Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C13H6F5NO, exists in the enol form and adopts the E configuration about the enol double bond. It is the first example of an enol-type pyridinium ylide. The enol structure was unambiguously determined on the basis of the significantly longer C-O bond and shorter C-C bond. Intra­molecular C-H...O and C-H...F hydrogen bonds are responsible for promotion of the enol form and for the stability of this compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108006318/sq3132sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108006318/sq3132Isup2.hkl
Contains datablock I

CCDC reference: 686447

Comment top

Pyridinium ylides are an important family of synthetic intermediates for a variety of organic compounds, such as indolidines (Tsuge et al., 1985; Kanemasa et al., 1989; Zhang et al., 2000; Wu & Chen, 2002; Kakehi, 2005; Xia et al., 2006) and cyclopropanes (Shestopalov et al., 1989; Vo et al., 1997; Kojima et al., 2000; Yamada et al., 2007). Among the various types of pyridinium ylides, pyridinium acylmethylides are often employed for organic synthesis because they can be readily prepared from the corresponding pyridinium salts with a base. These pyridinium ylides are generally unstable and are therefore used in reactions without isolation. However, when an electron-withdrawing group is attached to the C atom next to the pyridinium ring, the stabilization of the ylides increases significantly.

In the course of our research on the reactivity of pyridinium ylides (Yamada et al., 2007), we found that the title compound, (I), is significantly stable without having an electron-withdrawing group on the C atom next to the pyridinium ring. Moreover, the X-ray structure clarifies that the equilibrium in the keto–enol tautomerism is shifted significantly to the enol form.

A view of the molecular structure of (I) is given in Fig. 1. The pyridinium ring is almost coplanar with the enol plane, and the pyridinium and perfluorophenyl rings adopt the E configuration. The N1—C6—C7—O1 and N1—C6—C7—C8 torsion angles are 0.2 (2) and -178.72 (13)°, respectively, suggesting double-bond character for the C6—C7 bond.

Several pyridinium ylides have previously been structurally characterized to date, all of them with an electron-withdrawing group at C6 contributing to the stabilization of the anionic charge. The bond lengths around the anions of these compounds are compared with those of (I) in Table 1. The C6—C7 distances for the reported pyridinium ylides are in the range 1.411–1.443 (5) Å, and the C7—O1 distances occur between 1.211 (3) and 1.242 (s.u.?) Å. The C6—C7 bond length of 1.3648 (19) Å in (I) is the shortest value ever reported for a pyridinium ylide and is also much shorter than the general Csp2—Csp2 bond length (Allen et al., 1987). It is, however, very close to that of the Csp2Csp2 bond of a classic enol tautomer (Allen et al., 1987) and is also close to the reported value of 1.360 (13) Å for the CC double bond in lithium 3,3-dimethyl-1-buten-2-olate [Cambridge Structural Database (CSD, Version 5.28; Allen, 2002) refcode DETRAV (Laube et al., 1985)]. In contrast, the C7—O1 distance of 1.257 (2) Å is the longest value among those reported and is intermediate between a CO double bond and a C—O single bond. The relatively shorter N1—C6 distance of (I) is also in agreement with the sp2 character of atom C6. These observed bond lengths strongly suggest that this pyridinium ylide exists in the enol form. It is important to note that when the perfluorophenyl ring was replaced with a phenyl ring, the ylide became unstable and could not be isolated. Therefore, the perfluorophenyl ring determines the stability of the pyridinium ylide.

The crystal structure of (I) is built up by two intramolecular C—H···O and C—H···F hydrogen bonds and two intermolecular C—H···O and C—H···F hydrogen bonds (Fig. 2 and Table 2) which are the result of the partial negative charges on O and F. The intramolecular C5—H5···O1 hydrogen bond results in the small C1—N1—C6—C7 torsion angle [7.7 (2)°]. The C5···O1 distance is much shorter than those of the other related pyridinium ylides, suggesting a stronger interaction for this hydrogen bond. On the other hand, the -56.04 (19)° torsion angle of C6—C7—C8—C9 is the result of the attractive C6—H6···F1 interaction and electrostatic repulsion between the negatively charged O and F atoms. These hydrogen bonds promote the formation of the enol form.

Molecules of (I) in the crystal structure are linked through two weak C—H···F and C—H···O hydrogen bonds, forming chains running along the a axis (Fig. 2). Atoms C5 and C6 in the molecule at (x, y, z) act as hydrogen-bond donors via atoms H5 and H6 to atoms C5 and F5 in the molecule at (x - 1/2, -y + 1/2, z). There are no other significant intermolecular interactions.

In summary, the significantly longer C—O and shorter C—C bond lengths around the anionic moiety demonstrate that the ylide (I) exists in the enol form. The perfluorophenyl group is responsible for the stability and promotion of the enol tautomer through intramolecular hydrogen bonds.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Kakehi (2005); Kanemasa et al. (1989); Kojima et al. (2000); Laube et al. (1985); Shestopalov et al. (1989); Tsuge et al. (1985); Vo et al. (1997); Wu & Chen (2002); Xia et al. (2006); Yamada et al. (2007); Zhang et al. (2000).

Experimental top

Triethylamine (75 ml, 0.53 mmol) was added to a solution of 1-(2-oxo-2-(perfluorophenyl)ethyl)pyridinium bromide (129 mg, 0.35 mmol) in CH2Cl2 (4 ml). The mixture was stirred at room temperature for 2 h. The product was extracted three times with CH2Cl2. The combined organic layer was dried over anhydrous MgSO4 and evaporated to give (I) (95.5 mg). The recrystallization of (I) from CH2Cl2 gave yellow crystals suitable for X-ray crystallographic analysis (yield 96%; decomposition point 377 K). IR (KBr, ν, cm-1): 1634 (s), 1570 (m), 1484 (m), 1372 (s); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 9.50 (d, J = 6.4 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.53 (m, 2H), 6.17 (s, 1H); MS m/z 287 (M+, 97%), 285 (100), 120 (48), 65 (51).

Refinement top

All H atoms were located in difference Fourier maps and refined isotropically without any restraints.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006) or SHELXTL?; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title pyridinium ylide, (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of compound (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x - 1/2, -y + 3/2, z; (ii) x + 1/2, -y + 3/2, z.]
(1-Pyridinio)perfluorophenacylide top
Crystal data top
C13H6F5NOF(000) = 576.00
Mr = 287.19Dx = 1.686 Mg m3
Monoclinic, P21/aCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yabCell parameters from 5146 reflections
a = 11.5658 (4) Åθ = 3.6–68.2°
b = 8.0116 (3) ŵ = 1.47 mm1
c = 12.2308 (4) ÅT = 296 K
β = 93.453 (2)°Prism, yellow
V = 1131.24 (7) Å30.40 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2056 independent reflections
Radiation source: fine-focus sealed tube1825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 68.2°, θmin = 6.6°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.592, Tmax = 0.867k = 99
12696 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1477P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2056 reflectionsΔρmax = 0.18 e Å3
207 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (7)
Crystal data top
C13H6F5NOV = 1131.24 (7) Å3
Mr = 287.19Z = 4
Monoclinic, P21/aCu Kα radiation
a = 11.5658 (4) ŵ = 1.47 mm1
b = 8.0116 (3) ÅT = 296 K
c = 12.2308 (4) Å0.40 × 0.25 × 0.10 mm
β = 93.453 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2056 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
1825 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.867Rint = 0.047
12696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.08Δρmax = 0.18 e Å3
2056 reflectionsΔρmin = 0.16 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.24693 (8)1.06550 (12)0.85795 (7)0.0647 (3)
F20.28115 (8)1.03358 (13)1.07499 (7)0.0673 (3)
F30.44075 (9)0.81399 (13)1.16103 (7)0.0687 (3)
F40.57016 (9)0.63476 (12)1.02752 (8)0.0706 (3)
F50.53203 (8)0.65352 (12)0.81009 (8)0.0679 (3)
O10.46787 (9)0.90855 (16)0.65392 (8)0.0649 (3)
N10.23436 (10)0.86968 (15)0.54225 (9)0.0503 (3)
C10.30972 (14)0.9183 (2)0.46700 (12)0.0574 (4)
C20.27583 (16)0.9272 (2)0.35822 (13)0.0659 (4)
C30.16487 (17)0.8845 (3)0.32194 (14)0.0714 (5)
C40.08934 (17)0.8350 (3)0.39810 (15)0.0761 (5)
C50.12391 (14)0.8283 (2)0.50654 (14)0.0666 (5)
C60.26590 (13)0.8601 (2)0.65533 (11)0.0534 (4)
C70.37595 (12)0.87934 (18)0.70037 (11)0.0484 (3)
C80.38702 (11)0.85931 (17)0.82457 (10)0.0462 (3)
C90.32453 (12)0.95199 (17)0.89630 (11)0.0479 (3)
C100.34107 (12)0.93749 (18)1.00832 (11)0.0498 (3)
C110.42220 (12)0.82862 (18)1.05265 (11)0.0507 (3)
C120.48707 (12)0.73598 (18)0.98433 (11)0.0512 (3)
C130.46833 (12)0.75087 (18)0.87253 (11)0.0494 (3)
H10.3862 (16)0.946 (2)0.4967 (14)0.066 (5)*
H20.3308 (17)0.971 (2)0.3078 (16)0.074 (5)*
H30.1399 (17)0.894 (2)0.2488 (16)0.077 (5)*
H40.011 (2)0.811 (3)0.3766 (17)0.086 (6)*
H50.0733 (18)0.802 (3)0.5631 (16)0.081 (6)*
H60.2045 (15)0.834 (2)0.6978 (14)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0620 (6)0.0727 (6)0.0595 (5)0.0196 (4)0.0050 (4)0.0034 (4)
F20.0627 (6)0.0868 (7)0.0540 (5)0.0017 (4)0.0159 (4)0.0206 (4)
F30.0742 (6)0.0901 (7)0.0413 (4)0.0148 (5)0.0010 (4)0.0012 (4)
F40.0621 (6)0.0771 (6)0.0707 (6)0.0094 (4)0.0111 (4)0.0067 (5)
F50.0618 (6)0.0783 (6)0.0648 (5)0.0184 (4)0.0131 (4)0.0104 (4)
O10.0450 (6)0.1040 (9)0.0465 (6)0.0079 (5)0.0107 (4)0.0003 (5)
N10.0463 (6)0.0616 (7)0.0433 (6)0.0041 (5)0.0059 (5)0.0004 (5)
C10.0505 (8)0.0753 (10)0.0471 (8)0.0043 (7)0.0102 (6)0.0004 (6)
C20.0657 (10)0.0866 (12)0.0464 (8)0.0019 (8)0.0102 (7)0.0018 (7)
C30.0776 (12)0.0909 (12)0.0448 (8)0.0046 (9)0.0039 (8)0.0003 (8)
C40.0618 (11)0.1043 (14)0.0606 (9)0.0176 (9)0.0095 (8)0.0038 (9)
C50.0513 (9)0.0927 (12)0.0560 (9)0.0152 (8)0.0038 (7)0.0059 (8)
C60.0458 (7)0.0741 (10)0.0412 (7)0.0060 (6)0.0092 (6)0.0021 (6)
C70.0466 (7)0.0577 (8)0.0417 (7)0.0008 (6)0.0090 (5)0.0027 (5)
C80.0412 (7)0.0548 (7)0.0431 (7)0.0055 (5)0.0069 (5)0.0038 (5)
C90.0414 (7)0.0534 (7)0.0494 (7)0.0012 (5)0.0058 (5)0.0030 (5)
C100.0454 (7)0.0601 (8)0.0448 (7)0.0093 (6)0.0114 (5)0.0097 (6)
C110.0492 (8)0.0620 (8)0.0408 (6)0.0155 (6)0.0028 (5)0.0004 (6)
C120.0440 (7)0.0556 (8)0.0534 (8)0.0047 (6)0.0014 (6)0.0033 (6)
C130.0423 (7)0.0561 (8)0.0506 (7)0.0011 (5)0.0081 (5)0.0058 (6)
Geometric parameters (Å, º) top
F1—C91.3423 (16)C7—C81.5252 (18)
F2—C101.3438 (17)C8—C91.3856 (19)
F3—C111.3352 (15)C8—C131.3845 (18)
F4—C121.3413 (16)C9—C101.3768 (18)
F5—C131.3424 (17)C10—C111.3689 (19)
O1—C71.2572 (17)C11—C121.374 (2)
N1—C11.3619 (19)C12—C131.3767 (18)
N1—C51.3657 (19)C1—H10.962 (18)
N1—C61.4110 (17)C2—H20.98 (2)
C1—C21.366 (2)C3—H30.926 (19)
C2—C31.376 (2)C4—H40.94 (2)
C3—C41.373 (2)C5—H50.96 (2)
C4—C51.363 (2)C6—H60.928 (18)
C6—C71.3648 (19)
F1···F3i2.9442 (14)C12···C10ii3.283 (2)
F1···F4ii3.4420 (13)C13···F2vi3.4628 (17)
F1···F4iii3.4009 (13)C13···F2ii3.4008 (16)
F1···F5iii3.0698 (13)C13···F4ix3.3620 (17)
F1···C3iv3.562 (2)C13···C10ii3.5819 (19)
F1···C10i3.5768 (17)F1···H3iv3.250 (19)
F1···C11i3.1182 (17)F2···H2v2.914 (19)
F2···F4ii3.4423 (14)F2···H3v2.98 (2)
F2···F4iii2.8178 (13)F3···H2v2.59 (2)
F2···F5ii3.5444 (13)F3···H3vii2.991 (19)
F2···C2v3.5716 (18)F3···H4vii2.89 (2)
F2···C3v3.584 (2)F4···H3vii2.787 (19)
F2···C8i3.5200 (16)F5···H3x2.935 (19)
F2···C9i3.5924 (17)F5···H4x3.58 (2)
F2···C12i3.5367 (16)F5···H5viii3.11 (2)
F2···C12ii3.3698 (17)F5···H6viii2.492 (18)
F2···C13i3.4628 (17)O1···H1xi2.824 (18)
F2···C13ii3.4008 (16)O1···H2xi2.539 (19)
F3···F1vi2.9442 (14)O1···H4iv3.26 (2)
F3···O1ii3.3004 (14)O1···H5viii2.39 (2)
F3···C2v3.291 (2)O1···H6viii3.372 (17)
F3···C3vii3.537 (2)C1···H4viii3.22 (2)
F3···C4vii3.491 (2)C1···H5iv3.39 (2)
F3···C8ii3.2875 (16)C2···H4viii3.32 (2)
F3···C9ii3.4067 (17)C2···H5iv3.57 (2)
F4···F1ii3.4420 (13)C2···H6iv3.339 (16)
F4···F1viii3.4009 (13)C4···H1x3.377 (18)
F4···F2ii3.4423 (14)C4···H1iii3.519 (18)
F4···F2viii2.8178 (13)C4···H5xiv3.51 (2)
F4···F4ix2.7600 (13)C5···H1x3.066 (18)
F4···F5ix3.3104 (13)C5···H1iii3.516 (18)
F4···C9viii3.5047 (17)C6···H2x3.353 (19)
F4···C10viii3.2088 (17)C7···H5viii3.26 (2)
F4···C12ix3.0446 (17)C11···H2v3.54 (2)
F4···C13ix3.3620 (17)C13···H3x3.421 (19)
F5···F1viii3.0698 (13)H1···O1xi2.824 (18)
F5···F2ii3.5444 (13)H1···C4iv3.377 (18)
F5···F4ix3.3104 (13)H1···C4viii3.519 (18)
F5···C3x3.463 (2)H1···C5iv3.066 (18)
F5···C6viii3.3953 (17)H1···C5viii3.516 (18)
F5···C9viii3.5835 (16)H1···H1xi2.77 (2)
O1···F3ii3.3004 (14)H1···H4iv3.48 (2)
O1···C1xi3.3448 (19)H1···H4viii2.96 (2)
O1···C2xi3.255 (2)H1···H5iv2.99 (2)
O1···C4iv3.531 (2)H1···H5viii3.01 (2)
O1···C5viii3.240 (2)H2···F2xii2.914 (19)
C1···O1xi3.3448 (19)H2···F3xii2.59 (2)
C1···C5iv3.385 (2)H2···O1xi2.539 (19)
C2···F2xii3.5716 (18)H2···C6iv3.353 (19)
C2···F3xii3.291 (2)H2···C11xii3.54 (2)
C2···O1xi3.255 (2)H2···H4viii3.16 (2)
C2···C6iv3.504 (2)H2···H5iv3.25 (2)
C3···F1x3.562 (2)H2···H6iv2.94 (2)
C3···F2xii3.584 (2)H3···F1x3.250 (19)
C3···F3xiii3.537 (2)H3···F2xii2.98 (2)
C3···F5iv3.463 (2)H3···F3xiii2.991 (19)
C4···F3xiii3.491 (2)H3···F4xiii2.787 (19)
C4···O1x3.531 (2)H3···F5iv2.935 (19)
C5···O1iii3.240 (2)H3···C13iv3.421 (19)
C5···C1x3.385 (2)H4···F3xiii2.89 (2)
C6···F5iii3.3953 (17)H4···F5iv3.58 (2)
C6···C2x3.504 (2)H4···O1x3.26 (2)
C8···F2vi3.5200 (16)H4···C1iii3.22 (2)
C8···F3ii3.2875 (16)H4···C2iii3.32 (2)
C9···F2vi3.5924 (17)H4···H1x3.48 (2)
C9···F3ii3.4067 (17)H4···H1iii2.96 (2)
C9···F4iii3.5047 (17)H4···H2iii3.16 (2)
C9···F5iii3.5835 (16)H4···H5xiv3.35 (3)
C9···C11ii3.4408 (19)H5···F5iii3.11 (2)
C9···C12ii3.5701 (19)H5···O1iii2.39 (2)
C10···F1vi3.5768 (17)H5···C1x3.39 (2)
C10···F4iii3.2088 (17)H5···C2x3.57 (2)
C10···C11ii3.437 (2)H5···C4xiv3.51 (2)
C10···C12ii3.283 (2)H5···C7iii3.26 (2)
C10···C13ii3.5819 (19)H5···H1x2.99 (2)
C11···F1vi3.1182 (17)H5···H1iii3.01 (2)
C11···C9ii3.4408 (19)H5···H2x3.25 (2)
C11···C10ii3.437 (2)H5···H4xiv3.35 (3)
C11···C11ii3.566 (2)H6···F5iii2.492 (18)
C12···F2vi3.5367 (16)H6···O1iii3.372 (17)
C12···F2ii3.3698 (17)H6···C2x3.339 (16)
C12···F4ix3.0446 (17)H6···H2x2.94 (2)
C12···C9ii3.5701 (19)
C1—N1—C5118.53 (12)F3—C11—C10120.96 (12)
C1—N1—C6122.66 (12)F3—C11—C12119.70 (12)
C5—N1—C6118.81 (12)C10—C11—C12119.32 (12)
N1—C1—C2121.02 (14)F4—C12—C11119.45 (12)
C1—C2—C3120.57 (16)F4—C12—C13120.65 (12)
C2—C3—C4118.18 (15)C11—C12—C13119.88 (12)
C3—C4—C5120.66 (17)F5—C13—C8120.37 (11)
N1—C5—C4121.04 (15)F5—C13—C12117.11 (12)
N1—C6—C7124.70 (13)C8—C13—C12122.51 (12)
O1—C7—C6129.20 (12)N1—C1—H1115.0 (10)
O1—C7—C8116.56 (11)C2—C1—H1124.0 (10)
C6—C7—C8114.23 (12)C1—C2—H2118.3 (11)
C7—C8—C9123.96 (11)C3—C2—H2121.0 (11)
C7—C8—C13120.14 (11)C2—C3—H3121.4 (12)
C9—C8—C13115.78 (11)C4—C3—H3120.4 (12)
F1—C9—C8120.34 (11)C3—C4—H4120.4 (13)
F1—C9—C10117.05 (12)C5—C4—H4118.8 (13)
C8—C9—C10122.57 (12)N1—C5—H5115.1 (12)
F2—C10—C9120.64 (12)C4—C5—H5123.8 (12)
F2—C10—C11119.40 (11)N1—C6—H6113.5 (10)
C9—C10—C11119.92 (13)C7—C6—H6121.7 (10)
C1—N1—C5—C40.1 (2)C9—C8—C13—F5178.91 (12)
C5—N1—C1—C20.6 (2)C9—C8—C13—C120.4 (2)
C1—N1—C6—C77.7 (2)C13—C8—C9—F1177.32 (12)
C6—N1—C1—C2179.52 (15)C13—C8—C9—C100.4 (2)
C5—N1—C6—C7172.20 (15)F1—C9—C10—F20.15 (19)
C6—N1—C5—C4179.78 (17)F1—C9—C10—C11177.48 (12)
N1—C1—C2—C31.1 (2)C8—C9—C10—F2177.89 (12)
C1—C2—C3—C40.8 (2)C8—C9—C10—C110.3 (2)
C2—C3—C4—C50.1 (2)F2—C10—C11—F31.5 (2)
C3—C4—C5—N10.4 (3)F2—C10—C11—C12177.06 (12)
N1—C6—C7—O10.2 (2)C9—C10—C11—F3179.15 (12)
N1—C6—C7—C8178.72 (13)C9—C10—C11—C120.6 (2)
O1—C7—C8—C9124.87 (15)F3—C11—C12—F41.5 (2)
O1—C7—C8—C1350.93 (18)F3—C11—C12—C13179.91 (12)
C6—C7—C8—C956.04 (19)C10—C11—C12—F4177.04 (12)
C6—C7—C8—C13128.16 (14)C10—C11—C12—C131.3 (2)
C7—C8—C9—F11.3 (2)F4—C12—C13—F53.6 (2)
C7—C8—C9—C10176.32 (13)F4—C12—C13—C8177.09 (12)
C7—C8—C13—F54.95 (19)C11—C12—C13—F5178.08 (12)
C7—C8—C13—C12175.72 (13)C11—C12—C13—C81.3 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1, y+2, z+2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z+1; (vi) x+1/2, y1/2, z+2; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y+3/2, z; (ix) x+1, y+1, z+2; (x) x+1/2, y1/2, z+1; (xi) x+1, y+2, z+1; (xii) x, y, z1; (xiii) x1/2, y+3/2, z1; (xiv) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F10.94 (2)2.72 (2)2.994 (2)97.7 (11)
C1—H1···O10.97 (2)2.10 (2)2.842 (2)131.7 (15)
C5—H5···O1iii0.97 (2)2.39 (2)3.240 (2)147.3 (17)
C6—H6···F5iii0.94 (2)2.48 (2)3.396 (2)164.9 (14)
Symmetry code: (iii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC13H6F5NO
Mr287.19
Crystal system, space groupMonoclinic, P21/a
Temperature (K)296
a, b, c (Å)11.5658 (4), 8.0116 (3), 12.2308 (4)
β (°) 93.453 (2)
V3)1131.24 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.47
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.592, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
12696, 2056, 1825
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.104, 1.08
No. of reflections2056
No. of parameters207
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC & Rigaku, 2006) or SHELXTL?, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F10.94 (2)2.72 (2)2.994 (2)97.7 (11)
C1—H1···O10.97 (2)2.10 (2)2.842 (2)131.7 (15)
C5—H5···O1i0.97 (2)2.39 (2)3.240 (2)147.3 (17)
C6—H6···F5i0.94 (2)2.48 (2)3.396 (2)164.9 (14)
Symmetry code: (i) x1/2, y+3/2, z.
Comparison of the bond lengths (Å) in various pyridinium ylides; comparative data from the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002) top
CSD RefcodeN1—C6C6—C7C7—O1Reference
(I)1.4110 (17)1.3648 (19)1.2572 (17)a
AHENAC1.400 (2)1.421 (2)1.231 (2)b
BCAIMP1.41051.41131.2273c
FALPAJ1.444 (5)1.443 (5)1.229 (5)d
FEFLEI1.422 (4)1.412 (5)1.241 (4)e
FOBNEQ1.404 (3)1.426 (4)1.219 (3)f
IZARAC1.408 (2)1.416 (3)1.230 (2)g
LAHLAI1.457 (3)1.428 (4)1.211 (3)h
PYINDB1.41931.42851.2415i
VAMQEG1.4400 (11)1.4105 (12)1.2269 (12)j
YARYUM1.407 (12)1.427 (2)1.221 (2)k
Notes: (a) this work; (b) Kolev et al. (2002); (c) Friedman et al. (1978); (d) Banks et al. (1986); (e) Uçar et al. (2005); (f) Kolev, Yancheva et al. (2005); (g) Kolev et al. (2004); (h) Bansal et al. (2004); (i) Kaminskii et al. (1976); (j) Kuhn et al. (2003); (k) Kolev, Wortmann et al. (2005).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds