v—As1—Sr1ix142.540 (13)
O3vii—Sr2—O2ii85.91 (6)Sr2ii—As1—Sr1ix70.617 (10)
O3iv—Sr2—O2ii85.91 (6)Sr2i—As1—Sr1ix67.785 (9)
F1vi—Sr2—O3viii82.33 (6)O3—As1—Sr191.26 (8)
O3vii—Sr2—O3viii77.52 (5)O3ix—As1—Sr1142.47 (8)
O3iv—Sr2—O3viii136.41 (9)O2—As1—Sr197.74 (10)
O2ii—Sr2—O3viii72.03 (8)Sr2x—As1—Sr1135.826 (12)
F1vi—Sr2—O3vi82.33 (6)Sr1xi—As1—Sr1142.540 (13)
O3vii—Sr2—O3vi136.41 (9)Sr1v—As1—Sr1105.633 (9)
O3iv—Sr2—O3vi77.52 (5)Sr2ii—As1—Sr170.617 (10)
O2ii—Sr2—O3vi72.03 (8)Sr2i—As1—Sr167.785 (9)
O3viii—Sr2—O3vi60.24 (10)Sr1ix—As1—Sr157.555 (17)
F1vi—Sr2—O1i108.94 (6)As1—O1—Sr1ix128.37 (8)
O3vii—Sr2—O1i71.21 (6)As1—O1—Sr1128.37 (8)
O3iv—Sr2—O1i71.20 (6)Sr1ix—O1—Sr192.62 (10)
O2ii—Sr2—O1i100.83 (10)As1—O1—Sr2ii96.59 (13)
O3viii—Sr2—O1i148.39 (6)Sr1ix—O1—Sr2ii103.28 (9)
O3vi—Sr2—O1i148.39 (6)Sr1—O1—Sr2ii103.28 (9)
F1vi—Sr2—As1vi82.863 (13)As1—O2—Sr2i123.61 (16)
O3vii—Sr2—As1vi106.73 (6)As1—O2—Sr1xi103.15 (11)
O3iv—Sr2—As1vi106.73 (6)Sr2i—O2—Sr1xi115.37 (9)
O2ii—Sr2—As1vi67.37 (7)As1—O2—Sr1v103.15 (11)
O3viii—Sr2—As1vi30.16 (5)Sr2i—O2—Sr1v115.37 (9)
O3vi—Sr2—As1vi30.16 (5)Sr1xi—O2—Sr1v90.56 (10)
O1i—Sr2—As1vi168.20 (6)As1—O3—Sr2xii141.35 (12)
F1vi—Sr2—As1i79.973 (13)As1—O3—Sr2x96.53 (11)
O3vii—Sr2—As1i77.47 (5)Sr2xii—O3—Sr2x117.14 (9)
O3iv—Sr2—As1i77.47 (5)As1—O3—Sr1v90.59 (10)
O2ii—Sr2—As1i129.79 (7)Sr2xii—O3—Sr1v100.27 (9)
O3viii—Sr2—As1i144.92 (5)Sr2x—O3—Sr1v101.06 (7)
O3vi—Sr2—As1i144.92 (5)Sr2xiii—F1—Sr2ii120.0
O1i—Sr2—As1i28.97 (6)Sr2xiii—F1—Sr2x120.0
As1vi—Sr2—As1i162.836 (17)Sr2ii—F1—Sr2x120.0
F1vi—Sr2—As1ii172.224 (18)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) xy, x, z; (iv) y, x+y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) y, x+y+1, z+1/2; (viii) x, y+1, z+1/2; (ix) x, y, z+1/2; (x) x, y1, z; (xi) x+1, y+1, z+1/2; (xii) xy+1, x, z; (xiii) x+y1, x, z.
(II) strontium barium arsenate chloride top
Crystal data top
(Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3ClDx = 4.897 Mg m3
Mr = 1036.98Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63/mCell parameters from 1387 reflections
Hall symbol: -P 6cθ = 1.0–30.0°
a = 10.390 (1) ŵ = 22.95 mm1
c = 7.575 (2) ÅT = 294 K
V = 708.2 (2) Å3Prismatic, colourless
Z = 20.09 × 0.04 × 0.04 mm
F(000) = 910
Data collection top
Nonius KappaCCD
diffractometer
455 independent reflections
Radiation source: fine-focus sealed X-ray tube422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
h = 1212
Tmin = 0.344, Tmax = 0.401k = 1212
1672 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0233P)2 + 4.1931P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.82 e Å3
455 reflectionsΔρmin = 0.70 e Å3
42 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0009 (2)
Crystal data top
(Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3ClZ = 2
Mr = 1036.98Mo Kα radiation
Hexagonal, P63/mµ = 22.95 mm1
a = 10.390 (1) ÅT = 294 K
c = 7.575 (2) Å0.09 × 0.04 × 0.04 mm
V = 708.2 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
455 independent reflections
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
422 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.401Rint = 0.016
1672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02042 parameters
wR(F2) = 0.0490 restraints
S = 1.11Δρmax = 0.82 e Å3
455 reflectionsΔρmin = 0.70 e Å3
Special details top

Experimental. # DATA COLLECTION INFORMATION

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.33330.66670.00205 (10)0.0177 (3)0.830 (10)
Ba10.33330.66670.00205 (10)0.0177 (3)0.169 (10)
Ba20.24448 (5)0.98591 (5)0.25000.0174 (2)0.871 (11)
Sr20.24448 (5)0.98591 (5)0.25000.0174 (2)0.129 (11)
As10.41242 (8)0.37889 (8)0.25000.0143 (3)
O10.3507 (6)0.5015 (6)0.25000.0267 (14)
O20.5991 (6)0.4661 (6)0.25000.0323 (15)
O30.3574 (6)0.2700 (5)0.0719 (6)0.0445 (13)
Cl10.00000.00000.00000.0276 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0196 (4)0.0196 (4)0.0138 (5)0.00981 (18)0.0000.000
Ba10.0196 (4)0.0196 (4)0.0138 (5)0.00981 (18)0.0000.000
Ba20.0178 (3)0.0183 (3)0.0161 (3)0.0090 (2)0.0000.000
Sr20.0178 (3)0.0183 (3)0.0161 (3)0.0090 (2)0.0000.000
As10.0139 (4)0.0130 (4)0.0158 (5)0.0066 (3)0.0000.000
O10.038 (3)0.028 (3)0.026 (3)0.025 (3)0.0000.000
O20.017 (3)0.020 (3)0.064 (5)0.012 (3)0.0000.000
O30.075 (3)0.035 (2)0.033 (3)0.034 (3)0.033 (3)0.022 (2)
Cl10.0305 (11)0.0305 (11)0.0219 (17)0.0153 (6)0.0000.000
Geometric parameters (Å, º) top
Sr1—O1i2.611 (4)O1—O22.783 (8)
Sr1—O1ii2.611 (4)O1—O32.789 (6)
Sr1—O12.611 (4)O1—O3x2.789 (6)
Sr1—O2iii2.647 (4)O1—Sr2i3.127 (6)
Sr1—O2iv2.647 (4)O1—Ba2i3.127 (6)
Sr1—O2v2.647 (4)O1—O1i3.141 (9)
Sr1—O3iv2.993 (6)O1—O1ii3.141 (9)
Sr1—O3iii2.993 (6)O2—Sr2ii2.604 (6)
Sr1—O3v2.993 (6)O2—Ba2ii2.604 (6)
Sr1—As1iii3.4782 (8)O2—Ba1v2.647 (4)
Sr1—As1iv3.4782 (8)O2—Sr1v2.647 (4)
Sr1—As1v3.4782 (8)O2—Ba1xii2.647 (4)
Ba2—O2i2.604 (6)O2—Sr1xii2.647 (4)
Ba2—O3iv2.607 (4)O2—O32.676 (7)
Ba2—O3vi2.607 (4)O2—O3x2.676 (7)
Ba2—O3vii2.906 (5)O2—O3xiv3.133 (7)
Ba2—O3viii2.906 (5)O2—O3xv3.133 (7)
Ba2—O1ii3.127 (6)O3—Sr2xvi2.607 (4)
Ba2—Cl1viii3.2298 (5)O3—Ba2xvi2.607 (4)
Ba2—Cl1ix3.2298 (5)O3—O3x2.698 (9)
Ba2—As1viii3.5484 (9)O3—Sr2xiii2.906 (5)
Ba2—O1i3.568 (6)O3—Ba2xiii2.906 (5)
Ba2—As1ii3.6766 (9)O3—Sr1v2.993 (6)
Ba2—As1i3.6908 (9)O3—Ba1v2.993 (6)
As1—O31.668 (4)O3—O2xi3.133 (7)
As1—O3x1.668 (4)O3—Cl13.397 (5)
As1—O21.681 (5)Cl1—Sr2xvii3.2298 (5)
As1—O11.688 (5)Cl1—Ba2xvii3.2298 (5)
As1—O2xi3.368 (5)Cl1—Sr2i3.2298 (5)
As1—Sr1xii3.4782 (8)Cl1—Ba2i3.2298 (5)
As1—Ba1xii3.4782 (8)Cl1—Ba2xiii3.2298 (5)
As1—Sr1v3.4782 (8)Cl1—Sr2xiii3.2298 (5)
As1—Ba1v3.4782 (8)Cl1—Ba2xviii3.2298 (5)
As1—Ba2xiii3.5484 (9)Cl1—Sr2xviii3.2298 (5)
As1—Sr2xiii3.5484 (9)Cl1—Sr2xix3.2298 (5)
As1—Ba2i3.6766 (9)Cl1—Ba2xix3.2298 (5)
O1—Ba1x2.611 (4)Cl1—Sr2xvi3.2298 (5)
O1—Sr1x2.611 (4)Cl1—Ba2xvi3.2298 (5)
O1i—Sr1—O1ii73.95 (13)Sr1x—O1—Sr2i96.52 (15)
O1i—Sr1—O173.95 (13)Sr1—O1—Sr2i96.52 (15)
O1ii—Sr1—O173.95 (13)O2—O1—Sr2i129.1 (2)
O1i—Sr1—O2iii148.82 (17)O3—O1—Sr2i78.69 (18)
O1ii—Sr1—O2iii93.03 (12)O3x—O1—Sr2i78.69 (18)
O1—Sr1—O2iii130.41 (16)As1—O1—Ba2i94.8 (2)
O1i—Sr1—O2iv93.03 (12)Ba1x—O1—Ba2i96.52 (15)
O1ii—Sr1—O2iv130.41 (16)Sr1x—O1—Ba2i96.52 (15)
O1—Sr1—O2iv148.82 (17)Sr1—O1—Ba2i96.52 (15)
O2iii—Sr1—O2iv73.72 (13)O2—O1—Ba2i129.1 (2)
O1i—Sr1—O2v130.41 (16)O3—O1—Ba2i78.69 (18)
O1ii—Sr1—O2v148.82 (17)O3x—O1—Ba2i78.69 (18)
O1—Sr1—O2v93.03 (12)As1—O1—O1i135.7 (4)
O2iii—Sr1—O2v73.72 (13)Ba1x—O1—O1i53.02 (7)
O2iv—Sr1—O2v73.72 (13)Sr1x—O1—O1i53.02 (7)
O1i—Sr1—O3iv81.94 (14)Sr1—O1—O1i53.02 (7)
O1ii—Sr1—O3iv74.42 (14)O2—O1—O1i101.5 (3)
O1—Sr1—O3iv144.38 (12)O3—O1—O1i141.6 (2)
O2iii—Sr1—O3iv67.16 (15)O3x—O1—O1i141.6 (2)
O2iv—Sr1—O3iv56.26 (14)Sr2i—O1—O1i129.4 (2)
O2v—Sr1—O3iv122.59 (12)Ba2i—O1—O1i129.4 (2)
O1i—Sr1—O3iii144.38 (12)As1—O1—O1ii164.3 (4)
O1ii—Sr1—O3iii81.94 (14)Ba1x—O1—O1ii53.02 (7)
O1—Sr1—O3iii74.42 (14)Sr1x—O1—O1ii53.02 (7)
O2iii—Sr1—O3iii56.26 (14)Sr1—O1—O1ii53.02 (7)
O2iv—Sr1—O3iii122.59 (12)O2—O1—O1ii161.5 (3)
O2v—Sr1—O3iii67.16 (15)O3—O1—O1ii136.8 (2)
O3iv—Sr1—O3iii116.58 (5)O3x—O1—O1ii136.8 (2)
O1i—Sr1—O3v74.42 (14)Sr2i—O1—O1ii69.4 (2)
O1ii—Sr1—O3v144.38 (12)Ba2i—O1—O1ii69.4 (2)
O1—Sr1—O3v81.94 (14)O1i—O1—O1ii60.0
O2iii—Sr1—O3v122.59 (12)As1—O2—Sr2ii117.3 (3)
O2iv—Sr1—O3v67.16 (15)As1—O2—Ba2ii117.3 (3)
O2v—Sr1—O3v56.26 (14)As1—O2—Ba1v104.73 (19)
O3iv—Sr1—O3v116.58 (5)Sr2ii—O2—Ba1v117.15 (15)
O3iii—Sr1—O3v116.58 (5)Ba2ii—O2—Ba1v117.15 (15)
O1i—Sr1—As1iii163.84 (11)As1—O2—Sr1v104.73 (19)
O1ii—Sr1—As1iii89.92 (10)Sr2ii—O2—Sr1v117.15 (15)
O1—Sr1—As1iii103.04 (12)Ba2ii—O2—Sr1v117.15 (15)
O2iii—Sr1—As1iii27.87 (12)As1—O2—Ba1xii104.73 (19)
O2iv—Sr1—As1iii96.77 (9)Sr2ii—O2—Ba1xii117.15 (15)
O2v—Sr1—As1iii65.06 (11)Ba2ii—O2—Ba1xii117.15 (15)
O3iv—Sr1—As1iii92.86 (9)Ba1v—O2—Ba1xii92.31 (17)
O3iii—Sr1—As1iii28.63 (8)Sr1v—O2—Ba1xii92.31 (17)
O3v—Sr1—As1iii121.31 (8)As1—O2—Sr1xii104.73 (19)
O1i—Sr1—As1iv89.92 (10)Sr2ii—O2—Sr1xii117.15 (15)
O1ii—Sr1—As1iv103.04 (12)Ba2ii—O2—Sr1xii117.15 (15)
O1—Sr1—As1iv163.84 (11)Ba1v—O2—Sr1xii92.31 (17)
O2iii—Sr1—As1iv65.06 (11)Sr1v—O2—Sr1xii92.31 (17)
O2iv—Sr1—As1iv27.87 (12)Sr2ii—O2—O3130.84 (19)
O2v—Sr1—As1iv96.77 (9)Ba2ii—O2—O3130.84 (19)
O3iv—Sr1—As1iv28.63 (8)Ba1v—O2—O368.41 (14)
O3iii—Sr1—As1iv121.31 (8)Sr1v—O2—O368.41 (14)
O3v—Sr1—As1iv92.86 (9)Ba1xii—O2—O3111.0 (2)
As1iii—Sr1—As1iv92.75 (2)Sr1xii—O2—O3111.0 (2)
O1i—Sr1—As1v103.04 (12)Sr2ii—O2—O3x130.84 (19)
O1ii—Sr1—As1v163.84 (11)Ba2ii—O2—O3x130.84 (19)
O1—Sr1—As1v89.92 (10)Ba1v—O2—O3x111.0 (2)
O2iii—Sr1—As1v96.77 (9)Sr1v—O2—O3x111.0 (2)
O2iv—Sr1—As1v65.06 (11)Ba1xii—O2—O3x68.41 (14)
O2v—Sr1—As1v27.87 (12)Sr1xii—O2—O3x68.41 (14)
O3iv—Sr1—As1v121.31 (8)O3—O2—O3x60.5 (3)
O3iii—Sr1—As1v92.86 (9)Sr2ii—O2—O182.87 (19)
O3v—Sr1—As1v28.63 (8)Ba2ii—O2—O182.87 (19)
As1iii—Sr1—As1v92.75 (2)Ba1v—O2—O1125.01 (14)
As1iv—Sr1—As1v92.75 (2)Sr1v—O2—O1125.01 (14)
O2i—Ba2—O3iv85.15 (11)Ba1xii—O2—O1125.01 (14)
O2i—Ba2—O3vi85.15 (11)Sr1xii—O2—O1125.01 (14)
O3iv—Ba2—O3vi138.5 (3)O3—O2—O161.40 (18)
O2i—Ba2—O3vii69.05 (14)O3x—O2—O161.40 (18)
O3iv—Ba2—O3vii133.05 (14)As1—O2—O3xiv153.77 (11)
O3vi—Ba2—O3vii79.30 (8)Sr2ii—O2—O3xiv60.02 (15)
O2i—Ba2—O3viii69.05 (14)Ba2ii—O2—O3xiv60.02 (15)
O3iv—Ba2—O3viii79.30 (8)Ba1v—O2—O3xiv98.45 (17)
O3vi—Ba2—O3viii133.05 (14)Sr1v—O2—O3xiv98.45 (17)
O3vii—Ba2—O3viii55.33 (17)Ba1xii—O2—O3xiv61.69 (13)
O2i—Ba2—O1ii106.20 (15)Sr1xii—O2—O3xiv61.69 (13)
O3iv—Ba2—O1ii72.14 (11)O3—O2—O3xiv165.4 (2)
O3vi—Ba2—O1ii72.14 (11)O3x—O2—O3xiv122.3 (2)
O3vii—Ba2—O1ii151.39 (9)O1—O2—O3xiv133.1 (2)
O3viii—Ba2—O1ii151.39 (9)As1—O2—O3xv153.77 (11)
O2i—Ba2—Cl1viii132.60 (7)Sr2ii—O2—O3xv60.02 (15)
O3iv—Ba2—Cl1viii70.24 (12)Ba2ii—O2—O3xv60.02 (15)
O3vi—Ba2—Cl1viii139.35 (11)Ba1v—O2—O3xv61.69 (13)
O3vii—Ba2—Cl1viii98.83 (11)Sr1v—O2—O3xv61.69 (13)
O3viii—Ba2—Cl1viii66.99 (10)Ba1xii—O2—O3xv98.45 (17)
O1ii—Ba2—Cl1viii103.81 (8)Sr1xii—O2—O3xv98.45 (17)
O2i—Ba2—Cl1ix132.60 (7)O3—O2—O3xv122.3 (2)
O3iv—Ba2—Cl1ix139.35 (11)O3x—O2—O3xv165.4 (2)
O3vi—Ba2—Cl1ix70.24 (12)O1—O2—O3xv133.1 (2)
O3vii—Ba2—Cl1ix66.99 (10)O3xiv—O2—O3xv51.0 (2)
O3viii—Ba2—Cl1ix98.83 (11)As1—O3—Sr2xvi144.0 (2)
O1ii—Ba2—Cl1ix103.81 (8)As1—O3—Ba2xvi144.0 (2)
Cl1viii—Ba2—Cl1ix71.794 (18)Sr2xvi—O3—O2136.1 (2)
O2i—Ba2—As1viii64.24 (12)Ba2xvi—O3—O2136.1 (2)
O3iv—Ba2—As1viii105.84 (11)Sr2xvi—O3—O3x159.26 (12)
O3vi—Ba2—As1viii105.84 (11)Ba2xvi—O3—O3x159.26 (12)
O3vii—Ba2—As1viii27.73 (8)O2—O3—O3x59.73 (13)
O3viii—Ba2—As1viii27.73 (8)Sr2xvi—O3—O1111.19 (16)
O1ii—Ba2—As1viii170.44 (10)Ba2xvi—O3—O1111.19 (16)
Cl1viii—Ba2—As1viii83.872 (13)O2—O3—O161.19 (18)
Cl1ix—Ba2—As1viii83.872 (13)O3x—O3—O161.07 (11)
O2i—Ba2—O1i50.72 (14)As1—O3—Sr2xiii98.1 (2)
O3iv—Ba2—O1i71.35 (12)Sr2xvi—O3—Sr2xiii113.11 (15)
O3vi—Ba2—O1i71.35 (12)Ba2xvi—O3—Sr2xiii113.11 (15)
O3vii—Ba2—O1i113.63 (13)O2—O3—Sr2xiii106.74 (17)
O3viii—Ba2—O1i113.63 (13)O3x—O3—Sr2xiii62.34 (8)
O1ii—Ba2—O1i55.48 (18)O1—O3—Sr2xiii118.68 (19)
Cl1viii—Ba2—O1i140.63 (3)As1—O3—Ba2xiii98.1 (2)
Cl1ix—Ba2—O1i140.63 (3)Sr2xvi—O3—Ba2xiii113.11 (15)
As1viii—Ba2—O1i114.96 (9)Ba2xvi—O3—Ba2xiii113.11 (15)
O2i—Ba2—As1ii133.43 (11)O2—O3—Ba2xiii106.74 (17)
O3iv—Ba2—As1ii78.95 (10)O3x—O3—Ba2xiii62.34 (8)
O3vi—Ba2—As1ii78.95 (10)O1—O3—Ba2xiii118.68 (19)
O3vii—Ba2—As1ii146.54 (9)As1—O3—Sr1v92.1 (2)
O3viii—Ba2—As1ii146.54 (9)Sr2xvi—O3—Sr1v99.92 (17)
O1ii—Ba2—As1ii27.23 (10)Ba2xvi—O3—Sr1v99.92 (17)
Cl1viii—Ba2—As1ii81.836 (13)O2—O3—Sr1v55.33 (14)
Cl1ix—Ba2—As1ii81.836 (13)O3x—O3—Sr1v100.79 (8)
As1viii—Ba2—As1ii162.33 (2)O1—O3—Sr1v112.8 (2)
O1i—Ba2—As1ii82.71 (9)Sr2xiii—O3—Sr1v98.87 (13)
O2i—Ba2—As1i23.89 (11)Ba2xiii—O3—Sr1v98.87 (13)
O3iv—Ba2—As1i77.49 (11)As1—O3—Ba1v92.1 (2)
O3vi—Ba2—As1i77.49 (11)Sr2xvi—O3—Ba1v99.92 (17)
O3vii—Ba2—As1i90.07 (11)Ba2xvi—O3—Ba1v99.92 (17)
O3viii—Ba2—As1i90.07 (11)O2—O3—Ba1v55.33 (14)
O1ii—Ba2—As1i82.31 (10)O3x—O3—Ba1v100.79 (8)
Cl1viii—Ba2—As1i143.044 (10)O1—O3—Ba1v112.8 (2)
Cl1ix—Ba2—As1i143.044 (10)Sr2xiii—O3—Ba1v98.87 (13)
As1viii—Ba2—As1i88.13 (2)Ba2xiii—O3—Ba1v98.87 (13)
O1i—Ba2—As1i26.83 (9)As1—O3—O2xi83.11 (17)
As1ii—Ba2—As1i109.54 (2)Sr2xvi—O3—O2xi130.30 (17)
O3—As1—O3x108.0 (3)Ba2xvi—O3—O2xi130.30 (17)
O3—As1—O2106.1 (2)O2—O3—O2xi65.7 (2)
O3x—As1—O2106.1 (2)O3x—O3—O2xi64.49 (10)
O3—As1—O1112.43 (19)O1—O3—O2xi117.13 (17)
O3x—As1—O1112.43 (19)Sr2xiii—O3—O2xi50.93 (12)
O2—As1—O1111.4 (3)Ba2xiii—O3—O2xi50.93 (12)
O3—As1—O2xi67.45 (16)Sr1v—O3—O2xi51.15 (11)
O3x—As1—O2xi67.45 (16)Ba1v—O3—O2xi51.15 (11)
O2—As1—O2xi68.9 (3)As1—O3—Cl1123.5 (3)
O1—As1—O2xi179.7 (2)Sr2xvi—O3—Cl163.50 (10)
O3—As1—Sr1xii112.19 (16)Ba2xvi—O3—Cl163.50 (10)
O3x—As1—Sr1xii59.30 (19)O2—O3—Cl1158.7 (2)
O2—As1—Sr1xii47.40 (12)O3x—O3—Cl199.23 (8)
O1—As1—Sr1xii134.70 (13)O1—O3—Cl1107.5 (2)
O2xi—As1—Sr1xii45.46 (6)Sr2xiii—O3—Cl161.07 (9)
O3—As1—Ba1xii112.19 (16)Ba2xiii—O3—Cl161.07 (9)
O3x—As1—Ba1xii59.30 (19)Sr1v—O3—Cl1139.63 (14)
O2—As1—Ba1xii47.40 (12)Ba1v—O3—Cl1139.63 (14)
O1—As1—Ba1xii134.70 (13)O2xi—O3—Cl1109.91 (16)
O2xi—As1—Ba1xii45.46 (6)Sr2xvii—Cl1—Sr2i180.000 (17)
O3—As1—Sr1v59.30 (19)Ba2xvii—Cl1—Sr2i180.000 (17)
O3x—As1—Sr1v112.19 (16)Sr2xvii—Cl1—Ba2i180.000 (17)
O2—As1—Sr1v47.40 (12)Ba2xvii—Cl1—Ba2i180.000 (17)
O1—As1—Sr1v134.70 (13)Sr2xvii—Cl1—Ba2xiii90.898 (13)
O2xi—As1—Sr1v45.46 (6)Ba2xvii—Cl1—Ba2xiii90.898 (13)
Sr1xii—As1—Sr1v66.59 (3)Sr2i—Cl1—Ba2xiii89.102 (13)
Ba1xii—As1—Sr1v66.59 (3)Ba2i—Cl1—Ba2xiii89.102 (13)
O3—As1—Ba1v59.30 (19)Sr2xvii—Cl1—Sr2xiii90.898 (13)
O3x—As1—Ba1v112.19 (16)Ba2xvii—Cl1—Sr2xiii90.898 (13)
O2—As1—Ba1v47.40 (12)Sr2i—Cl1—Sr2xiii89.102 (13)
O1—As1—Ba1v134.70 (13)Ba2i—Cl1—Sr2xiii89.102 (13)
O2xi—As1—Ba1v45.46 (6)Sr2xvii—Cl1—Ba2xviii89.102 (13)
Sr1xii—As1—Ba1v66.59 (3)Ba2xvii—Cl1—Ba2xviii89.102 (13)
Ba1xii—As1—Ba1v66.59 (3)Sr2i—Cl1—Ba2xviii90.898 (13)
O3—As1—Ba2xiii54.16 (16)Ba2i—Cl1—Ba2xviii90.898 (13)
O3x—As1—Ba2xiii54.16 (16)Ba2xiii—Cl1—Ba2xviii180.000 (15)
O2—As1—Ba2xiii113.02 (19)Sr2xiii—Cl1—Ba2xviii180.000 (15)
O1—As1—Ba2xiii135.6 (2)Sr2xvii—Cl1—Sr2xviii89.102 (13)
Sr1xii—As1—Ba2xiii79.244 (15)Ba2xvii—Cl1—Sr2xviii89.102 (13)
Ba1xii—As1—Ba2xiii79.244 (15)Sr2i—Cl1—Sr2xviii90.898 (13)
Sr1v—As1—Ba2xiii79.244 (15)Ba2i—Cl1—Sr2xviii90.898 (13)
Ba1v—As1—Ba2xiii79.244 (15)Ba2xiii—Cl1—Sr2xviii180.000 (15)
O3—As1—Sr2xiii54.16 (16)Sr2xiii—Cl1—Sr2xviii180.000 (15)
O3x—As1—Sr2xiii54.16 (16)Sr2xvii—Cl1—Sr2xix90.898 (13)
O2—As1—Sr2xiii113.02 (19)Ba2xvii—Cl1—Sr2xix90.898 (13)
O1—As1—Sr2xiii135.6 (2)Sr2i—Cl1—Sr2xix89.102 (13)
Sr1xii—As1—Sr2xiii79.244 (15)Ba2i—Cl1—Sr2xix89.102 (13)
Ba1xii—As1—Sr2xiii79.244 (15)Ba2xiii—Cl1—Sr2xix89.102 (13)
Sr1v—As1—Sr2xiii79.244 (15)Sr2xiii—Cl1—Sr2xix89.102 (13)
Ba1v—As1—Sr2xiii79.244 (15)Ba2xviii—Cl1—Sr2xix90.898 (13)
O3—As1—Ba2i79.84 (19)Sr2xviii—Cl1—Sr2xix90.898 (13)
O3x—As1—Ba2i79.84 (19)Sr2xvii—Cl1—Ba2xix90.898 (13)
O2—As1—Ba2i169.31 (19)Ba2xvii—Cl1—Ba2xix90.898 (13)
O1—As1—Ba2i57.9 (2)Sr2i—Cl1—Ba2xix89.102 (13)
O2xi—As1—Ba2i121.81 (10)Ba2i—Cl1—Ba2xix89.102 (13)
Sr1xii—As1—Ba2i139.124 (17)Ba2xiii—Cl1—Ba2xix89.102 (13)
Ba1xii—As1—Ba2i139.124 (17)Sr2xiii—Cl1—Ba2xix89.102 (13)
Sr1v—As1—Ba2i139.124 (17)Ba2xviii—Cl1—Ba2xix90.898 (13)
Ba1v—As1—Ba2i139.124 (17)Sr2xviii—Cl1—Ba2xix90.898 (13)
Ba2xiii—As1—Ba2i77.67 (2)Sr2xvii—Cl1—Sr2xvi89.102 (13)
Sr2xiii—As1—Ba2i77.67 (2)Ba2xvii—Cl1—Sr2xvi89.102 (13)
As1—O1—Ba1x132.31 (11)Sr2i—Cl1—Sr2xvi90.898 (13)
As1—O1—Sr1x132.31 (11)Ba2i—Cl1—Sr2xvi90.898 (13)
As1—O1—Sr1132.31 (11)Ba2xiii—Cl1—Sr2xvi90.898 (13)
Ba1x—O1—Sr192.02 (17)Sr2xiii—Cl1—Sr2xvi90.898 (13)
Sr1x—O1—Sr192.02 (17)Ba2xviii—Cl1—Sr2xvi89.102 (13)
Ba1x—O1—O2117.41 (17)Sr2xviii—Cl1—Sr2xvi89.102 (13)
Sr1x—O1—O2117.41 (17)Sr2xix—Cl1—Sr2xvi180.000 (17)
Sr1—O1—O2117.41 (17)Ba2xix—Cl1—Sr2xvi180.000 (17)
Ba1x—O1—O3162.69 (17)Sr2xvii—Cl1—Ba2xvi89.102 (13)
Sr1x—O1—O3162.69 (17)Ba2xvii—Cl1—Ba2xvi89.102 (13)
Sr1—O1—O3105.00 (10)Sr2i—Cl1—Ba2xvi90.898 (13)
O2—O1—O357.41 (17)Ba2i—Cl1—Ba2xvi90.898 (13)
Ba1x—O1—O3x105.00 (10)Ba2xiii—Cl1—Ba2xvi90.898 (13)
Sr1x—O1—O3x105.00 (10)Sr2xiii—Cl1—Ba2xvi90.898 (13)
Sr1—O1—O3x162.69 (17)Ba2xviii—Cl1—Ba2xvi89.102 (13)
O2—O1—O3x57.41 (17)Sr2xviii—Cl1—Ba2xvi89.102 (13)
O3—O1—O3x57.9 (2)Sr2xix—Cl1—Ba2xvi180.000 (17)
As1—O1—Sr2i94.8 (2)Ba2xix—Cl1—Ba2xvi180.000 (17)
Ba1x—O1—Sr2i96.52 (15)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy, x, z; (iv) y, x+y+1, z; (v) x+1, y+1, z; (vi) y, x+y+1, z+1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z; (ix) x, y+1, z+1/2; (x) x, y, z+1/2; (xi) y+1, xy, z; (xii) x+1, y+1, z+1/2; (xiii) x, y1, z; (xiv) x+y+1, x+1, z+1/2; (xv) x+y+1, x+1, z; (xvi) xy+1, x, z; (xvii) y1, x+y1, z; (xviii) x, y+1, z; (xix) x+y1, x, z.
(III) cadmium arsenate hydroxide chloride top
Crystal data top
Cd5(AsO4)3Cl10.58(OH)0.42Dx = 5.960 Mg m3
Mr = 2012.93Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 1387 reflections
Hall symbol: -P 6cθ = 1.0–30.0°
a = 9.971 (1) ŵ = 18.31 mm1
c = 6.514 (1) ÅT = 294 K
V = 560.86 (12) Å3Prismatic, colourless
Z = 10.07 × 0.05 × 0.05 mm
F(000) = 897.3
Data collection top
Nonius KappaCCD
diffractometer
424 independent reflections
Radiation source: fine-focus sealed X-ray tube420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.5°, θmin = 3.9°
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
h = 1212
Tmin = 0.348, Tmax = 0.396k = 1212
4589 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.037 w = 1/[σ2(Fo2) + 4.519P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
424 reflectionsΔρmax = 1.03 e Å3
42 parametersΔρmin = 1.05 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00154 (16)
Crystal data top
Cd5(AsO4)3Cl10.58(OH)0.42Z = 1
Mr = 2012.93Mo Kα radiation
Hexagonal, P63/mµ = 18.31 mm1
a = 9.971 (1) ÅT = 294 K
c = 6.514 (1) Å0.07 × 0.05 × 0.05 mm
V = 560.86 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
424 independent reflections
Absorption correction: multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
420 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.396Rint = 0.025
4589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0181 restraint
wR(F2) = 0.037H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 1.03 e Å3
424 reflectionsΔρmin = 1.05 e Å3
42 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.33330.66670.00216 (8)0.01110 (17)
Cd20.26495 (6)0.02676 (6)0.25000.01741 (17)
As10.40361 (7)0.37911 (7)0.25000.00749 (17)
Cl10.00000.00000.25000.0247 (19)0.58 (3)
O40.00000.00000.25000.0247 (19)0.42 (3)
H40.00000.00000.113 (3)0.030*0.210 (15)
O10.3511 (6)0.5125 (5)0.25000.0125 (9)
O20.6004 (5)0.4623 (5)0.25000.0126 (10)
O30.3412 (4)0.2579 (4)0.0471 (5)0.0151 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0135 (2)0.0135 (2)0.0063 (3)0.00675 (10)0.0000.000
Cd20.0285 (3)0.0109 (3)0.0087 (2)0.0067 (2)0.0000.000
As10.0083 (3)0.0078 (3)0.0076 (3)0.0050 (2)0.0000.000
Cl10.0106 (18)0.0106 (18)0.053 (4)0.0053 (9)0.0000.000
O40.0106 (18)0.0106 (18)0.053 (4)0.0053 (9)0.0000.000
O10.023 (2)0.012 (2)0.010 (2)0.013 (2)0.0000.000
O20.008 (2)0.010 (2)0.015 (2)0.0014 (18)0.0000.000
O30.0249 (17)0.0106 (15)0.0111 (16)0.0098 (14)0.0070 (14)0.0042 (13)
Geometric parameters (Å, º) top
Cd1—O1i2.296 (3)Cl1—O4xviii3.2570 (5)
Cd1—O1ii2.296 (3)Cl1—O3vi3.344 (3)
Cd1—O12.296 (3)Cl1—O3xvi3.344 (3)
Cd1—O2iii2.375 (3)Cl1—O3xi3.344 (3)
Cd1—O2iv2.375 (3)Cl1—O3xix3.344 (3)
Cd1—O2v2.375 (3)Cl1—O33.344 (3)
Cd1—O3iv2.960 (3)Cl1—O3xii3.344 (3)
Cd1—O3iii2.960 (3)Cl1—O3xviii3.631 (3)
Cd1—O3v2.960 (3)Cl1—H40.89 (2)
Cd1—Cd1vi3.2289 (12)O1—Cd1vi2.296 (3)
Cd1—Cd1vii3.2851 (12)O1—O22.770 (6)
Cd1—O3ii4.125 (3)O1—O32.819 (5)
Cd2—O3viii2.208 (3)O1—O3vi2.819 (5)
Cd2—O3ix2.208 (3)O1—O1i2.828 (8)
Cd2—O2x2.368 (4)O1—O1ii2.828 (8)
Cd2—O3vi2.426 (3)O1—O3iii3.039 (5)
Cd2—O32.426 (3)O1—O3xiii3.039 (5)
Cd2—Cl12.5191 (6)O1—O2xiv3.2839 (10)
Cd2—As13.0655 (9)O1—O2v3.2839 (10)
Cd2—O1xi3.372 (5)O2—Cd2xx2.368 (4)
Cd2—O1x3.551 (5)O2—Cd1v2.375 (3)
Cd2—O3xi3.811 (3)O2—Cd1xv2.375 (3)
Cd2—O3xii3.811 (3)O2—O32.704 (5)
As1—O11.656 (4)O2—O3vi2.704 (5)
As1—O31.686 (3)O2—O2x2.970 (8)
As1—O3vi1.686 (3)O2—O2xx2.970 (8)
As1—O21.706 (4)O2—O3xxi3.059 (5)
As1—O2x3.283 (4)O2—O3xx3.059 (5)
As1—O3iii3.590 (3)O2—O3xv3.200 (5)
As1—O3xiii3.590 (3)O3—Cd2iii2.208 (3)
As1—O2xiv3.629 (2)O3—O3vi2.643 (7)
As1—O2v3.629 (2)O3—Cd1v2.960 (3)
As1—O3xv3.756 (3)O3—O1viii3.039 (5)
As1—O3v3.756 (3)O3—O2x3.059 (5)
Cl1—Cd2xi2.5191 (6)O3—O3viii3.133 (7)
Cl1—Cd2xvi2.5191 (6)O3—O3iii3.133 (7)
Cl1—O4xvii3.2570 (5)O3—O2v3.200 (5)
O1i—Cd1—O1ii76.02 (12)O4xvii—Cl1—O3113.27 (5)
O1i—Cd1—O176.02 (12)O4xviii—Cl1—O366.73 (5)
O1ii—Cd1—O176.02 (12)O3vi—Cl1—O346.55 (11)
O1i—Cd1—O2iii147.55 (15)O3xvi—Cl1—O3105.41 (6)
O1ii—Cd1—O2iii89.34 (11)O3xi—Cl1—O3105.41 (6)
O1—Cd1—O2iii128.82 (15)O3xix—Cl1—O3125.31 (2)
O1i—Cd1—O2iv89.34 (11)Cd2xi—Cl1—O3xii46.28 (5)
O1ii—Cd1—O2iv128.82 (15)Cd2—Cl1—O3xii79.71 (5)
O1—Cd1—O2iv147.55 (15)Cd2xvi—Cl1—O3xii150.42 (5)
O2iii—Cd1—O2iv77.43 (12)O4xvii—Cl1—O3xii66.73 (5)
O1i—Cd1—O2v128.82 (15)O4xviii—Cl1—O3xii113.27 (5)
O1ii—Cd1—O2v147.55 (15)O3vi—Cl1—O3xii105.41 (6)
O1—Cd1—O2v89.34 (11)O3xvi—Cl1—O3xii125.31 (2)
O2iii—Cd1—O2v77.43 (12)O3xi—Cl1—O3xii46.55 (11)
O2iv—Cd1—O2v77.43 (12)O3xix—Cl1—O3xii105.41 (6)
O1i—Cd1—O3iv78.73 (13)O3—Cl1—O3xii125.31 (2)
O1ii—Cd1—O3iv69.33 (12)Cd2—Cl1—O3xviii129.53 (5)
O1—Cd1—O3iv141.01 (10)Cd2xvi—Cl1—O3xviii99.47 (5)
O2iii—Cd1—O3iv68.98 (12)O4xvii—Cl1—O3xviii122.21 (5)
O2iv—Cd1—O3iv59.71 (12)O4xviii—Cl1—O3xviii57.79 (5)
O2v—Cd1—O3iv129.64 (10)O3vi—Cl1—O3xviii171.06 (10)
O1i—Cd1—O3iii141.01 (10)O3xvi—Cl1—O3xviii53.184 (19)
O1ii—Cd1—O3iii78.73 (13)O3xi—Cl1—O3xviii53.184 (19)
O1—Cd1—O3iii69.33 (12)O3xix—Cl1—O3xviii79.75 (3)
O2iii—Cd1—O3iii59.71 (12)O3—Cl1—O3xviii124.51 (5)
O2iv—Cd1—O3iii129.64 (10)O3xii—Cl1—O3xviii79.75 (3)
O2v—Cd1—O3iii68.98 (12)Cd2xi—Cl1—H490.000 (2)
O3iv—Cd1—O3iii118.84 (2)Cd2—Cl1—H490.000 (1)
O1i—Cd1—O3v69.33 (12)Cd2xvi—Cl1—H490.000 (1)
O1ii—Cd1—O3v141.01 (10)O4xvii—Cl1—H4180.000 (3)
O1—Cd1—O3v78.73 (13)O3vi—Cl1—H4113.27 (6)
O2iii—Cd1—O3v129.64 (10)O3xvi—Cl1—H466.73 (5)
O2iv—Cd1—O3v68.98 (12)O3xi—Cl1—H466.73 (5)
O2v—Cd1—O3v59.71 (12)O3xix—Cl1—H4113.27 (5)
O3iv—Cd1—O3v118.84 (2)O3—Cl1—H466.73 (5)
O3iii—Cd1—O3v118.84 (2)O3xii—Cl1—H4113.27 (5)
O1i—Cd1—Cd1vi45.32 (8)O3xviii—Cl1—H457.79 (5)
O1ii—Cd1—Cd1vi45.32 (8)As1—O1—Cd1vi134.35 (9)
O1—Cd1—Cd1vi45.32 (8)As1—O1—Cd1134.35 (9)
O2iii—Cd1—Cd1vi133.77 (8)Cd1vi—O1—Cd189.36 (15)
O2iv—Cd1—Cd1vi133.77 (8)Cd1vi—O1—O2119.83 (15)
O2v—Cd1—Cd1vi133.77 (8)Cd1—O1—O2119.83 (15)
O3iv—Cd1—Cd1vi96.23 (6)Cd1vi—O1—O3162.27 (15)
O3iii—Cd1—Cd1vi96.23 (6)Cd1—O1—O3107.06 (8)
O3v—Cd1—Cd1vi96.23 (6)O2—O1—O357.85 (13)
O1i—Cd1—Cd1vii134.68 (8)Cd1vi—O1—O3vi107.06 (8)
O1ii—Cd1—Cd1vii134.68 (8)Cd1—O1—O3vi162.27 (15)
O1—Cd1—Cd1vii134.68 (8)O2—O1—O3vi57.85 (13)
O2iii—Cd1—Cd1vii46.23 (8)O3—O1—O3vi55.90 (16)
O2iv—Cd1—Cd1vii46.23 (8)As1—O1—O1i139.5 (3)
O2v—Cd1—Cd1vii46.23 (8)Cd1vi—O1—O1i51.99 (6)
O3iv—Cd1—Cd1vii83.77 (6)Cd1—O1—O1i51.99 (6)
O3iii—Cd1—Cd1vii83.77 (6)O2—O1—O1i104.4 (3)
O3v—Cd1—Cd1vii83.77 (6)O3—O1—O1i144.61 (18)
Cd1vi—Cd1—Cd1vii180.0O3vi—O1—O1i144.61 (18)
O1i—Cd1—O3ii104.83 (12)As1—O1—O1ii160.5 (3)
O1ii—Cd1—O3ii40.80 (9)Cd1vi—O1—O1ii51.99 (6)
O1—Cd1—O3ii110.56 (12)Cd1—O1—O1ii51.99 (6)
O2iii—Cd1—O3ii50.67 (9)O2—O1—O1ii164.4 (3)
O2iv—Cd1—O3ii101.07 (11)O3—O1—O1ii134.6 (2)
O2v—Cd1—O3ii126.10 (11)O3vi—O1—O1ii134.6 (2)
O3iv—Cd1—O3ii49.18 (9)O1i—O1—O1ii60.0
O3iii—Cd1—O3ii72.46 (9)As1—O1—O3iii95.19 (17)
O3v—Cd1—O3ii168.01 (8)Cd1vi—O1—O3iii118.95 (19)
Cd1vi—Cd1—O3ii85.93 (5)Cd1—O1—O3iii65.69 (10)
Cd1vii—Cd1—O3ii94.07 (5)O2—O1—O3iii120.94 (14)
O3viii—Cd2—O3ix122.43 (18)O3—O1—O3iii64.53 (12)
O3viii—Cd2—O2x88.65 (10)O3vi—O1—O3iii99.61 (18)
O3ix—Cd2—O2x88.65 (10)O1i—O1—O3iii115.38 (14)
O3viii—Cd2—O3vi150.03 (14)O1ii—O1—O3iii70.09 (18)
O3ix—Cd2—O3vi84.92 (6)As1—O1—O3xiii95.19 (17)
O2x—Cd2—O3vi79.28 (12)Cd1vi—O1—O3xiii65.69 (10)
O3viii—Cd2—O384.92 (6)Cd1—O1—O3xiii118.95 (19)
O3ix—Cd2—O3150.03 (14)O2—O1—O3xiii120.94 (14)
O2x—Cd2—O379.28 (12)O3—O1—O3xiii99.61 (18)
O3vi—Cd2—O366.01 (15)O3vi—O1—O3xiii64.53 (12)
O3viii—Cd2—Cl1100.15 (8)O1i—O1—O3xiii115.38 (14)
O3ix—Cd2—Cl1100.15 (8)O1ii—O1—O3xiii70.09 (18)
O2x—Cd2—Cl1161.32 (11)O3iii—O1—O3xiii79.12 (17)
O3vi—Cd2—Cl185.08 (8)As1—O1—O2xiv88.14 (11)
O3—Cd2—Cl185.08 (8)Cd1vi—O1—O2xiv46.31 (8)
O3viii—Cd2—As1116.95 (8)Cd1—O1—O2xiv134.75 (17)
O3ix—Cd2—As1116.95 (8)O2—O1—O2xiv84.40 (11)
O2x—Cd2—As173.07 (11)O3—O1—O2xiv118.11 (16)
O3vi—Cd2—As133.23 (7)O3vi—O1—O2xiv62.70 (11)
O3—Cd2—As133.23 (7)O1i—O1—O2xiv86.81 (12)
Cl1—Cd2—As188.254 (19)O1ii—O1—O2xiv94.12 (11)
O3viii—Cd2—O1xi61.91 (9)O3iii—O1—O2xiv136.82 (17)
O3ix—Cd2—O1xi61.91 (9)O3xiii—O1—O2xiv57.71 (10)
O2x—Cd2—O1xi99.31 (13)As1—O1—O2v88.14 (11)
O3vi—Cd2—O1xi146.83 (8)Cd1vi—O1—O2v134.75 (17)
O3—Cd2—O1xi146.83 (8)Cd1—O1—O2v46.31 (8)
Cl1—Cd2—O1xi99.37 (8)O2—O1—O2v84.40 (11)
As1—Cd2—O1xi172.38 (8)O3—O1—O2v62.70 (11)
O3viii—Cd2—O1x67.08 (9)O3vi—O1—O2v118.11 (16)
O3ix—Cd2—O1x67.08 (9)O1i—O1—O2v86.81 (12)
O2x—Cd2—O1x51.18 (13)O1ii—O1—O2v94.12 (11)
O3vi—Cd2—O1x121.37 (10)O3iii—O1—O2v57.71 (10)
O3—Cd2—O1x121.37 (10)O3xiii—O1—O2v136.82 (17)
Cl1—Cd2—O1x147.50 (7)O2xiv—O1—O2v165.3 (2)
As1—Cd2—O1x124.25 (7)As1—O2—Cd2xx121.0 (2)
O1xi—Cd2—O1x48.13 (14)As1—O2—Cd1v107.50 (16)
O3viii—Cd2—O3xi55.29 (8)Cd2xx—O2—Cd1v114.10 (14)
O3ix—Cd2—O3xi92.21 (8)As1—O2—Cd1xv107.50 (16)
O2x—Cd2—O3xi136.97 (11)Cd2xx—O2—Cd1xv114.10 (14)
O3vi—Cd2—O3xi143.65 (9)Cd1v—O2—Cd1xv87.53 (15)
O3—Cd2—O3xi115.32 (12)Cd2xx—O2—O3135.24 (16)
Cl1—Cd2—O3xi59.71 (5)Cd1v—O2—O370.97 (11)
As1—Cd2—O3xi140.81 (5)Cd1xv—O2—O3110.49 (18)
O1xi—Cd2—O3xi45.72 (8)Cd2xx—O2—O3vi135.24 (16)
O1x—Cd2—O3xi90.02 (8)Cd1v—O2—O3vi110.49 (18)
O3viii—Cd2—O3xii92.21 (8)Cd1xv—O2—O3vi70.97 (11)
O3ix—Cd2—O3xii55.29 (8)O3—O2—O3vi58.51 (17)
O2x—Cd2—O3xii136.97 (11)Cd2xx—O2—O187.05 (17)
O3vi—Cd2—O3xii115.32 (12)Cd1v—O2—O1128.02 (12)
O3—Cd2—O3xii143.65 (9)Cd1xv—O2—O1128.02 (12)
Cl1—Cd2—O3xii59.71 (5)O3—O2—O161.99 (14)
As1—Cd2—O3xii140.81 (5)O3vi—O2—O161.99 (14)
O1xi—Cd2—O3xii45.72 (8)As1—O2—O2x84.6 (3)
O1x—Cd2—O3xii90.02 (8)Cd2xx—O2—O2x154.4 (2)
O3xi—Cd2—O3xii40.58 (10)Cd1v—O2—O2x51.29 (6)
O1—As1—O3115.09 (14)Cd1xv—O2—O2x51.29 (6)
O1—As1—O3vi115.09 (14)O3—O2—O2x65.05 (18)
O3—As1—O3vi103.2 (2)O3vi—O2—O2x65.05 (18)
O1—As1—O2111.0 (2)O1—O2—O2x118.5 (2)
O3—As1—O2105.75 (15)As1—O2—O2xx144.6 (3)
O3vi—As1—O2105.75 (15)Cd2xx—O2—O2xx94.4 (2)
O1—As1—Cd2141.11 (17)Cd1v—O2—O2xx51.29 (6)
O3—As1—Cd252.07 (11)Cd1xv—O2—O2xx51.29 (6)
O3vi—As1—Cd252.07 (11)O3—O2—O2xx116.77 (16)
O2—As1—Cd2107.90 (16)O3vi—O2—O2xx116.77 (16)
O1—As1—O2x175.25 (19)O1—O2—O2xx178.5 (2)
O3—As1—O2x67.36 (12)O2x—O2—O2xx60.0
O3vi—As1—O2x67.36 (12)As1—O2—O3xxi151.47 (12)
O2—As1—O2x64.3 (2)Cd2xx—O2—O3xxi51.19 (10)
O1—As1—O3iii57.47 (14)Cd1v—O2—O3xxi99.70 (16)
O3—As1—O3iii60.75 (13)Cd1xv—O2—O3xxi64.59 (10)
O3vi—As1—O3iii110.90 (15)O3—O2—O3xxi170.03 (19)
O2—As1—O3iii142.92 (9)O3vi—O2—O3xxi124.24 (14)
Cd2—As1—O3iii90.66 (6)O1—O2—O3xxi127.98 (17)
O2x—As1—O3iii126.13 (8)O2x—O2—O3xxi106.59 (15)
O1—As1—O3xiii57.47 (14)O2xx—O2—O3xxi53.26 (15)
O3—As1—O3xiii110.90 (15)As1—O2—O3xx151.47 (12)
O3vi—As1—O3xiii60.75 (13)Cd2xx—O2—O3xx51.19 (10)
O2—As1—O3xiii142.92 (9)Cd1v—O2—O3xx64.59 (10)
Cd2—As1—O3xiii90.66 (6)Cd1xv—O2—O3xx99.70 (16)
O2x—As1—O3xiii126.13 (8)O3—O2—O3xx124.24 (14)
O3iii—As1—O3xiii65.26 (10)O3vi—O2—O3xx170.03 (19)
O1—As1—O2xiv64.73 (7)O1—O2—O3xx127.98 (17)
O3—As1—O2xiv159.26 (14)O2x—O2—O3xx106.59 (15)
O3vi—As1—O2xiv61.85 (13)O2xx—O2—O3xx53.26 (15)
O2—As1—O2xiv92.78 (10)O3xxi—O2—O3xx51.18 (14)
Cd2—As1—O2xiv113.73 (7)As1—O2—O3xv95.04 (16)
O2x—As1—O2xiv114.59 (6)Cd1v—O2—O3xv155.74 (18)
O3iii—As1—O2xiv109.07 (9)Cd1xv—O2—O3xv94.30 (8)
O3xiii—As1—O2xiv50.14 (9)O3—O2—O3xv129.90 (16)
O1—As1—O2v64.73 (7)O3vi—O2—O3xv92.88 (12)
O3—As1—O2v61.85 (13)O1—O2—O3xv68.36 (13)
O3vi—As1—O2v159.26 (14)O2x—O2—O3xv142.77 (7)
O2—As1—O2v92.78 (10)O2xx—O2—O3xv112.76 (18)
Cd2—As1—O2v113.73 (7)O3xxi—O2—O3xv60.02 (11)
O2x—As1—O2v114.59 (6)O3xx—O2—O3xv91.31 (15)
O3iii—As1—O2v50.14 (9)As1—O3—Cd2iii132.49 (17)
O3xiii—As1—O2v109.07 (9)As1—O3—Cd294.70 (14)
O2xiv—As1—O2v127.63 (13)Cd2iii—O3—Cd2125.29 (14)
O1—As1—O3xv63.89 (15)Cd2iii—O3—O3vi151.22 (9)
O3—As1—O3xv157.52 (13)Cd2—O3—O3vi57.00 (7)
O3vi—As1—O3xv96.67 (11)Cd2iii—O3—O2133.54 (16)
O2—As1—O3xv58.07 (13)Cd2—O3—O2100.20 (13)
Cd2—As1—O3xv143.54 (5)O3vi—O3—O260.74 (9)
O2x—As1—O3xv112.19 (8)Cd2iii—O3—O1100.94 (13)
O3iii—As1—O3xv121.19 (9)Cd2—O3—O1116.97 (13)
O3xiii—As1—O3xv87.84 (10)O3vi—O3—O162.05 (8)
O2v—As1—O3xv101.09 (8)O2—O3—O160.16 (15)
O1—As1—O3v63.89 (15)As1—O3—Cd1v86.44 (13)
O3—As1—O3v96.67 (11)Cd2iii—O3—Cd1v111.40 (13)
O3vi—As1—O3v157.52 (13)Cd2—O3—Cd1v94.77 (10)
O2—As1—O3v58.07 (13)O3vi—O3—Cd1v96.23 (6)
Cd2—As1—O3v143.54 (5)O2—O3—Cd1v49.32 (10)
O2x—As1—O3v112.19 (8)O1—O3—Cd1v106.37 (14)
O3iii—As1—O3v87.84 (10)As1—O3—O1viii131.42 (18)
O3xiii—As1—O3v121.19 (9)Cd2iii—O3—O1viii78.21 (11)
O2xiv—As1—O3v101.09 (8)Cd2—O3—O1viii90.27 (12)
O3xv—As1—O3v62.03 (10)O3vi—O3—O1viii129.56 (8)
Cd2xi—Cl1—Cd2120.0O2—O3—O1viii94.18 (15)
Cd2xi—Cl1—Cd2xvi120.0O1—O3—O1viii144.23 (17)
Cd2—Cl1—Cd2xvi120.0As1—O3—O2x82.08 (13)
Cd2xi—Cl1—O4xvii90.0Cd2iii—O3—O2x142.16 (14)
Cd2—Cl1—O4xvii90.0Cd2—O3—O2x49.53 (10)
Cd2xvi—Cl1—O4xvii90.0O3vi—O3—O2x64.41 (7)
Cd2xi—Cl1—O4xviii90.0O2—O3—O2x61.69 (19)
Cd2—Cl1—O4xviii90.0O1—O3—O2x114.11 (14)
Cd2xvi—Cl1—O4xviii90.0Cd1v—O3—O2x46.43 (9)
O4xvii—Cl1—O4xviii180.0O1viii—O3—O2x65.16 (9)
Cd2xi—Cl1—O3vi150.42 (5)As1—O3—O3viii137.2 (2)
Cd2—Cl1—O3vi46.28 (5)Cd2iii—O3—O3viii89.29 (13)
Cd2xvi—Cl1—O3vi79.71 (5)O3vi—O3—O3viii101.30 (12)
O4xvii—Cl1—O3vi66.73 (5)O2—O3—O3viii123.26 (16)
O4xviii—Cl1—O3vi113.27 (5)O1—O3—O3viii160.14 (18)
Cd2xi—Cl1—O3xvi79.71 (5)Cd1v—O3—O3viii85.18 (11)
Cd2—Cl1—O3xvi150.42 (5)O1viii—O3—O3viii54.34 (13)
Cd2xvi—Cl1—O3xvi46.28 (5)O2x—O3—O3viii62.22 (12)
O4xvii—Cl1—O3xvi113.27 (5)As1—O3—O3iii91.25 (17)
O4xviii—Cl1—O3xvi66.73 (5)Cd2iii—O3—O3iii50.47 (10)
O3vi—Cl1—O3xvi125.31 (2)Cd2—O3—O3iii116.73 (10)
Cd2xi—Cl1—O3xi46.28 (5)O3vi—O3—O3iii101.30 (12)
Cd2—Cl1—O3xi79.71 (5)O2—O3—O3iii119.88 (16)
Cd2xvi—Cl1—O3xi150.42 (5)O1—O3—O3iii61.13 (14)
O4xvii—Cl1—O3xi113.27 (5)Cd1v—O3—O3iii148.49 (14)
O4xviii—Cl1—O3xi66.73 (5)O1viii—O3—O3iii128.68 (18)
O3vi—Cl1—O3xi125.31 (2)O2x—O3—O3iii163.60 (17)
O3xvi—Cl1—O3xi105.41 (6)O3viii—O3—O3iii116.25 (8)
Cd2xi—Cl1—O3xix79.71 (5)As1—O3—O2v90.48 (13)
Cd2—Cl1—O3xix150.42 (5)Cd2iii—O3—O2v47.72 (9)
Cd2xvi—Cl1—O3xix46.28 (5)Cd2—O3—O2v172.60 (15)
O4xvii—Cl1—O3xix66.73 (5)O3vi—O3—O2v127.22 (8)
O4xviii—Cl1—O3xix113.27 (5)O2—O3—O2v87.12 (12)
O3vi—Cl1—O3xix105.41 (6)O1—O3—O2v65.77 (9)
O3xvi—Cl1—O3xix46.55 (11)Cd1v—O3—O2v90.82 (12)
O3xi—Cl1—O3xix125.31 (2)O1viii—O3—O2v90.26 (13)
Cd2xi—Cl1—O3150.42 (5)O2x—O3—O2v136.78 (15)
Cd2—Cl1—O346.28 (5)O3viii—O3—O2v131.44 (17)
Cd2xvi—Cl1—O379.71 (5)O3iii—O3—O2v57.76 (13)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy, x, z; (iv) y, x+y+1, z; (v) x+1, y+1, z; (vi) x, y, z+1/2; (vii) x, y, z1/2; (viii) y, x+y, z; (ix) y, x+y, z+1/2; (x) y+1, xy, z; (xi) x+y, x, z; (xii) x+y, x, z+1/2; (xiii) xy, x, z+1/2; (xiv) x+1, y+1, z+1; (xv) x+1, y+1, z+1/2; (xvi) y, xy, z; (xvii) x, y, z+1; (xviii) x, y, z; (xix) y, xy, z+1/2; (xx) x+y+1, x+1, z; (xxi) x+y+1, x+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaSr5(AsO4)3F(Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3ClCd5(AsO4)3Cl10.58(OH)0.42
Mr873.861036.982012.93
Crystal system, space groupHexagonal, P63/mHexagonal, P63/mHexagonal, P63/m
Temperature (K)294294294
a, c (Å)9.990 (1), 7.395 (1)10.390 (1), 7.575 (2)9.971 (1), 6.514 (1)
V3)639.15 (13)708.2 (2)560.86 (12)
Z221
Radiation typeMo KαMo KαMo Kα
µ (mm1)28.5122.9518.31
Crystal size (mm)0.09 × 0.04 × 0.020.09 × 0.04 × 0.040.07 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
Multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
Multi-scan
(Software?; Otwinowski & Minor, 1997; Otwinowski et al., 2003)
Tmin, Tmax0.263, 0.5670.344, 0.4010.348, 0.396
No. of measured, independent and
observed [I > 2σ(I)] reflections
4782, 438, 421 1672, 455, 422 4589, 424, 420
Rint0.0360.0160.025
(sin θ/λ)max1)0.6090.5950.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.037, 1.22 0.020, 0.049, 1.11 0.018, 0.037, 1.30
No. of reflections438455424
No. of parameters404242
No. of restraints001
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.530.82, 0.701.03, 1.05

Computer programs: COLLECT (Nonius, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2000), publCIF (Westrip, 2008).

Selected bond lengths (Å) and angles (° ) for (I), (II) and (III) top
(I)(II)(III)
Bond distance or angleMeanBond distance or angleMeanBond distance or angleMean
A1—O3 (× 3)2.957 (3)2.993 (6)2.960 (3)
A1—O2 (× 3)2.616 (2)2.647 (4)2.375 (3)
A1—O1 (× 3)2.543 (2)2.7052.611 (4)2.7502.296 (3)2.544
A2—O3 (× 2)2.671 (2)2.607 (4)2.426 (3)
A2—O3 (× 2)2.515 (2)2.906 (5)2.208 (3)
A2—O22.530 (3)2.604 (6)2.368 (4)
A2—O12.821 (3)3.127 (6)3.372 (5)
A2—X2.4328 (5)2.5943.2298 (5)2.8552.5191 (6)2.500
As1—O3 (× 2)1.674 (2)1.668 (4)1.686 (3)
As1—O21.677 (3)1.681 (5)1.706 (4)
As1—O11.680 (3)1.6761.688 (5)1.6761.656 (4)1.683
XX3.6983.7883.257
O3—As1—O3106.40 (17)108.0 (3)103.3 (2)
O3—As1—O1 (× 2)111.44 (10)112.43 (19)115.09 (14)
O3—As1—O2 (× 2)107.56 (11)106.1 (2)105.73 (15)
O1—As1—O2112.15 (16)109.4111.4 (3)109.4111.0 (2)109.3
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds