Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, poly[triaqua­bis(dimethyl­formamide)di-[mu]3-oxalato-[mu]2-oxalato-dilanthanum(III)], [La2(C2O4)3(C3H7NO)(H2O)3]n, both La ions are coordinated by nine O atoms, forming slightly distorted tricapped trigonal prisms. The two La ions, the terminal water O atom, and the O and N atoms of the dimethyl­formamide mol­ecule reside on twofold rotation axes, giving the two La-centered coordination geometries twofold or pseudo-twofold symmetries. The two oxalate ligands, one of which rests on a center of inversion at the mid-point of the C-C bond, adopt different bridging modes, connecting with the La ions to form two types of lanthanide oxalate chains, i.e. anionic {[La(C2O4)2(DMF)(H2O)2]n-}n (DMF is dimethyl­formamide) and cationic zigzag {[La(C2O4)(H2O)]n+}n, respectively. Each zigzag cationic chain is linked to four adjacent anionic chains via the bridging oxalate anions, and each anionic chain connects with four zigzag cationic chains, constructing a three-dimensional neutral framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107053292/sq3099sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053292/sq3099Isup2.hkl
Contains datablock I

CCDC reference: 672406

Comment top

The use of multifunctional organic linker molecules to polymerize metal centers into open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications in catalysis, separation, gas storage and molecular recognition. Among such novel open-framework materials, lanthanide oxalates are particularly noteworthy. The wide variety of coordination modes of the oxalate anion permits the use of metal–oxalate units as excellent building blocks to construct a great diversity of frameworks ranging from discrete oligomeric entities to one-, two- and three-dimensional networks. Lanthanide oxalates present generally a honey-comb layered structure in which the layers are separated by water or other molecules (Ollendorf & Weigel, 1969; Michaelides et al., 1988; Hansson, 1970, 1973; Trombe & Jaud, 2003). Generally, there are two developed routes to construct three-dimensional open-framework lanthanide oxalates. One is based on the employment of protonated organic amines, ammonium or alkali metal ions as counter-cations. By this method, some three-dimensional lanthanide–oxalate anionic frameworks, where the cations are suspended in the channels, have been prepared (Chapelet-Arab et al., 2005a, 2005b; Vaidhyanathan et al., 2002; Mohanu et al., 2006). The other method involves combining a second ligand and/or alkali metal ion into the framework, by which route several three-dimensional neutral frameworks have been created (Romero et al., 1996, 1997; Yuan et al., 2004; Zhang et al., 2007). Interestingly, only one example of a three-dimensional neutral framework constructed by lanthanide centers and oxalate anions alone, [{Er(H2O)3}2(C2O4)3].12H2O, (II), has been reported to date (Camara et al., 2003). In view of the limited number of lanthanide oxalates with three-dimensional neutral framework, we have attempted to synthesize new examples by introducing bulky solvent molecules to replace the coordinated water molecules under solvothermal conditions. A new DMF–lanthanum oxalate, [La2(C2O4)3(DMF)(H2O)3]n, (I), has been obtained and its structure is reported here.

There are two crystallographically independent La3+ ions, two unique oxalate ligands, one DMF molecule, and two independent water molecules in the asymmetric unit (Fig. 1). Both the La centers, located on twofold rotation axes, are nine-coordinated by O atoms forming slightly distorted tricapped trigonal prisms, with the La—O distances ranging from 2.418 (4) to 2.658 (4) Å (Table 1). There is a distinct dissimilarity between the two oxalate ligands, both in their crystallographic positions and in their coordination modes. One oxalate ligand (containing C1 and C2, denoted ox1) adopting a (κ2)-(κ2-κ12)-µ3 bridging mode, sits in a general position. The other oxalate ligand (containing C3, denoted ox2) adopting a (κ2)-(κ2)-µ2 bridging mode, straddles an inversion center across the C—C bond.

The La1 center is coordinated by two ox1 ligands through atoms O2 and O3 in chelate mode, two water molecules (OW1), one DMF molecule, and two O2 atoms from other ox1 anions, which act as µ2-bridging atoms. Each La1–oxalate unit connects with two adjacent equivalent units, by sharing the two µ2-bridging O2 atoms, forming an edge-shared [{La(H2O)2(DMF)}(C2O4)2]nn- anionic chain along the c axis (Fig. 2a). Such an arrangement of the anionic chain has not been observed in previously reported lanthanide oxalates. The nine O atoms of the La2 coordination environment belong to two ox2 ligands (atoms O6 and O7), two ox1 ligands (atoms O4 and O5) from the neighboring [{La(H2O)2(DMF)}(C2O4)2]nn- anionic chain, and one water molecule (OW2). The {La2(H2O)} moieties and ox2 ligands connect with each other alternately, resulting in a zigzag cationic chain [{La(H2O)(C2O4)}]nn+ (Fig. 2b), along the c axis, which is identical to that of [Gd(C2O4){MeNH(CH2CO2)(CH2PO3H)}]·0.5H2O (Song & Mao, 2005). Each zigzag cationic chain is linked to four adjacent anionic chains via the bridging ox1 anions, and each anionic chain connects with four zigzag cationic chains, constructing a three-dimensional neutral framework (Fig. 3). There is a noticeable difference between complex (I) and the other three-dimensional neutral framework mentioned above, (II). In (II), the oxalate ligand adopts a (κ2)-(κ2)-µ2 bridging mode and each ErIII ion connects to three oxalate anions, resulting in the three-dimensional neutral framework. Furthermore, extended hydrogen bonds are found between the oxalate O atoms and the terminal water molecules (Table 2).

Related literature top

For related literature, see: Chapelet-Arab, Nowogrocki, Abraham & Grandjean (2005a,b); Camara et al. (2003); Hansson (1970); James (2003); Michaelides et al. (1988); Mohanu et al. (2006); Ollendorf & Weigel (1969); Romero et al. (1996, 1997); Serre et al. (2004); Song & Mao (2005); Vaidhyanathan et al. (2002); Yaghi et al. (1998, 2003); Yuan et al. (2004); Zhang et al. (2007).

Experimental top

A mixture of lanthanum nitrate hexahydrate [La(NO3)3·6H2O], oxalic acid (H2C2O4·2H2O), dimethylamine (C2H6NH), dimethylformamide and ethanol (molar ratio 1:1:2.5:130:500) was placed in a 15 ml Teflon-lined steel bomb and heated at 368 K for 96 h under autogenous pressure. Upon cooling to room temperature, colorless crystals of (I) were filtered off, washed with distilled water and dried in air.

Refinement top

The C and H atoms of the DMF molecule are disordered over two twofold axis symmetry-related positions and the DMF H atoms were refined in the rigid-model approximation with distance constraints of C—H = 0.96 Å. H atoms of the coordinated water molecules were located in difference Fourier maps and refined with restraints on O—H bond lengths and the H—O—H angle.

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: RAPID-AUTO (Rigaku Corporation, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97-2 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The coordination around the two LaIII ions in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) 1 - x, -y, 1 - z; (b) x, -y, 1/2 + z; (c) 1 - x, y, 3/2 - z; (d) x, 1 - y, 1/2 + z; (e) -x, y, 3/2 - z; (f) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A view of (a) the anionic chain of [{La(H2O)2(DMF)}(C2O4)2]nn-, and (b) the zigzag cationic chain of [{La(H2O)(C2O4)}]nn+ in (I). [Symmetry codes: (a) -x, 1 - y, 1 - z; (b) 1 - x, -y, 1 - z.] The water and DMF molecules have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (I), viewed down the c axis. The water and DMF molecules have been omitted for clarity.
poly[triaquabis(dimethylformamide)di-µ3-oxalato-µ2-oxalato-dilanthanum(III)] top
Crystal data top
[La2(C2O4)3(C3H7NO)(H2O)3]F(000) = 632
Mr = 669.02Dx = 2.547 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7311 reflections
a = 10.392 (2) Åθ = 3.2–27.6°
b = 10.224 (2) ŵ = 4.92 mm1
c = 8.7073 (17) ÅT = 298 K
β = 109.43 (3)°Block, colorless
V = 872.4 (3) Å30.20 × 0.19 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1779 reflections with I > 2σ(I)
Radiation source: rotating-anode X-ray tubeRint = 0.046
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Oscillation scansh = 1313
8351 measured reflectionsk = 1313
2011 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0157P)2 + 1.7609P]
where P = (Fo2 + 2Fc2)/3
2008 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 1.52 e Å3
2 restraintsΔρmin = 1.10 e Å3
Crystal data top
[La2(C2O4)3(C3H7NO)(H2O)3]V = 872.4 (3) Å3
Mr = 669.02Z = 2
Monoclinic, P2/cMo Kα radiation
a = 10.392 (2) ŵ = 4.92 mm1
b = 10.224 (2) ÅT = 298 K
c = 8.7073 (17) Å0.20 × 0.19 × 0.18 mm
β = 109.43 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1779 reflections with I > 2σ(I)
8351 measured reflectionsRint = 0.046
2011 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0262 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.52 e Å3
2008 reflectionsΔρmin = 1.10 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.00000.43195 (3)0.75000.01358 (9)
La20.50000.23575 (3)0.75000.01326 (9)
O20.0753 (2)0.4019 (3)0.4929 (3)0.0176 (5)
O30.2023 (3)0.4179 (3)0.2753 (3)0.0220 (6)
O40.2542 (3)0.3054 (3)0.6688 (3)0.0211 (6)
O50.3917 (3)0.3333 (3)0.4536 (3)0.0246 (6)
O60.6121 (3)0.1322 (3)0.5644 (3)0.0219 (6)
O70.6213 (3)0.0386 (3)0.4094 (3)0.0276 (6)
C10.2714 (4)0.3709 (3)0.4111 (4)0.0171 (7)
C20.1953 (4)0.3574 (3)0.5353 (4)0.0151 (7)
C30.5676 (4)0.0273 (4)0.4920 (4)0.0195 (7)
O10.00000.1954 (4)0.75000.0492 (13)
C40.0542 (9)0.0987 (9)0.7277 (12)0.034 (2)0.50
H4A0.13310.10510.69420.041*0.50
N10.00000.0212 (5)0.75000.0544 (19)
C50.1175 (9)0.0462 (12)0.7838 (14)0.050*0.50
H5D0.16380.03100.80030.060*0.50
H5E0.17750.09620.69550.060*0.50
H5F0.09090.09810.88120.060*0.50
C60.0886 (11)0.1238 (10)0.7164 (13)0.050*0.50
H6A0.05130.20820.72560.060*0.50
H6B0.09320.11340.60880.060*0.50
H6C0.17860.11670.79490.060*0.50
OW10.2120 (3)0.3442 (4)0.9791 (3)0.0350 (8)
H1W10.225 (6)0.358 (5)1.076 (2)0.052*
H2W10.251 (6)0.276 (3)0.973 (6)0.052*
OW20.50000.4956 (4)0.75000.0317 (9)
H1W20.531 (5)0.544 (3)0.695 (5)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01620 (15)0.01392 (15)0.01110 (13)0.0000.00517 (10)0.000
La20.01272 (14)0.01437 (15)0.01210 (13)0.0000.00333 (10)0.000
O20.0170 (12)0.0211 (12)0.0169 (11)0.0041 (10)0.0085 (10)0.0027 (11)
O30.0239 (13)0.0297 (15)0.0136 (11)0.0084 (11)0.0080 (10)0.0049 (11)
O40.0207 (13)0.0293 (15)0.0154 (11)0.0025 (11)0.0085 (10)0.0059 (12)
O50.0202 (13)0.0367 (16)0.0192 (12)0.0090 (12)0.0096 (10)0.0086 (12)
O60.0230 (13)0.0190 (13)0.0252 (12)0.0060 (11)0.0099 (11)0.0091 (12)
O70.0239 (14)0.0292 (15)0.0345 (15)0.0097 (12)0.0159 (12)0.0158 (14)
C10.0203 (17)0.0177 (17)0.0153 (15)0.0020 (14)0.0087 (13)0.0001 (15)
C20.0172 (16)0.0133 (15)0.0158 (14)0.0007 (13)0.0069 (13)0.0015 (14)
C30.0185 (17)0.0204 (18)0.0194 (16)0.0014 (15)0.0059 (14)0.0021 (16)
O10.049 (3)0.018 (2)0.086 (4)0.0000.028 (3)0.000
C40.026 (4)0.021 (4)0.052 (5)0.005 (3)0.007 (4)0.002 (4)
N10.066 (4)0.015 (3)0.057 (4)0.0000.013 (3)0.000
OW10.0452 (19)0.0434 (19)0.0159 (12)0.0242 (16)0.0095 (13)0.0033 (13)
OW20.041 (3)0.019 (2)0.043 (2)0.0000.026 (2)0.000
Geometric parameters (Å, º) top
La1—O12.418 (5)O7—La2v2.532 (3)
La1—O3i2.553 (3)C1—C21.544 (5)
La1—O3ii2.553 (3)C3—C3v1.562 (7)
La1—OW1iii2.591 (3)O1—C41.185 (9)
La1—OW12.591 (3)O1—C4iii1.185 (9)
La1—O2i2.621 (2)C4—C4iii1.308 (19)
La1—O2ii2.621 (2)C4—N11.389 (10)
La1—O22.624 (2)C4—C5iii1.638 (14)
La1—O2iii2.624 (2)C4—H4A0.9600
La2—O4iv2.516 (3)N1—C5iii1.372 (8)
La2—O42.516 (3)N1—C51.372 (8)
La2—O62.518 (3)N1—C4iii1.389 (10)
La2—O6iv2.518 (3)N1—C61.488 (8)
La2—O7v2.532 (3)N1—C6iii1.488 (8)
La2—O7vi2.532 (3)C5—C6iii0.848 (14)
La2—O5iv2.644 (3)C5—C4iii1.638 (14)
La2—O52.644 (3)C5—H5D0.9601
La2—OW22.657 (4)C5—H5E0.9600
O2—C21.262 (4)C5—H5F0.9601
O2—La1ii2.621 (2)C6—C5iii0.848 (14)
O3—C11.257 (4)C6—H6A0.9600
O3—La1ii2.553 (3)C6—H6B0.9601
O4—C21.239 (4)C6—H6C0.9600
O5—C11.242 (4)OW1—H1W10.818 (10)
O6—C31.252 (5)OW1—H2W10.818 (10)
O7—C31.246 (5)OW2—H1W20.818 (10)
O1—La1—O3i126.96 (7)C2—O2—La1109.8 (2)
O1—La1—O3ii126.96 (7)La1ii—O2—La1121.26 (10)
O3i—La1—O3ii106.07 (13)C1—O3—La1ii120.5 (2)
O1—La1—OW1iii69.74 (8)C2—O4—La2121.6 (2)
O3i—La1—OW1iii137.69 (9)C1—O5—La2117.9 (2)
O3ii—La1—OW1iii71.14 (11)C3—O6—La2120.8 (2)
O1—La1—OW169.74 (8)C3—O7—La2v120.7 (2)
O3i—La1—OW171.14 (11)O5—C1—O3127.0 (3)
O3ii—La1—OW1137.69 (9)O5—C1—C2117.6 (3)
OW1iii—La1—OW1139.49 (17)O3—C1—C2115.3 (3)
O1—La1—O2i130.39 (6)O4—C2—O2124.2 (3)
O3i—La1—O2i61.59 (8)O4—C2—C1119.1 (3)
O3ii—La1—O2i72.33 (8)O2—C2—C1116.7 (3)
OW1iii—La1—O2i142.65 (10)O7—C3—O6126.4 (4)
OW1—La1—O2i69.75 (9)O7—C3—C3v116.6 (4)
O1—La1—O2ii130.39 (6)O6—C3—C3v117.0 (4)
O3i—La1—O2ii72.33 (8)C4—O1—C4iii67.0 (10)
O3ii—La1—O2ii61.59 (8)C4—O1—La1146.5 (5)
OW1iii—La1—O2ii69.75 (9)C4iii—O1—La1146.5 (5)
OW1—La1—O2ii142.65 (10)O1—C4—C4iii56.5 (5)
O2i—La1—O2ii99.21 (11)O1—C4—N1118.4 (8)
O1—La1—O283.28 (6)C4iii—C4—N161.9 (4)
O3i—La1—O270.93 (8)O1—C4—C5iii170.8 (9)
O3ii—La1—O2117.87 (8)C4iii—C4—C5iii114.9 (5)
OW1iii—La1—O273.80 (9)N1—C4—C5iii53.1 (5)
OW1—La1—O2101.42 (9)O1—C4—H4A119.6
O2i—La1—O2132.11 (8)C4iii—C4—H4A176.1
O2ii—La1—O258.74 (10)N1—C4—H4A121.9
O1—La1—O2iii83.28 (6)C5iii—C4—H4A69.0
O3i—La1—O2iii117.87 (8)C5iii—N1—C5158.5 (12)
O3ii—La1—O2iii70.93 (8)C5iii—N1—C472.8 (7)
OW1iii—La1—O2iii101.42 (9)C5—N1—C4128.7 (7)
OW1—La1—O2iii73.80 (9)C5iii—N1—C4iii128.7 (7)
O2i—La1—O2iii58.74 (10)C5—N1—C4iii72.8 (6)
O2ii—La1—O2iii132.11 (8)C4—N1—C4iii56.1 (8)
O2—La1—O2iii166.57 (12)C5iii—N1—C634.2 (6)
O4iv—La2—O4147.13 (13)C5—N1—C6124.3 (9)
O4iv—La2—O669.89 (8)C4—N1—C6106.8 (6)
O4—La2—O6125.57 (8)C4iii—N1—C6162.9 (7)
O4iv—La2—O6iv125.57 (8)C5iii—N1—C6iii124.3 (9)
O4—La2—O6iv69.89 (8)C5—N1—C6iii34.2 (6)
O6—La2—O6iv130.28 (12)C4—N1—C6iii162.9 (7)
O4iv—La2—O7v130.78 (9)C4iii—N1—C6iii106.8 (6)
O4—La2—O7v78.30 (9)C6—N1—C6iii90.3 (10)
O6—La2—O7v64.28 (9)C6iii—C5—N180.4 (9)
O6iv—La2—O7v76.39 (9)C6iii—C5—C4iii134.1 (11)
O4iv—La2—O7vi78.30 (9)N1—C5—C4iii54.1 (5)
O4—La2—O7vi130.78 (9)C6iii—C5—H5D164.7
O6—La2—O7vi76.39 (9)N1—C5—H5D113.9
O6iv—La2—O7vi64.28 (9)C4iii—C5—H5D59.7
O7v—La2—O7vi74.54 (14)C6iii—C5—H5E68.7
O4iv—La2—O5iv63.66 (8)N1—C5—H5E108.4
O4—La2—O5iv103.31 (9)C4iii—C5—H5E126.8
O6—La2—O5iv130.36 (8)H5D—C5—H5E109.5
O6iv—La2—O5iv70.71 (9)C6iii—C5—H5F59.2
O7v—La2—O5iv143.88 (9)N1—C5—H5F106.1
O7vi—La2—O5iv78.03 (10)C4iii—C5—H5F123.4
O4iv—La2—O5103.31 (9)H5D—C5—H5F109.5
O4—La2—O563.66 (8)H5E—C5—H5F109.5
O6—La2—O570.71 (9)C5iii—C6—N165.4 (7)
O6iv—La2—O5130.36 (8)C5iii—C6—H6A173.4
O7v—La2—O578.03 (10)N1—C6—H6A108.9
O7vi—La2—O5143.88 (9)C5iii—C6—H6B76.2
O5iv—La2—O5135.67 (14)N1—C6—H6B110.4
O4iv—La2—OW273.57 (7)H6A—C6—H6B109.5
O4—La2—OW273.57 (7)C5iii—C6—H6C70.7
O6—La2—OW2114.86 (6)N1—C6—H6C109.1
O6iv—La2—OW2114.86 (6)H6A—C6—H6C109.5
O7v—La2—OW2142.73 (7)H6B—C6—H6C109.5
O7vi—La2—OW2142.73 (7)La1—OW1—H1W1123 (4)
O5iv—La2—OW267.83 (7)La1—OW1—H2W1124 (4)
O5—La2—OW267.83 (7)H1W1—OW1—H2W1107 (4)
C2—O2—La1ii118.1 (2)La2—OW2—H1W2127 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z+1; (iii) x, y, z+3/2; (iv) x+1, y, z+3/2; (v) x+1, y, z+1; (vi) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O3vii0.82 (1)1.93 (2)2.721 (4)162 (5)
OW1—H2W1···O6iv0.82 (1)2.15 (2)2.940 (4)164 (6)
OW2—H1W2···O5viii0.82 (1)2.15 (1)2.966 (4)178 (5)
Symmetry codes: (iv) x+1, y, z+3/2; (vii) x, y, z+1; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[La2(C2O4)3(C3H7NO)(H2O)3]
Mr669.02
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)10.392 (2), 10.224 (2), 8.7073 (17)
β (°) 109.43 (3)
V3)872.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.92
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8351, 2011, 1779
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.06
No. of reflections2008
No. of parameters143
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.52, 1.10

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1993), SHELXL97-2 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
La1—O12.418 (5)La2—O42.516 (3)
La1—O3i2.553 (3)La2—O62.518 (3)
La1—OW12.591 (3)La2—O7ii2.532 (3)
La1—O2i2.621 (2)La2—O52.644 (3)
La1—O22.624 (2)La2—OW22.657 (4)
O1—La1—O3i126.96 (7)O2i—La1—O2132.11 (8)
O3i—La1—OW171.14 (11)O6—La2—O7ii64.28 (9)
OW1iii—La1—OW1139.49 (17)O6—La2—O7v76.39 (9)
O1—La1—O2iv130.39 (6)O4—La2—O5vi103.31 (9)
O3iv—La1—O2iv61.59 (8)O4—La2—O563.66 (8)
O1—La1—O283.28 (6)O4—La2—OW273.57 (7)
O3i—La1—O270.93 (8)O6—La2—OW2114.86 (6)
OW1—La1—O2101.42 (9)O5—La2—OW267.83 (7)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x, y, z+3/2; (iv) x, y+1, z+1; (v) x, y, z+1/2; (vi) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O3vii0.818 (10)1.931 (18)2.721 (4)162 (5)
OW1—H2W1···O6vi0.818 (10)2.15 (2)2.940 (4)164 (6)
OW2—H1W2···O5viii0.818 (10)2.148 (11)2.966 (4)178 (5)
Symmetry codes: (vi) x+1, y, z+3/2; (vii) x, y, z+1; (viii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds