Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two 1:1 proton-transfer complexes of sulfobenzoic acids with aromatic amines, namely 4-[2-(4-pyrid­yl)ethen­yl]pyridinium 2-carboxy­benzene­sulfonate, C12H11N2+·C7H5O5S-, (I), and 1,10-phenanthrolin-1-ium 4-carboxy­benzene­sulfonate dihydrate, C12H9N2+·C7H5O5S-·2H2O, (II), have very different hydrogen-bonding patterns compared with reported organic sulfobenzoic acid complexes. In (I), two cations and two anions form a four-mol­ecule loop, in which [pi]-[pi] inter­actions occur. In (II), the anions and water mol­ecules form a three-dimensional hydrogen-bonding network, while the cations only act as pendant components. The water mol­ecules play a central role in the formation of the abundant hydrogen-bonding architecture in (II). The relative poorness and richness of hydrogen bonds in (I) and (II), respectively, give rise to novel hydrogen-bonding patterns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107033008/sq3086sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107033008/sq3086Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107033008/sq3086IIsup3.hkl
Contains datablock II

CCDC references: 659141; 659142

Comment top

Intermolecular interactions such as hydrogen bonds and ππ stacking play an essential role in the formation of supramolecular organic complexes (Lehn, 2007; Egli & Sarkhel, 2007). In the supramolecular systems constructed by organic synthons, carboxylic acids and protonated amines are commonly used as donors or acceptors for hydrogen bonds (Raj et al., 2003). Recently, 5-sulfosalicylic acid supramolecular systems containing both sulfonate and carboxylate groups have been extensively explored (Smith, 2005; Smith et al., 2006a,b,c; Fan et al., 2005; Smith, 2005), while investigations of sulfobenzoic acid organic complexes are sparse. A search of the Cambridge Structural Database (CSD; January 2007 update; Allen, 2002) only gave six sulfobenzoic organic complexes, viz. two guanidinium complexes [guanidinium 4-carboxybenzenesulfonate and guanidinium 3-carboxybenzenesulfonate (Videnova-Adrabinska et al., 2001)], 4,4'-bipyridinium bis(2-carboxybenzenesulfonate dihydrate (Li et al., 2004), bis{4-[(4-pyridyl)ethenyl]pyridinium} 4-sulfonatobenzoate trihydrate (Zhang & Zhu, 2006), tetraphenylphosphonium 2-sulfobenzoic acid (Ferrer et al., 2002), and dicyclohexylammonium 2-carboxybenzenesulfonate dihydrate (Ng, 1995). The sulfobenzoic acid has five potential sites for hydrogen bonds: (i) two carboxyl O atoms and (ii) three sulfonate O atoms. Therefore, further exploration of the sulfobenzoic acid organic systems will provide abundant supramolecular architectures. We report here two novel sulfobenzoic acid organic complexes, (I) and (II), in which the poor and rich properties of formation of hydrogen bonds occur, respectively.

Both (I) and (II) are 1:1 proton transfer organic complexes and each contains one protonated amine cation and one deprotonated acid anion. Complex (I) is an anhydrous species, while complex (II) contains two water molecules. As expected, the sulfonic H atoms from 2-sulfobenzoic acid or 4-sulfobenzoic acid are transferred to the protonation sites on N atoms of 1,2-di-4-pyridylethylene or 1,10-phenanthroline in complexes (I) and (II), respectively (Figs. 1 and 2). The protonations on the N atoms in both structures are further confirmed by the C—N bond distances and C—N—C bond angles in the amine cations. According to the investigation by Athimoolam & Natarajan (2007) of the CSD, generally the protonation of the amine N atom results in a slight deformation of the ring and consequently a slightly larger C—N—C bond angle (> 120°), which phenomenon can be also observed in our two structures in that both C17—N2—C19 in (I) and C8—N1—C18 in (II) are larger than 120° (Tables 1 and 3). The carboxyl group in (I) has an interplanar angle of 74.0 (1)° with its attached benzyl ring due to the neighboring steric effect of the sulfonate group, while in (II) the carboxyl group is nearly coplanar with the benzyl ring [3.8 (1)°].

Three anhydrous 1:1 sulfonatobenzoic acid complexes have been reported, and their structures are zero-dimensional species without extended hydrogen bonding (Ferrer et al., 2002) or three-dimensional networks (Videnova-Adrabinska et al., 2001). Complex (I) forms a four-molecule loop (Fig. 3) via N···H—O and O—H···N hydrogen bonds (Table 2). Only one sulfonate O atom and one carboxyl O atom are involved in the hydrogen bonds. In this loop, there is a ππ stacking effect between two protonated 1,2-di-4-pyridylethylene molecules, with a Cg1···Cg2(1 − x, −y, 1 − z) separation of 3.9739 (15) Å and with a dihedral angle of 23.8 (1)° [where Cg1 and Cg2 are the centroids of atoms N1/C8–C12 and N2/C15–C19]. Moreover, significant ππ interactions exist between loops [Cg1···Cg1(2 − x, −y, 1 − z) = 3.6914 (16) Å]. This hydrogen-bonding loop is the first such unit reported in sulfobenzoic organic systems.

The hydrogen-bonding pattern in complex (II) is also novel and very different from those of reported sulfobenzoic acid organic complexes, in which hydrogen-bonding networks are formed by both cations and anions. In (II), the anions and water molecules form a three-dimensional hydrogen-bonding network with large cavities (Fig. 4 and Table 4), in which the cations are hydrogen- bonded as pendant components and occupy the cavities of the networks. Compared with the more limited hydrogen-bonding characteristic in complex (I), abundant hydrogen bonding is observed in complex (II). All five O atoms of the 4-sulfobenzoic acid unit are involved in the formation of hydrogen bonds. It is obvious that water molecules also play a crucial role in the formation of the three-dimensional hydrogen-bonded network. Each of the two water molecules forms three hydrogen bonds with carboxyl and sulfonate groups and another water molecule, resulting in the hydrogen bonding extending in three directions. There are also strong ππ stacking interactions involving protonated 1,10-phenanthroline and 4-sulfonatobenzoic acid. The centroid-to-centroid distances are 3.7109 (13), 3.6668 (13) and 3.7976 (13) Å for Cg1···Cg2(x, 1 + y,z), Cg2···Cg3(x, −1 + y,z) and Cg2···Cg3(1 + x, −1 + y, z), respectively (Cg1, Cg2 and Cg3 are the centroids of atoms N1/C8–C11/C18, C2–C7 and C11–C14/C18–C19).

In conclusion, these two organic complexes have hydrogen-bonding, ππ stacking and charge-transfer interactions, assembling the molecular structures into supramolecular architectures, and both hydrogen-bonding patterns in (I) and (II) are novel and very different form those reported sulfobenzoic organic systems.

Experimental top

A mixture of 2-sulfobenzoic acid (0.051 g, 0.25 mmol), 1,2-di-4-pyridylethylene (0.046 g, 029 mmol) and water (10 ml) was refluxed for 5 h. After cooling to room temperature, pale-yellow brick-shaped crystals of (I) were obtained by filtration. Analysis calculated for C19H16N2O5S: C 59.37, H 4.20, N 7.29%; found: C 59.35, H 4.15, N 6.90%. A mixture of SnSO4 (0.086 g, 0.40 mmol), potassium hydrogen 4-sulfobenzoate (0.096 g, 0.40 mmol), 1,10-phenanthroline monohydrate (0.079 g, 0.40 mmol), 12 M HNO3 (0.1 ml) and water (15 ml) was sealed in a 30 ml Teflon-lined stainless steel autoclave and heated at 433 K for 72 h. After cooling to room temperature, the colorless solid was filtered off and washed with water. Crystals were obtained by recrystallization in water. The synthetic procedure without SnSO4 did not lead to the formation of complex (II). Analysis calculated for C19H18N2O7S: C 54.54, H 4.34, N 6.70%; found: C 54.77, H 4.35, N 6.96%. TGA analysis revealed that a weight loss in the temperature range 298 to 375 K corresponds to the release of two water molecules (calculated 8.61%, found 8.80%).

Refinement top

H atoms on C atoms were placed in idealized positions and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. H atoms involved in hydrogen-bonding interactions (pyridinium, carboxyl and water) were located from difference Fourier maps and refined with distance restraints [O—H = 0.85 (1) Å and N—H = 0.82 (1) Å] and fixed isotropic displacement parameters [Uiso(H) = 0.08 Å2].

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The hydrogen-bonding loop of (I). Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The three-dimensional hydrogen-bonding network of (II). Hydrogen bonds are shown as dashed lines. Bonds of cations are shown as open bonds and the N, O and S atoms are shown with octant shading.
(I) 4-[2-(4-pyridyl)ethenyl]pyridinium 2-carboxybenzenesulfonate top
Crystal data top
C12H11N2+·C7H5O5SZ = 2
Mr = 384.40F(000) = 400
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7451 (11) ÅCell parameters from 2034 reflections
b = 10.0346 (13) Åθ = 2.5–26.6°
c = 10.7877 (14) ŵ = 0.22 mm1
α = 95.377 (1)°T = 295 K
β = 104.954 (1)°Brick, pale yellow
γ = 104.047 (2)°0.31 × 0.24 × 0.22 mm
V = 874.82 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3095 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 710
Tmin = 0.935, Tmax = 0.953k = 1111
4632 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.5901P]
where P = (Fo2 + 2Fc2)/3
3095 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H11N2+·C7H5O5Sγ = 104.047 (2)°
Mr = 384.40V = 874.82 (19) Å3
Triclinic, P1Z = 2
a = 8.7451 (11) ÅMo Kα radiation
b = 10.0346 (13) ŵ = 0.22 mm1
c = 10.7877 (14) ÅT = 295 K
α = 95.377 (1)°0.31 × 0.24 × 0.22 mm
β = 104.954 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3095 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2534 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.953Rint = 0.015
4632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.18 e Å3
3095 reflectionsΔρmin = 0.35 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42777 (7)0.78017 (5)0.80645 (5)0.03731 (17)
O10.0436 (2)0.45903 (17)0.68689 (17)0.0557 (5)
O20.2524 (2)0.45248 (16)0.85457 (16)0.0515 (4)
O30.54928 (18)0.73581 (16)0.90142 (14)0.0443 (4)
O40.4846 (2)0.92381 (17)0.79259 (18)0.0593 (5)
O50.3627 (2)0.68389 (17)0.68485 (14)0.0501 (4)
C10.1534 (3)0.5088 (2)0.7994 (2)0.0385 (5)
C20.1417 (3)0.6458 (2)0.86118 (19)0.0357 (5)
C30.2594 (3)0.7712 (2)0.87205 (18)0.0346 (5)
C40.2484 (3)0.8932 (2)0.9374 (2)0.0452 (5)
H40.32600.97730.94370.054*
C50.1222 (3)0.8891 (3)0.9928 (2)0.0563 (7)
H50.11750.97031.03900.068*
C60.0037 (3)0.7669 (3)0.9807 (2)0.0575 (7)
H60.08210.76541.01710.069*
C70.0126 (3)0.6453 (3)0.9138 (2)0.0480 (6)
H70.06890.56270.90400.058*
N10.8844 (2)0.2544 (2)0.4335 (2)0.0487 (5)
N20.5713 (2)0.4792 (2)0.79293 (17)0.0412 (4)
C80.8208 (3)0.1638 (2)0.3702 (2)0.0487 (6)
H80.81110.16950.28180.058*
C90.7684 (3)0.0619 (2)0.4281 (2)0.0437 (5)
H90.72570.00040.37980.052*
C100.7803 (3)0.0525 (2)0.5594 (2)0.0400 (5)
C110.8444 (3)0.1490 (2)0.6244 (2)0.0539 (6)
H110.85280.14800.71220.065*
C120.8954 (3)0.2457 (3)0.5592 (3)0.0560 (6)
H120.93970.30810.60520.067*
C130.7306 (3)0.0539 (2)0.6308 (2)0.0426 (5)
H130.72070.04060.71290.051*
C140.6987 (3)0.1666 (2)0.5887 (2)0.0429 (5)
H140.70650.17940.50600.051*
C150.6522 (2)0.2728 (2)0.66169 (19)0.0362 (5)
C160.6112 (3)0.2570 (2)0.7770 (2)0.0394 (5)
H160.61100.17500.81060.047*
C170.5712 (3)0.3618 (2)0.8410 (2)0.0411 (5)
H170.54390.35090.91790.049*
C180.6486 (3)0.3971 (2)0.6148 (2)0.0425 (5)
H180.67400.41090.53760.051*
C190.6080 (3)0.4984 (2)0.6820 (2)0.0463 (5)
H190.60570.58130.65050.056*
H1A0.062 (4)0.389 (2)0.647 (3)0.080*
H2A0.548 (4)0.543 (2)0.833 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0328 (3)0.0353 (3)0.0128 (2)0.0155 (2)0.0092 (2)
O10.0479 (10)0.0453 (10)0.0647 (11)0.0187 (8)0.0038 (8)0.0151 (8)
O20.0583 (10)0.0423 (9)0.0610 (10)0.0274 (8)0.0156 (8)0.0127 (8)
O30.0440 (9)0.0494 (9)0.0445 (9)0.0201 (7)0.0140 (7)0.0102 (7)
O40.0713 (12)0.0380 (9)0.0739 (12)0.0118 (8)0.0294 (10)0.0213 (8)
O50.0653 (11)0.0538 (10)0.0345 (8)0.0178 (8)0.0203 (8)0.0031 (7)
C10.0378 (11)0.0323 (11)0.0480 (12)0.0109 (9)0.0161 (10)0.0068 (9)
C20.0388 (11)0.0375 (12)0.0340 (10)0.0173 (9)0.0094 (9)0.0071 (9)
C30.0400 (11)0.0352 (11)0.0292 (10)0.0175 (9)0.0048 (8)0.0035 (8)
C40.0527 (14)0.0379 (12)0.0441 (12)0.0223 (11)0.0055 (10)0.0002 (10)
C50.0642 (16)0.0591 (16)0.0497 (14)0.0404 (14)0.0081 (12)0.0079 (12)
C60.0557 (15)0.0772 (19)0.0543 (15)0.0389 (15)0.0226 (12)0.0082 (13)
C70.0423 (13)0.0547 (15)0.0536 (14)0.0220 (11)0.0165 (11)0.0107 (11)
N10.0473 (11)0.0369 (11)0.0588 (12)0.0142 (9)0.0116 (9)0.0031 (9)
N20.0459 (11)0.0448 (11)0.0387 (10)0.0211 (9)0.0152 (8)0.0039 (8)
C80.0518 (14)0.0488 (14)0.0432 (13)0.0156 (11)0.0120 (11)0.0032 (10)
C90.0469 (13)0.0404 (12)0.0430 (12)0.0166 (10)0.0090 (10)0.0036 (10)
C100.0421 (12)0.0323 (11)0.0448 (12)0.0082 (9)0.0142 (10)0.0032 (9)
C110.0777 (18)0.0427 (14)0.0490 (14)0.0261 (13)0.0215 (13)0.0117 (11)
C120.0707 (17)0.0400 (14)0.0613 (16)0.0241 (12)0.0173 (13)0.0101 (11)
C130.0519 (13)0.0414 (13)0.0390 (12)0.0151 (10)0.0190 (10)0.0068 (9)
C140.0522 (13)0.0430 (13)0.0392 (12)0.0177 (11)0.0191 (10)0.0065 (10)
C150.0360 (11)0.0387 (12)0.0363 (11)0.0136 (9)0.0114 (9)0.0058 (9)
C160.0457 (12)0.0393 (12)0.0404 (11)0.0187 (10)0.0160 (10)0.0126 (9)
C170.0431 (12)0.0528 (14)0.0348 (11)0.0201 (10)0.0158 (9)0.0119 (10)
C180.0546 (13)0.0462 (13)0.0373 (11)0.0226 (11)0.0212 (10)0.0139 (9)
C190.0593 (14)0.0430 (13)0.0493 (13)0.0250 (11)0.0244 (11)0.0159 (10)
Geometric parameters (Å, º) top
S1—O41.4414 (17)N2—H2A0.83 (3)
S1—O51.4451 (16)C8—C91.379 (3)
S1—O31.4596 (15)C8—H80.9300
S1—C31.778 (2)C9—C101.385 (3)
O1—C11.303 (3)C9—H90.9300
O1—H1A0.86 (3)C10—C111.390 (3)
O2—C11.207 (2)C10—C131.471 (3)
C1—C21.509 (3)C11—C121.370 (3)
C2—C71.388 (3)C11—H110.9300
C2—C31.393 (3)C12—H120.9300
C3—C41.391 (3)C13—C141.322 (3)
C4—C51.378 (4)C13—H130.9300
C4—H40.9300C14—C151.463 (3)
C5—C61.371 (4)C14—H140.9300
C5—H50.9300C15—C161.393 (3)
C6—C71.387 (3)C15—C181.394 (3)
C6—H60.9300C16—C171.368 (3)
C7—H70.9300C16—H160.9300
N1—C121.328 (3)C17—H170.9300
N1—C81.329 (3)C18—C191.362 (3)
N2—C171.331 (3)C18—H180.9300
N2—C191.335 (3)C19—H190.9300
O4—S1—O5114.20 (10)C9—C8—H8118.1
O4—S1—O3112.94 (11)C8—C9—C10119.1 (2)
O5—S1—O3111.78 (9)C8—C9—H9120.5
O4—S1—C3105.51 (10)C10—C9—H9120.5
O5—S1—C3105.87 (10)C9—C10—C11116.8 (2)
O3—S1—C3105.69 (9)C9—C10—C13123.3 (2)
C1—O1—H1A112 (2)C11—C10—C13119.8 (2)
O2—C1—O1125.7 (2)C12—C11—C10120.1 (2)
O2—C1—C2121.3 (2)C12—C11—H11120.0
O1—C1—C2113.00 (18)C10—C11—H11120.0
C7—C2—C3119.1 (2)N1—C12—C11123.0 (2)
C7—C2—C1118.6 (2)N1—C12—H12118.5
C3—C2—C1122.31 (18)C11—C12—H12118.5
C4—C3—C2119.9 (2)C14—C13—C10125.8 (2)
C4—C3—S1118.40 (18)C14—C13—H13117.1
C2—C3—S1121.66 (15)C10—C13—H13117.1
C5—C4—C3119.9 (2)C13—C14—C15125.2 (2)
C5—C4—H4120.1C13—C14—H14117.4
C3—C4—H4120.1C15—C14—H14117.4
C6—C5—C4120.8 (2)C16—C15—C18117.54 (18)
C6—C5—H5119.6C16—C15—C14123.51 (19)
C4—C5—H5119.6C18—C15—C14118.95 (18)
C5—C6—C7119.6 (2)C17—C16—C15120.3 (2)
C5—C6—H6120.2C17—C16—H16119.9
C7—C6—H6120.2C15—C16—H16119.9
C6—C7—C2120.7 (2)N2—C17—C16119.92 (19)
C6—C7—H7119.6N2—C17—H17120.0
C2—C7—H7119.6C16—C17—H17120.0
C12—N1—C8117.2 (2)C19—C18—C15120.04 (19)
C17—N2—C19121.94 (18)C19—C18—H18120.0
C17—N2—H2A119 (2)C15—C18—H18120.0
C19—N2—H2A119 (2)N2—C19—C18120.3 (2)
N1—C8—C9123.7 (2)N2—C19—H19119.9
N1—C8—H8118.1C18—C19—H19119.9
O2—C1—C2—C7103.8 (3)C12—N1—C8—C90.8 (4)
O1—C1—C2—C773.7 (3)N1—C8—C9—C100.6 (4)
O2—C1—C2—C373.5 (3)C8—C9—C10—C110.4 (3)
O1—C1—C2—C3109.1 (2)C8—C9—C10—C13178.9 (2)
C7—C2—C3—C41.4 (3)C9—C10—C11—C121.3 (4)
C1—C2—C3—C4175.81 (18)C13—C10—C11—C12178.1 (2)
C7—C2—C3—S1179.68 (16)C8—N1—C12—C110.1 (4)
C1—C2—C3—S13.1 (3)C10—C11—C12—N11.1 (4)
O4—S1—C3—C421.65 (19)C9—C10—C13—C1413.3 (4)
O5—S1—C3—C4143.06 (16)C11—C10—C13—C14166.0 (2)
O3—S1—C3—C498.22 (17)C10—C13—C14—C15178.8 (2)
O4—S1—C3—C2159.40 (17)C13—C14—C15—C1610.3 (4)
O5—S1—C3—C238.00 (19)C13—C14—C15—C18169.5 (2)
O3—S1—C3—C280.73 (18)C18—C15—C16—C170.8 (3)
C2—C3—C4—C50.9 (3)C14—C15—C16—C17179.1 (2)
S1—C3—C4—C5178.04 (17)C19—N2—C17—C160.7 (3)
C3—C4—C5—C62.2 (4)C15—C16—C17—N20.0 (3)
C4—C5—C6—C71.1 (4)C16—C15—C18—C190.8 (3)
C5—C6—C7—C21.2 (4)C14—C15—C18—C19179.1 (2)
C3—C2—C7—C62.5 (3)C17—N2—C19—C180.7 (4)
C1—C2—C7—C6174.8 (2)C15—C18—C19—N20.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.83 (3)2.00 (1)2.798 (2)160 (3)
O1—H1A···N1i0.86 (3)1.76 (3)2.617 (2)175 (3)
Symmetry code: (i) x+1, y, z+1.
(II) 1,10-phenanthrolin-1-ium 4-carboxybenzenesulfonate dihydrate top
Crystal data top
C12H9N2+·C7H5O5S·2H2ODx = 1.490 Mg m3
Mr = 418.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 5906 reflections
Hall symbol: P 4wθ = 2.3–27.4°
a = 7.1807 (6) ŵ = 0.22 mm1
c = 36.171 (3) ÅT = 295 K
V = 1865.1 (3) Å3Prism, colorless
Z = 40.33 × 0.31 × 0.25 mm
F(000) = 872
Data collection top
Bruker SMART CCD area-detector
diffractometer
4269 independent reflections
Radiation source: fine-focus sealed tube3975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.931, Tmax = 0.947k = 69
11629 measured reflectionsl = 4646
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.2329P]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max < 0.001
4269 reflectionsΔρmax = 0.16 e Å3
280 parametersΔρmin = 0.29 e Å3
9 restraintsAbsolute structure: Flack (1983), 2097 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C12H9N2+·C7H5O5S·2H2OZ = 4
Mr = 418.41Mo Kα radiation
Tetragonal, P41µ = 0.22 mm1
a = 7.1807 (6) ÅT = 295 K
c = 36.171 (3) Å0.33 × 0.31 × 0.25 mm
V = 1865.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3975 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.947Rint = 0.021
11629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.16 e Å3
S = 0.80Δρmin = 0.29 e Å3
4269 reflectionsAbsolute structure: Flack (1983), 2097 Friedel pairs
280 parametersAbsolute structure parameter: 0.04 (6)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68024 (7)0.71642 (7)0.397327 (13)0.03826 (12)
O11.1848 (3)0.8081 (3)0.24149 (4)0.0565 (4)
O21.3954 (2)0.8938 (2)0.28284 (4)0.0500 (4)
O30.5662 (2)0.8832 (3)0.39467 (5)0.0605 (4)
O40.5788 (3)0.5473 (3)0.38904 (5)0.0596 (5)
O50.7784 (2)0.7071 (3)0.43204 (4)0.0588 (5)
H6B0.978 (2)0.726 (4)0.2103 (9)0.080*
H6A0.889 (4)0.604 (3)0.1870 (7)0.080*
O60.8735 (3)0.6959 (4)0.20144 (7)0.0785 (6)
H7B0.682 (4)0.847 (3)0.2161 (8)0.080*
H7A0.614 (4)1.027 (2)0.2132 (8)0.080*
O70.6064 (3)0.9260 (3)0.22518 (5)0.0649 (5)
C11.2287 (3)0.8332 (3)0.27332 (5)0.0381 (4)
C21.1013 (3)0.7981 (3)0.30504 (5)0.0343 (4)
C30.9188 (3)0.7442 (3)0.29738 (6)0.0401 (4)
H30.88140.72770.27300.048*
C40.7939 (3)0.7152 (3)0.32552 (5)0.0390 (4)
H40.67250.67890.32020.047*
C50.8499 (3)0.7405 (3)0.36198 (5)0.0327 (4)
C61.0315 (3)0.7901 (3)0.37011 (5)0.0371 (4)
H61.06890.80370.39460.044*
C71.1577 (3)0.8193 (3)0.34169 (5)0.0355 (4)
H71.27980.85300.34710.043*
N10.2547 (2)0.3657 (3)0.36506 (5)0.0408 (4)
N20.3836 (3)0.4006 (3)0.29415 (5)0.0479 (4)
C80.2033 (3)0.3484 (3)0.40028 (6)0.0501 (5)
H80.28510.38240.41900.060*
C90.0292 (3)0.2802 (3)0.40900 (7)0.0520 (5)
H90.00530.26300.43360.062*
C100.0926 (3)0.2379 (3)0.38099 (7)0.0487 (5)
H100.21150.19500.38660.058*
C110.0394 (3)0.2590 (3)0.34404 (6)0.0404 (4)
C120.1598 (3)0.2159 (3)0.31366 (8)0.0535 (6)
H120.28080.17570.31820.064*
C130.0991 (4)0.2330 (3)0.27843 (8)0.0573 (6)
H130.17910.20390.25910.069*
C140.0846 (3)0.2947 (3)0.27044 (7)0.0485 (5)
C150.1549 (5)0.3147 (4)0.23409 (7)0.0634 (7)
H150.07960.28820.21380.076*
C160.3323 (5)0.3726 (4)0.22901 (7)0.0662 (8)
H160.38080.38380.20530.079*
C180.1414 (3)0.3215 (2)0.33640 (5)0.0365 (4)
C170.4418 (4)0.4151 (4)0.25969 (7)0.0594 (6)
H170.56290.45620.25560.071*
C190.2081 (3)0.3401 (3)0.29933 (6)0.0407 (4)
H1A0.362 (2)0.402 (4)0.3611 (10)0.080*
H2A1.465 (4)0.918 (5)0.2641 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0355 (2)0.0478 (3)0.0315 (2)0.00295 (19)0.00165 (18)0.00395 (19)
O10.0543 (9)0.0826 (13)0.0326 (8)0.0121 (8)0.0057 (6)0.0032 (7)
O20.0421 (8)0.0673 (10)0.0407 (8)0.0067 (7)0.0054 (6)0.0041 (7)
O30.0585 (10)0.0650 (10)0.0581 (10)0.0170 (8)0.0180 (8)0.0098 (9)
O40.0566 (10)0.0670 (11)0.0553 (10)0.0234 (8)0.0074 (7)0.0015 (8)
O50.0468 (9)0.0939 (14)0.0357 (8)0.0049 (9)0.0014 (7)0.0093 (8)
O60.0716 (13)0.0919 (16)0.0722 (13)0.0193 (11)0.0204 (10)0.0422 (12)
O70.0578 (10)0.0750 (13)0.0619 (11)0.0080 (9)0.0202 (8)0.0218 (9)
C10.0419 (10)0.0351 (9)0.0373 (10)0.0028 (7)0.0038 (8)0.0010 (8)
C20.0391 (9)0.0320 (8)0.0318 (9)0.0037 (7)0.0027 (7)0.0021 (7)
C30.0412 (10)0.0506 (11)0.0284 (8)0.0032 (8)0.0028 (7)0.0010 (8)
C40.0354 (9)0.0468 (11)0.0348 (9)0.0056 (8)0.0028 (7)0.0011 (8)
C50.0347 (9)0.0330 (8)0.0303 (9)0.0005 (7)0.0003 (7)0.0032 (7)
C60.0396 (10)0.0406 (10)0.0310 (9)0.0007 (7)0.0033 (7)0.0010 (7)
C70.0316 (9)0.0378 (9)0.0372 (9)0.0006 (7)0.0029 (7)0.0000 (8)
N10.0382 (8)0.0437 (9)0.0406 (9)0.0003 (7)0.0030 (7)0.0032 (7)
N20.0465 (10)0.0485 (10)0.0488 (10)0.0071 (8)0.0055 (8)0.0035 (8)
C80.0542 (12)0.0537 (12)0.0423 (11)0.0041 (9)0.0047 (10)0.0028 (10)
C90.0585 (14)0.0519 (13)0.0455 (12)0.0016 (10)0.0103 (10)0.0044 (10)
C100.0410 (11)0.0410 (11)0.0641 (14)0.0026 (8)0.0102 (10)0.0014 (10)
C110.0363 (9)0.0303 (9)0.0547 (12)0.0043 (7)0.0040 (9)0.0057 (8)
C120.0391 (11)0.0448 (12)0.0765 (17)0.0030 (9)0.0121 (11)0.0123 (11)
C130.0575 (14)0.0511 (12)0.0634 (15)0.0118 (10)0.0208 (12)0.0206 (11)
C140.0581 (13)0.0381 (10)0.0495 (11)0.0189 (9)0.0093 (10)0.0102 (9)
C150.091 (2)0.0559 (15)0.0429 (12)0.0331 (14)0.0108 (13)0.0148 (11)
C160.091 (2)0.0651 (16)0.0421 (13)0.0329 (15)0.0164 (13)0.0042 (11)
C180.0389 (9)0.0303 (9)0.0402 (10)0.0058 (7)0.0040 (8)0.0023 (7)
C170.0619 (15)0.0584 (14)0.0580 (15)0.0180 (11)0.0167 (12)0.0084 (11)
C190.0472 (11)0.0332 (9)0.0417 (10)0.0109 (8)0.0007 (9)0.0010 (8)
Geometric parameters (Å, º) top
S1—O51.4416 (16)N1—H1A0.825 (10)
S1—O41.4480 (18)N2—C171.319 (3)
S1—O31.4538 (18)N2—C191.345 (3)
S1—C51.7741 (19)C8—C91.380 (3)
O1—C11.207 (3)C8—H80.9300
O2—C11.320 (3)C9—C101.372 (4)
O2—H2A0.86 (3)C9—H90.9300
O6—H6B0.844 (10)C10—C111.398 (3)
O6—H6A0.851 (10)C10—H100.9300
O7—H7B0.85 (3)C11—C181.401 (3)
O7—H7A0.848 (10)C11—C121.432 (3)
C1—C21.489 (3)C12—C131.352 (4)
C2—C31.394 (3)C12—H120.9300
C2—C71.395 (3)C13—C141.421 (4)
C3—C41.372 (3)C13—H130.9300
C3—H30.9300C14—C191.409 (3)
C4—C51.391 (3)C14—C151.415 (4)
C4—H40.9300C15—C161.353 (5)
C5—C61.384 (3)C15—H150.9300
C6—C71.386 (3)C16—C171.394 (4)
C6—H60.9300C16—H160.9300
C7—H70.9300C18—C191.430 (3)
N1—C81.332 (3)C17—H170.9300
N1—C181.356 (3)
O5—S1—O4112.79 (11)N1—C8—H8119.9
O5—S1—O3111.82 (12)C9—C8—H8119.9
O4—S1—O3113.18 (12)C10—C9—C8119.2 (2)
O5—S1—C5107.25 (9)C10—C9—H9120.4
O4—S1—C5106.15 (10)C8—C9—H9120.4
O3—S1—C5105.00 (9)C9—C10—C11120.5 (2)
C1—O2—H2A113 (2)C9—C10—H10119.7
H6B—O6—H6A108.6 (16)C11—C10—H10119.7
H7B—O7—H7A109.4 (16)C10—C11—C18118.5 (2)
O1—C1—O2122.35 (19)C10—C11—C12123.0 (2)
O1—C1—C2123.30 (19)C18—C11—C12118.5 (2)
O2—C1—C2114.35 (17)C13—C12—C11120.6 (2)
C3—C2—C7119.48 (18)C13—C12—H12119.7
C3—C2—C1118.13 (17)C11—C12—H12119.7
C7—C2—C1122.38 (17)C12—C13—C14121.3 (2)
C4—C3—C2120.60 (18)C12—C13—H13119.4
C4—C3—H3119.7C14—C13—H13119.4
C2—C3—H3119.7C19—C14—C15116.2 (2)
C3—C4—C5119.66 (18)C19—C14—C13120.4 (2)
C3—C4—H4120.2C15—C14—C13123.5 (2)
C5—C4—H4120.2C16—C15—C14119.5 (2)
C6—C5—C4120.48 (17)C16—C15—H15120.2
C6—C5—S1121.28 (14)C14—C15—H15120.2
C4—C5—S1118.19 (14)C15—C16—C17119.4 (2)
C5—C6—C7119.84 (17)C15—C16—H16120.3
C5—C6—H6120.1C17—C16—H16120.3
C7—C6—H6120.1N1—C18—C11118.69 (19)
C6—C7—C2119.91 (18)N1—C18—C19119.60 (18)
C6—C7—H7120.0C11—C18—C19121.71 (18)
C2—C7—H7120.0N2—C17—C16123.8 (3)
C8—N1—C18122.93 (19)N2—C17—H17118.1
C8—N1—H1A117 (3)C16—C17—H17118.1
C18—N1—H1A120 (3)N2—C19—C14124.1 (2)
C17—N2—C19117.0 (2)N2—C19—C18118.33 (18)
N1—C8—C9120.2 (2)C14—C19—C18117.6 (2)
O1—C1—C2—C33.9 (3)C18—C11—C12—C130.8 (3)
O2—C1—C2—C3176.30 (18)C11—C12—C13—C140.3 (4)
O1—C1—C2—C7176.8 (2)C12—C13—C14—C190.2 (3)
O2—C1—C2—C73.0 (3)C12—C13—C14—C15179.9 (2)
C7—C2—C3—C41.2 (3)C19—C14—C15—C160.7 (3)
C1—C2—C3—C4178.11 (19)C13—C14—C15—C16179.4 (2)
C2—C3—C4—C50.2 (3)C14—C15—C16—C171.3 (4)
C3—C4—C5—C61.6 (3)C8—N1—C18—C111.6 (3)
C3—C4—C5—S1175.97 (16)C8—N1—C18—C19178.6 (2)
O5—S1—C5—C615.1 (2)C10—C11—C18—N12.5 (3)
O4—S1—C5—C6135.92 (17)C12—C11—C18—N1178.81 (18)
O3—S1—C5—C6103.96 (18)C10—C11—C18—C19177.72 (18)
O5—S1—C5—C4167.31 (17)C12—C11—C18—C191.0 (3)
O4—S1—C5—C446.50 (19)C19—N2—C17—C160.3 (4)
O3—S1—C5—C473.62 (19)C15—C16—C17—N20.8 (4)
C4—C5—C6—C71.6 (3)C17—N2—C19—C140.9 (3)
S1—C5—C6—C7175.90 (15)C17—N2—C19—C18179.6 (2)
C5—C6—C7—C20.2 (3)C15—C14—C19—N20.4 (3)
C3—C2—C7—C61.2 (3)C13—C14—C19—N2179.53 (19)
C1—C2—C7—C6178.08 (17)C15—C14—C19—C18179.95 (18)
C18—N1—C8—C91.0 (3)C13—C14—C19—C180.0 (3)
N1—C8—C9—C102.7 (4)N1—C18—C19—N20.4 (3)
C8—C9—C10—C111.7 (3)C11—C18—C19—N2179.83 (17)
C9—C10—C11—C180.9 (3)N1—C18—C19—C14179.24 (17)
C9—C10—C11—C12179.5 (2)C11—C18—C19—C140.6 (3)
C10—C11—C12—C13177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O10.84 (1)1.96 (1)2.783 (3)166 (3)
O6—H6A···O3i0.85 (1)1.96 (1)2.786 (3)164 (3)
O7—H7B···O60.85 (3)1.83 (3)2.674 (3)170 (4)
O7—H7A···O5ii0.85 (1)1.92 (2)2.731 (3)161 (3)
N1—H1A···O40.83 (1)2.13 (2)2.805 (2)139 (3)
O2—H2A···O7iii0.86 (3)1.74 (1)2.588 (2)171 (3)
Symmetry codes: (i) y, x+1, z1/4; (ii) y, x+2, z1/4; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H11N2+·C7H5O5SC12H9N2+·C7H5O5S·2H2O
Mr384.40418.41
Crystal system, space groupTriclinic, P1Tetragonal, P41
Temperature (K)295295
a, b, c (Å)8.7451 (11), 10.0346 (13), 10.7877 (14)7.1807 (6), 7.1807 (6), 36.171 (3)
α, β, γ (°)95.377 (1), 104.954 (1), 104.047 (2)90, 90, 90
V3)874.82 (19)1865.1 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.220.22
Crystal size (mm)0.31 × 0.24 × 0.220.33 × 0.31 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.935, 0.9530.931, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
4632, 3095, 2534 11629, 4269, 3975
Rint0.0150.021
(sin θ/λ)max1)0.5990.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 0.86 0.036, 0.099, 0.80
No. of reflections30954269
No. of parameters250280
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.350.16, 0.29
Absolute structure?Flack (1983), 2097 Friedel pairs
Absolute structure parameter?0.04 (6)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C121.328 (3)N2—C171.331 (3)
N1—C81.329 (3)N2—C191.335 (3)
C12—N1—C8117.2 (2)C17—N2—C19121.94 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.83 (3)2.004 (14)2.798 (2)160 (3)
O1—H1A···N1i0.86 (3)1.76 (3)2.617 (2)175 (3)
Symmetry code: (i) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
N1—C81.332 (3)N2—C171.319 (3)
N1—C181.356 (3)N2—C191.345 (3)
C8—N1—C18122.93 (19)C17—N2—C19117.0 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O10.844 (10)1.956 (12)2.783 (3)166 (3)
O6—H6A···O3i0.851 (10)1.957 (12)2.786 (3)164 (3)
O7—H7B···O60.85 (3)1.83 (3)2.674 (3)170 (4)
O7—H7A···O5ii0.848 (10)1.915 (15)2.731 (3)161 (3)
N1—H1A···O40.825 (10)2.13 (2)2.805 (2)139 (3)
O2—H2A···O7iii0.86 (3)1.737 (11)2.588 (2)171 (3)
Symmetry codes: (i) y, x+1, z1/4; (ii) y, x+2, z1/4; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds