Download citation
Download citation
link to html
Atenolol {or 4-[2-hydr­oxy-3-(isopropyl­amino)prop­oxy]­phenyl­acetamide} crystallizes with 4-amino­benzoic acid to give the salt {3-[4-(amino­carbonyl­meth­yl)phen­oxy]-2-hydroxy­prop­yl}isopropyl­ammonium 4-amino­benzoate monohydrate, C14H23N2O3+·C7H6NO2-·H2O. In the crystal structure, the water mol­ecule, the carboxyl­ate group of 4-amino­benzoate, and the hydr­oxy and ether O atoms of atenolol form a supra­molecular R33(11) heterosynthon. Three other types of supra­molecular synthons link the asymmetric unit into a two-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107051049/sq3104sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051049/sq3104Isup2.hkl
Contains datablock I

CCDC reference: 672543

Comment top

Multicomponent crystals of active pharmaceutical ingredients (APIs) may offer advantages over the corresponding APIs in terms of physical properties such as crystallinity, solubility and dissolution rate (Black et al., 2007; Childs et al., 2007). Hydrogen-bonded supramolecular synthons are commonly used as a reliable method in the formation of these crystals (Wenger & Bernstein, 2006). Recently, the hierarchy of synthons in a competitive environment has been intensively studied (Bis et al., 2007). Atenolol, 4-[2-hydroxy-(3-isopropylaminomethyl)propoxy]phenylacetamide, is a drug belonging to the group of beta blockers used primarily in cardiovascular diseases. From the viewpoint of crystal engineering, atenolol can provide various hydrogen-bonding interactions since it contains multiple typical hydrogen-bonding groups. Recently, Cai et al. (2006) reported its hydrated succinate and fumarate salts, in which various hydrogen bonds result in three-dimensional structures. In this study, we chose 4-aminobenzoic acid as a second component containing both amino and carboxylic acid groups in the structure and prepared the monohydrous molecular salt of atenolol, (I), in which versatile hydrogen-bonding interactions result in a two-dimensional structure.

The crystal structure of (I) contains one atenolol, one 4-aminobenzoic acid and one water molecule in the asymmetric unit. Difference Fourier maps show that 4-aminobenzoic acid transfers the carboxylic acid H atom to the secondary amine of atenolol. The C—O distances in the carboxylate group of 4-aminobenzoic acid are equal within error margins [1.264 (2) and 1.263 (2) Å, respectively]. The water molecule is simultaneously hydrogen bonded to the carboxylate group of 4-aminobenzoic acid and the ether O atom of atenolol (O6—H6B···O4- and O6—H6A ···O2; Table 1). The hydroxy group of atenolol is also hydrogen bonded to the carboxylate group of 4-aminobenzoic acid (O3—H3···O5-), forming a supramolecular R33(11) heterosynthon (Fig. 1). The amide group of atenolol is hydrogen-bonded to the amine group of another 4-aminobenzoic acid molecule [N3—H3A···O1(1 - x, 2 - y, 1 - z)], which generates a centrosymmetric tetramer based on the R66(38) synthon. Moreover, N2+—H8···O6(1 - x, 2 - y, 1 - z) hydrogen bonds between the water molecule and the protonated secondary amine of atenolol participate in the formation of the tetramer. The tetramer is further linked into a one-dimensional chain structure along the b axis by N2+—H9···O3(1 - x, 1 - y, 1 - z) hydrogen bonds between the hydroxy group and the secondary amine from an adjacent atenolol molecule, generating a self-complementary R22(10) synthon (Fig. 2). The amide group of atenolol is also involved in hydrogen-bonding interactions with the carboxylate group of 4-aminobenzoic acid [N1—H1B···O4(1 - x, y, 3/2 - z)], giving a centrosymmetric R64(26) ring which connects the one-dimensional chain into a two-dimensional structure (Fig. 3).

Atenolol contains an amide group, a secondary amine, and hydroxy and ether O atoms. For such a complicated system, it is difficult to predict reliable supramolecular synthons. In the structure of its succinate salt (Cai et al., 2006), the carboxylate group of succinic acid is simultaneously hydrogen bonded to the hydroxy and secondary amine groups of atenolol, generating a centrosymmetric three-component adduct. There exists a hydrogen-bonded chain of amide groups linking the adduct into a two-dimensional structure, which is further linked into a three-dimensional structure by hydrogen bonds between amide and carboxylate groups, together with hydrogen bonds between hydroxy and secondary amine groups. By contrast, in (I), no hydrogen bonding is formed between the carboxylate group of 4-aminobenzoic acid and the secondary amine of atenolol, although 4-aminobenzoic acid transfers its carboxylic acid H atom to the secondary amine. Moreover, the ether O atom of atenolol also participates in hydrogen-bonding interactions, resulting in the R33(11) synthon. The hydrogen-bonding pattern of the amide group in (I) is also different from that in the succinate salt. The amide group generates two rings, R66(38) and R64(26), with amine and carboxylate groups of 4-aminobenzoic acid, respectively. Thus, atenolol interacts with 4-aminobenzoic acid through three types of featured synthons.

In conclusion, in the structure of (I), the water molecule, the carboxylate group of 4-aminobenzoic acid, and hydroxy and ether O atoms of atenolol form a supramolecular heterosynthon R33(11), while three other types of self-complementary supramolecular synthons, R66(38), R64(26) and R22(10), link the asymmetric unit into a two-dimensional structure.

Related literature top

For related literature, see: Bis et al. (2007); Black et al. (2007); Cai et al. (2006); Childs et al. (2007); Wenger & Bernstein (2006).

Experimental top

A mixture of atenolol (0.067 g, 0.25 mmol) and 4-aminobenzoic acid (0.034 g, 0.25 mmol) was dissolved in ethanol (95%) (15 ml). The solution was kept in air and after several days colorless crystals were obtained. Differential scanning calorimetry showed two endothermic peaks, at 395 and 434 K.

Refinement top

The structure was solved by direct methods. All non-H atoms were refined with anisotropic displacement parameters. H atoms bonded to C atoms were positioned geometrically and treated as riding [C—H = 0.95–1.00 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C)]. H atoms bonded to N and O were located in difference maps and were refined with a distance restraint of O—H = N—H = 0.86 (1) Å. The displacement parameters were freely refined. The maximum residual electron density is larger than normally expected. The nearest atom to this maximum is atom C10 at a distance of 1.15 Å.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot of (I), with 50% probability. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The one-dimensional structure of (I) along the b axis. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The two-dimensional structure of (I) viewed along the b axis. Dashed lines indicate hydrogen bonds.
{3-[4-(aminocarbonylmethyl)phenoxy]-2-hydroxypropyl)isopropylammonium 4-aminobenzoate monohydrate top
Crystal data top
C14H23N2O3+·C7H6NO2·H2OF(000) = 1808
Mr = 421.49Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 31999 reflections
a = 28.547 (6) Åθ = 2.6–27.5°
b = 7.4223 (15) ŵ = 0.10 mm1
c = 23.822 (5) ÅT = 150 K
β = 122.34 (3)°Prism, colorless
V = 4265 (2) Å30.48 × 0.20 × 0.16 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3926 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = 3636
CCD scansk = 89
8459 measured reflectionsl = 3030
4897 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0684P)2 + 3.821P]
where P = (Fo2 + 2Fc2)/3
4897 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.66 e Å3
9 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H23N2O3+·C7H6NO2·H2OV = 4265 (2) Å3
Mr = 421.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.547 (6) ŵ = 0.10 mm1
b = 7.4223 (15) ÅT = 150 K
c = 23.822 (5) Å0.48 × 0.20 × 0.16 mm
β = 122.34 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3926 reflections with I > 2σ(I)
8459 measured reflectionsRint = 0.021
4897 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0489 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.66 e Å3
4897 reflectionsΔρmin = 0.28 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73138 (5)1.06180 (19)0.95218 (6)0.0379 (3)
O20.57171 (5)0.80667 (17)0.66372 (5)0.0274 (3)
O30.50747 (5)0.65977 (16)0.54222 (6)0.0256 (3)
H30.4804 (8)0.697 (4)0.5025 (7)0.070 (8)*
O40.37605 (5)0.87151 (18)0.45027 (6)0.0327 (3)
O50.43244 (5)0.75400 (17)0.42186 (6)0.0295 (3)
O60.45848 (5)0.97970 (16)0.57502 (6)0.0281 (3)
H6A0.4876 (7)0.913 (3)0.5921 (12)0.058 (7)*
H6B0.4339 (8)0.934 (3)0.5368 (7)0.056 (7)*
N10.70651 (6)1.0551 (2)1.02724 (7)0.0314 (3)
H1A0.7251 (8)1.154 (2)1.0446 (11)0.043 (6)*
H1B0.6844 (8)1.008 (3)1.0379 (11)0.039 (6)*
N20.54407 (6)0.65511 (19)0.45103 (7)0.0222 (3)
H80.5382 (8)0.7656 (15)0.4369 (9)0.032 (5)*
H90.5137 (6)0.608 (3)0.4443 (10)0.033 (5)*
N30.22681 (6)0.9619 (2)0.13403 (7)0.0321 (3)
H3A0.2401 (8)0.967 (3)0.1088 (9)0.034 (5)*
H3B0.2034 (8)1.046 (2)0.1274 (11)0.041 (6)*
C10.70517 (7)0.9912 (2)0.97382 (8)0.0261 (3)
C20.67087 (7)0.8208 (2)0.94343 (8)0.0261 (3)
H2A0.69500.71440.96460.031*
H2B0.64120.81690.95320.031*
C30.64480 (6)0.8094 (2)0.86914 (8)0.0233 (3)
C40.59326 (7)0.8875 (2)0.82566 (8)0.0280 (4)
H40.57390.94480.84310.034*
C50.56977 (7)0.8832 (2)0.75769 (8)0.0282 (4)
H50.53470.93770.72880.034*
C60.67132 (6)0.7238 (2)0.84205 (8)0.0251 (3)
H60.70630.66850.87090.030*
C70.64824 (6)0.7166 (2)0.77379 (8)0.0251 (3)
H70.66700.65590.75630.030*
C80.59759 (6)0.7990 (2)0.73166 (7)0.0230 (3)
C90.59748 (6)0.7151 (2)0.63417 (7)0.0222 (3)
H9A0.60260.58580.64630.027*
H9B0.63410.76880.64920.027*
C100.55851 (6)0.7380 (2)0.55980 (7)0.0222 (3)
H100.55280.86950.54900.027*
C110.58429 (6)0.6518 (2)0.52428 (7)0.0226 (3)
H11A0.61830.71830.53540.027*
H11B0.59480.52570.53940.027*
C120.56114 (7)0.5527 (2)0.41016 (8)0.0263 (4)
H120.56820.42450.42550.032*
C130.61379 (8)0.6293 (3)0.41884 (10)0.0334 (4)
H13A0.64470.61060.46470.050*
H13B0.60900.75860.40900.050*
H13C0.62180.56830.38840.050*
C140.51309 (8)0.5568 (3)0.33857 (9)0.0398 (5)
H14A0.50640.68120.32230.060*
H14B0.47980.50940.33560.060*
H14C0.52200.48260.31150.060*
C150.38704 (6)0.8242 (2)0.40757 (8)0.0232 (3)
C160.34397 (6)0.8527 (2)0.33539 (8)0.0217 (3)
C170.35378 (6)0.8016 (2)0.28615 (8)0.0241 (3)
H170.38760.74280.29860.029*
C180.31528 (7)0.8349 (2)0.21960 (8)0.0255 (3)
H180.32240.79600.18680.031*
C190.29433 (6)0.9401 (2)0.31583 (8)0.0238 (3)
H190.28670.97500.34850.029*
C200.25600 (6)0.9771 (2)0.24964 (8)0.0247 (3)
H200.22261.03800.23750.030*
C210.26583 (6)0.9259 (2)0.20052 (8)0.0247 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (7)0.0451 (8)0.0357 (7)0.0137 (6)0.0250 (6)0.0130 (6)
O20.0247 (6)0.0380 (7)0.0172 (5)0.0050 (5)0.0096 (5)0.0017 (5)
O30.0235 (6)0.0281 (6)0.0225 (6)0.0037 (5)0.0106 (5)0.0009 (5)
O40.0296 (6)0.0454 (8)0.0232 (6)0.0003 (5)0.0142 (5)0.0016 (5)
O50.0239 (6)0.0340 (7)0.0247 (6)0.0044 (5)0.0090 (5)0.0039 (5)
O60.0296 (6)0.0281 (6)0.0274 (6)0.0044 (5)0.0158 (5)0.0019 (5)
N10.0334 (8)0.0360 (9)0.0223 (7)0.0007 (7)0.0132 (6)0.0052 (6)
N20.0231 (7)0.0247 (7)0.0195 (7)0.0029 (5)0.0119 (6)0.0021 (5)
N30.0251 (7)0.0450 (9)0.0228 (7)0.0017 (7)0.0106 (6)0.0047 (7)
C10.0227 (7)0.0315 (9)0.0197 (7)0.0031 (7)0.0084 (6)0.0025 (7)
C20.0269 (8)0.0316 (9)0.0194 (8)0.0001 (7)0.0121 (7)0.0012 (7)
C30.0222 (7)0.0262 (8)0.0200 (7)0.0032 (6)0.0103 (6)0.0026 (6)
C40.0244 (8)0.0358 (9)0.0252 (8)0.0029 (7)0.0141 (7)0.0044 (7)
C50.0205 (7)0.0387 (9)0.0217 (8)0.0048 (7)0.0089 (6)0.0023 (7)
C60.0215 (7)0.0295 (8)0.0204 (8)0.0037 (6)0.0085 (6)0.0002 (7)
C70.0235 (8)0.0294 (8)0.0229 (8)0.0031 (6)0.0128 (7)0.0029 (7)
C80.0210 (7)0.0275 (8)0.0183 (7)0.0023 (6)0.0090 (6)0.0030 (6)
C90.0227 (7)0.0254 (8)0.0189 (7)0.0025 (6)0.0114 (6)0.0036 (6)
C100.0221 (7)0.0250 (8)0.0190 (7)0.0023 (6)0.0105 (6)0.0005 (6)
C110.0231 (7)0.0252 (8)0.0166 (7)0.0009 (6)0.0088 (6)0.0004 (6)
C120.0355 (9)0.0232 (8)0.0263 (8)0.0029 (7)0.0206 (7)0.0041 (7)
C130.0369 (9)0.0347 (9)0.0373 (10)0.0009 (8)0.0255 (8)0.0047 (8)
C140.0437 (11)0.0518 (12)0.0258 (9)0.0092 (9)0.0198 (8)0.0098 (9)
C150.0228 (7)0.0214 (7)0.0229 (8)0.0045 (6)0.0106 (6)0.0022 (6)
C160.0201 (7)0.0215 (7)0.0224 (8)0.0035 (6)0.0106 (6)0.0011 (6)
C170.0205 (7)0.0246 (8)0.0281 (8)0.0002 (6)0.0136 (7)0.0012 (7)
C180.0264 (8)0.0288 (8)0.0236 (8)0.0011 (6)0.0150 (7)0.0003 (7)
C190.0243 (8)0.0258 (8)0.0236 (8)0.0025 (6)0.0143 (7)0.0001 (6)
C200.0193 (7)0.0280 (8)0.0261 (8)0.0005 (6)0.0116 (6)0.0028 (7)
C210.0219 (7)0.0273 (8)0.0229 (8)0.0042 (6)0.0105 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C11.230 (2)C6—H60.9500
O2—C81.3745 (19)C7—C81.385 (2)
O2—C91.4329 (19)C7—H70.9500
O3—C101.4078 (19)C9—C101.515 (2)
O3—H30.887 (10)C9—H9A0.9900
O4—C151.264 (2)C9—H9B0.9900
O5—C151.263 (2)C10—C111.528 (2)
O6—H6A0.862 (10)C10—H101.0000
O6—H6B0.866 (10)C11—H11A0.9900
N1—C11.339 (2)C11—H11B0.9900
N1—H1B0.868 (10)C12—C141.513 (3)
N1—H1A0.868 (10)C12—C131.514 (2)
N2—C111.490 (2)C12—H121.0000
N2—C121.507 (2)C13—H13A0.9800
N2—H80.868 (9)C13—H13B0.9800
N2—H90.866 (9)C13—H13C0.9800
N3—C211.390 (2)C14—H14A0.9800
N3—H3A0.865 (9)C14—H14B0.9800
N3—H3B0.866 (10)C14—H14C0.9800
C1—C21.524 (2)C15—C161.500 (2)
C2—C31.511 (2)C16—C191.393 (2)
C2—H2A0.9900C16—C171.396 (2)
C2—H2B0.9900C17—C181.385 (2)
C3—C61.384 (2)C17—H170.9500
C3—C41.394 (2)C18—C211.403 (2)
C4—C51.382 (2)C18—H180.9500
C4—H40.9500C19—C201.383 (2)
C5—C81.390 (2)C19—H190.9500
C5—H50.9500C20—C211.394 (2)
C6—C71.391 (2)C20—H200.9500
C8—O2—C9117.71 (12)C9—C10—C11109.30 (13)
C10—O3—H3111.2 (18)O3—C10—H10109.1
H6A—O6—H6B108 (2)C9—C10—H10109.1
C1—N1—H1B118.6 (15)C11—C10—H10109.1
C1—N1—H1A116.8 (16)N2—C11—C10110.12 (12)
H1B—N1—H1A124 (2)N2—C11—H11A109.6
C11—N2—C12115.81 (13)C10—C11—H11A109.6
C11—N2—H8109.8 (14)N2—C11—H11B109.6
C12—N2—H8106.7 (13)C10—C11—H11B109.6
C11—N2—H9106.2 (14)H11A—C11—H11B108.2
C12—N2—H9108.1 (14)N2—C12—C14107.84 (14)
H8—N2—H9110.2 (19)N2—C12—C13111.26 (13)
C21—N3—H3A114.7 (14)C14—C12—C13112.44 (15)
C21—N3—H3B114.6 (15)N2—C12—H12108.4
H3A—N3—H3B115 (2)C14—C12—H12108.4
O1—C1—N1122.19 (17)C13—C12—H12108.4
O1—C1—C2122.31 (15)C12—C13—H13A109.5
N1—C1—C2115.45 (15)C12—C13—H13B109.5
C3—C2—C1113.05 (14)H13A—C13—H13B109.5
C3—C2—H2A109.0C12—C13—H13C109.5
C1—C2—H2A109.0H13A—C13—H13C109.5
C3—C2—H2B109.0H13B—C13—H13C109.5
C1—C2—H2B109.0C12—C14—H14A109.5
H2A—C2—H2B107.8C12—C14—H14B109.5
C6—C3—C4117.88 (14)H14A—C14—H14B109.5
C6—C3—C2121.47 (14)C12—C14—H14C109.5
C4—C3—C2120.65 (15)H14A—C14—H14C109.5
C5—C4—C3121.24 (15)H14B—C14—H14C109.5
C5—C4—H4119.4O5—C15—O4123.95 (15)
C3—C4—H4119.4O5—C15—C16117.42 (14)
C4—C5—C8119.86 (15)O4—C15—C16118.63 (14)
C4—C5—H5120.1C19—C16—C17118.08 (14)
C8—C5—H5120.1C19—C16—C15120.82 (14)
C3—C6—C7121.84 (15)C17—C16—C15121.00 (14)
C3—C6—H6119.1C18—C17—C16121.36 (15)
C7—C6—H6119.1C18—C17—H17119.3
C8—C7—C6119.21 (15)C16—C17—H17119.3
C8—C7—H7120.4C17—C18—C21120.09 (15)
C6—C7—H7120.4C17—C18—H18120.0
O2—C8—C7124.51 (14)C21—C18—H18120.0
O2—C8—C5115.53 (14)C20—C19—C16121.13 (15)
C7—C8—C5119.95 (15)C20—C19—H19119.4
O2—C9—C10105.80 (12)C16—C19—H19119.4
O2—C9—H9A110.6C19—C20—C21120.72 (15)
C10—C9—H9A110.6C19—C20—H20119.6
O2—C9—H9B110.6C21—C20—H20119.6
C10—C9—H9B110.6N3—C21—C20120.36 (15)
H9A—C9—H9B108.7N3—C21—C18121.04 (15)
O3—C10—C9107.30 (12)C20—C21—C18118.59 (15)
O3—C10—C11113.01 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O20.86 (1)2.22 (1)3.042 (2)161 (2)
O6—H6B···O40.87 (1)1.89 (1)2.744 (2)171 (3)
O3—H3···O50.89 (1)1.71 (1)2.5937 (19)172 (3)
N1—H1B···O4i0.87 (1)2.15 (1)3.008 (2)171 (2)
N3—H3A···O1ii0.87 (1)2.02 (1)2.880 (2)171 (2)
N2—H8···O6ii0.87 (1)1.92 (1)2.7729 (19)166 (2)
N2—H9···O3iii0.87 (1)2.15 (2)2.8120 (19)133 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H23N2O3+·C7H6NO2·H2O
Mr421.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)28.547 (6), 7.4223 (15), 23.822 (5)
β (°) 122.34 (3)
V3)4265 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8459, 4897, 3926
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.08
No. of reflections4897
No. of parameters309
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.28

Computer programs: COLLECT (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O20.862 (10)2.216 (13)3.042 (2)161 (2)
O6—H6B···O40.866 (10)1.885 (11)2.744 (2)171 (3)
O3—H3···O50.887 (10)1.712 (11)2.5937 (19)172 (3)
N1—H1B···O4i0.868 (10)2.147 (10)3.008 (2)171 (2)
N3—H3A···O1ii0.865 (9)2.022 (10)2.880 (2)171 (2)
N2—H8···O6ii0.868 (9)1.921 (11)2.7729 (19)166 (2)
N2—H9···O3iii0.866 (9)2.150 (17)2.8120 (19)132.9 (18)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds