Download citation
Download citation
link to html
The structure of the title compound consists of distorted B12 icosa­hedra linked by N-B-N chains. The compound crystallizes in the rhombohedral space group R\overline{3}m (No. 166). The unit cell contains four symmetry-independent atom sites, three of which are occupied by boron [in the 18h, 18h (site symmetry m) and 3b (site symmetry \overline{3}m) Wyckoff positions] and one by nitro­gen (in the 6c Wyckoff position, site symmetry 3m). Two of the B atoms form the icosa­hedra, while N atoms link the icosa­hedra together. The main feature of the structure is that the 3b position is occupied by the B atom, which makes the structure different from those of B6O, for which these atom sites are vacant, and B4+xC1-x, for which this position is randomly occupied by both B and C atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107037353/sq3084sup1.cif
Contains datablocks global, phase_1, phase_2, phase_3, phase_4, phase_5, phase_6, p_01, overall

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_1sup2.hkl
Contains datablock phase_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_2sup3.hkl
Contains datablock phase_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_3sup4.hkl
Contains datablock phase_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_4sup5.hkl
Contains datablock phase_4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_5sup6.hkl
Contains datablock phase_5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037353/sq3084phase_6sup7.hkl
Contains datablock phase_6

Comment top

The fortunate combination of lightness, hardness, strength, chemical inertness and high cross section for neutron absorption has suited boron and boron-rich phases (B6O, B4 + xC1-x etc.) to many technological applications (Emin, 1987; McMillan, 2002). Very recently, we have synthesized a new member of this group, boron subnitride `B6N'. From the electron energy loss spectroscopy data, the stoichiometry of the phase has been determined to be B6±1N, and from the X-ray study as B13N2. The phase has a structure similar in some respect to those of α -rhombohedral boron (Decker & Kasper, 1959), B4 + xC1 - x (Kirfel et al., 1979; Aselage et al., 1997) and B6O (Higashi et al., 1991; Aselage et al., 1997). However, the relative line intensities correspond to none of these three structures. The similarity is greatest to B4 + xC1 - x, which has the same unit cell, space group and atom sites as the nitride. Studies of the carbide by X-ray diffraction, Raman spectroscopy and, especially, 13C and 11B nuclear magnetic resonance revealed that a very complicated atomic distribution of carbon all over the lattice takes place via C/B disorder, resulting in C—C—C, B—B—C and C—B—C intericosahedral chains, as well as B11C and B12 icosahedra (Aselage et al., 1997; Tallant et al., 1989; Bullett, 1982; Lundstrom, 1997). In the case of `B6N', our Raman data have supported the suggestion that the `B6N' structure is similar to that of boron carbide, B4 + xC1 - x, but with no evidence of N/B disorder of the type seen in the carbide. Thus, the nitride features N—B—N linkages, but no N—N—N linkages, which would be much less stable than the carbon analogues in any case.

In the present work, the structure of the new boron subnitride B13N2 has been determined by Rietveld refinement of powder diffraction data collected at ambient conditions (Fig. 1). The Bragg lines of the compound have been indexed in the rhombohedral cell, with lattice parameters a = 5.4455 (2) Å and c = 12.2649 (9) Å. In order to check all possibilities of the atom type distribution over symmetry-independent site positions, we have performed a Rietveld refinement of several unit cells of the `B6N' compound. All the cells contained atoms B1 and B2 (18h Wyckoff position), while the 6c and 3b Wyckoff positions were allowed to be occupied by either B or N atoms. Satisfactory refinement was achieved only in the case of the starting unit cell containing two symmetry-independent B atoms of the 18h Wickoff position, one independent N atom in the 6c position, and one B atom in the 3b position (Fig. 2). The site occupancies of the atoms of each crystallographic type are close to unity, so the synthesized phase has the B13N2 stoichiometry.

Related literature top

For related literature, see: Aselage et al. (1997); Bullett (1982); Decker & Kasper (1959); Emin (1987); Franklin (1950, 1951); Higashi et al. (1991); Kirfel et al. (1979); Lundstrom (1997); McMillan (2002); Ploog et al. (1972); Solozhenko & Peun (1997); Tallant et al. (1989).

Experimental top

Boron subnitride, B13N2, was synthesized from the B–BN melt at 5 GPa using the multianvil X-ray system MAX80 at beamline F2.1, HASYLAB-DESY. The experimental setup has been described elsewhere (Solozhenko & Peun, 1997). The starting materials, β -rhombohedral boron (β -rh B) and hexagonal boron nitride (hBN), were mixed in the 5:1 molar ratio that corresponds to the B6N stoichiometry, compressed to 5 GPa, heated to 2500 K and then quenched down to ambient conditions. Since the B13N2 phase crystallizes by peritectic reaction, the title compound has always been found in a mixture with β-rh boron, an I-tetragonal boron-like phase (Ploog et al., 1972) and hBN. According to Rietveld refinement, the sample contains about 22 vol% of B13N2.

Refinement top

Rietveld analysis of the powder diffraction pattern that contains six phases (five with already established structures and one new) made for a complicated refinement. The 2θ interval for the profile fitting (Fig. 1) was chosen so that the main lines of boron subnitride B13N2 have not been overlapped by the lines of other phases. The profile fitting of all the phases except B13N2 was performed employing both LeBail and Rietveld procedures using the literature data on the structures of corresponding phases.

Six phases were employed for profile fitting: B13N2 (phase 1), `B50N2' (phase 2), hBN (phase 3), β-rhombohedral boron (phase 4), boric acid H3BO3 (phase 5) and phase 6, which has the same structure as phase 3 but slightly different cell parameter c. Phase 6 was added to adjust the profile asymmetry of the 002 line due to a slight nonhomogeneity in the degree of ordering of hBN (Franklin, 1950, 1951). This has improved the fitting of the most intensive line of hBN (24–26° 2θ) and has not influenced fitting out of this range. The only line of phase 5 belongs to this 2θ range and does not affect the structure refinement of the principal phase. Phases 2 and 4 have some lines overlapping with the lines of B13N2, but these lines are noticeably narrower than those of phase 1; this difference has much facilitated the intensity extraction.

The sample contains approximately 22 vol% B13N2, 37 vol% hBN and about 41 vol% boron. The boron content (both β-rhombohedral boron and I-t boron-like phase) was estimated using the values of phase fractions for B13N2 and hBN and the total composition of the starting mixture (5B+BN). A very small amount of boric acid (0.001 vol%) was also observed. Its formation may be attributed to hBN hydrolysis that cannot be avoided in the high-pressure experiments.

Computing details top

Data collection: program (reference)? for phase_4. Cell refinement: program (reference)? for phase_4. Data reduction: program (reference)? for phase_4. Program(s) used to solve structure: program (reference)? for phase_4. Program(s) used to refine structure: GSAS for phase_4. Molecular graphics: program (reference)? for phase_4. Software used to prepare material for publication: program (reference)? for phase_4.

Figures top
[Figure 1] Fig. 1. Rietveld full profile refinement of the X-ray powder diffraction pattern of B13N2 boron subnitride.
[Figure 2] Fig. 2. The unit cell of B13N2. The unit cell contains four symmetry- independent atom sites, three of which are occupied by boron [i.e. B1, B2 and B4 in the 18h, 18h and 3b Wyckoff positions, respectively] and one by nitrogen (N3 in the 6c Wyckoff position). [Symmetry codes: (i) y - x + 1/3, - x + 2/3, z + 2/3; (-i) x - y + 2/3, x + 1/3, - z + 1/3; (ii) x + 2/3, y + 1/3, z + 1/3; (-ii) -x + 1/3, -y + 2/3, -z + 2/3; (iii) x + 1/3, x - y + 2/3, z + 2/3; (-iii) -x + 2/3, y - x + 1/3, - z + 1/3.]
(phase_1) boron nitride top
Crystal data top
B13N2Z = 3
Mr = 168.54F(000) = 235
Trigonal, R3mDx = 2.666 Mg m3
Hall symbol: -R 3 2"Cu Kα radiation, λ = 1.540598 Å
a = 5.4455 (2) ÅT = 297 K
c = 12.2649 (9) Åblack
V = 314.97 (4) Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
B13N2V = 314.97 (4) Å3
Mr = 168.54Z = 3
Trigonal, R3mCu Kα radiation, λ = 1.540598 Å
a = 5.4455 (2) ÅT = 297 K
c = 12.2649 (9) Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Special details top

Geometry. N—B—N chains

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.1725 (14)0.8275 (14)0.0371 (13)0.025*
B20.1198 (7)0.8803 (7)0.8834 (8)0.025*
N30.00.00.3744 (13)0.025*
B40.00.00.50.025*
Geometric parameters (Å, º) top
B1—B1i1.865 (17)N3—B1xi1.517 (12)
B1—B1ii1.865 (17)N3—B1xii1.517 (12)
B1—B2iii1.950 (9)N3—B1xiii1.517 (12)
B1—B2iv1.742 (14)N3—B41.541 (16)
B1—B2v1.743 (14)B4—B1xiv2.197 (13)
B1—N3vi1.517 (12)B4—B1xv2.197 (13)
B1—B4vi2.197 (13)B4—B1xvi2.197 (13)
B2—B1vii1.950 (9)B4—B1xi2.197 (13)
B2—B1iv1.743 (14)B4—B1xii2.197 (13)
B2—B1v1.742 (14)B4—B1xiii2.197 (13)
B2—B2viii1.956 (12)B4—N31.541 (16)
B2—B2ix1.956 (12)B4—N3xvii1.541 (16)
B2—B2x1.514 (11)
B1i—B1—B1ii98.2 (12)B1vii—B2—B2x129.4 (10)
B1i—B1—B2iii54.3 (8)B1iv—B2—B1v107.9 (12)
B1i—B1—B2iv65.4 (5)B1iv—B2—B2viii104.3 (3)
B1i—B1—B2v115.5 (6)B1iv—B2—B2ix55.9 (5)
B1i—B1—N3vi116.8 (8)B1iv—B2—B2x124.0 (4)
B1ii—B1—B2iii54.3 (8)B1v—B2—B2viii55.9 (5)
B1ii—B1—B2iv115.5 (6)B1v—B2—B2ix104.3 (3)
B1ii—B1—B2v65.4 (5)B1v—B2—B2x124.1 (4)
B1ii—B1—N3vi116.8 (8)B2viii—B2—B2ix60.0
B2iii—B1—B2iv112.7 (7)B2viii—B2—B2x120.5 (6)
B2iii—B1—B2v112.7 (7)B2ix—B2—B2x120.4 (6)
B2iii—B1—N3vi106.6 (15)B1xi—N3—B1xii119.90 (13)
B2iv—B1—B2v68.3 (10)B1xi—N3—B1xiii119.90 (13)
B2iv—B1—N3vi126.3 (9)B1xi—N3—B491.8 (11)
B2v—B1—N3vi126.3 (9)B1xii—N3—B1xiii119.90 (13)
B1vii—B2—B1iv60.3 (7)B1xii—N3—B491.8 (11)
B1vii—B2—B1v60.3 (7)B1xiii—N3—B491.8 (11)
B1vii—B2—B2viii102.8 (4)N3—B4—N3xvii180.0
B1vii—B2—B2ix102.8 (4)
Symmetry codes: (i) y1, yx, z; (ii) xy+1, x+1, z; (iii) x, y, z1; (iv) y1, yx, z+1; (v) xy+1, x+1, z+1; (vi) x+1/3, y+2/3, z1/3; (vii) x, y, z+1; (viii) y+1, xy+2, z; (ix) yx1, x+1, z; (x) x1/3, y+1/3, z+1/3; (xi) x1/3, y2/3, z+1/3; (xii) y+2/3, xy+1/3, z+1/3; (xiii) yx1/3, x+1/3, z+1/3; (xiv) x1/3, y2/3, z2/3; (xv) y4/3, yx5/3, z2/3; (xvi) xy1/3, x5/3, z2/3; (xvii) x, y, z+1.
(phase_2) boron nitride top
Crystal data top
BNxZ = 50
Mr = 10.81F(000) = 240
Tetragonal, P4n2Dx = 2.21 Mg m3
Hall symbol: P -4 -2nCu Kα radiation, λ = 1.540598 Å
a = 8.7979 (18) ÅT = 297 K
c = 5.037 (3) Åblack
V = 389.91 Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
BNxV = 389.91 Å3
Mr = 10.81Z = 50
Tetragonal, P4n2Cu Kα radiation, λ = 1.540598 Å
a = 8.7979 (18) ÅT = 297 K
c = 5.037 (3) Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B30.3280.0950.3950.025*
B40.0950.3280.3950.025*
B50.2230.0780.1050.025*
B60.0780.2230.1050.025*
B70.1270.1270.3950.025*
B80.250.250.0780.025*
Geometric parameters (Å, º) top
B1—B11.865 (17)N3—B11.517 (12)
B1—B11.865 (17)N3—B11.517 (12)
B1—B2i1.950 (9)N3—B11.517 (12)
B1—B21.742 (14)N3—B41.541 (16)
B1—B21.743 (14)B4—B12.197 (13)
B1—N31.517 (12)B4—B12.197 (13)
B1—B42.197 (13)B4—B12.197 (13)
B2—B1ii1.950 (9)B4—B12.197 (13)
B2—B11.743 (14)B4—B12.197 (13)
B2—B11.742 (14)B4—B12.197 (13)
B2—B2iii1.956 (12)B4—N31.541 (16)
B2—B2iv1.956 (12)B4—N31.541 (16)
B2—B21.514 (11)
B1—B1—B198.2 (12)B1ii—B2—B2129.4 (10)
B1—B1—B2i54.3 (8)B1—B2—B1107.9 (12)
B1—B1—B265.4 (5)B1—B2—B2iii104.3 (3)
B1—B1—B2115.5 (6)B1—B2—B2iv55.9 (5)
B1—B1—N3116.8 (8)B1—B2—B2124.0 (4)
B1—B1—B2i54.3 (8)B1—B2—B2iii55.9 (5)
B1—B1—B2115.5 (6)B1—B2—B2iv104.3 (3)
B1—B1—B265.4 (5)B1—B2—B2124.1 (4)
B1—B1—N3116.8 (8)B2iii—B2—B2iv60.0
B2i—B1—B2112.7 (7)B2iii—B2—B2120.5 (6)
B2i—B1—B2112.7 (7)B2iv—B2—B2120.4 (6)
B2i—B1—N3106.6 (15)B1—N3—B1119.90 (13)
B2—B1—B268.3 (10)B1—N3—B1119.90 (13)
B2—B1—N3126.3 (9)B1—N3—B491.8 (11)
B2—B1—N3126.3 (9)B1—N3—B1119.90 (13)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B2iii102.8 (4)N3—B4—N3180.0
B1ii—B2—B2iv102.8 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) y+1, x+2, z; (iv) x1, y+1, z.
(phase_3) boron nitride top
Crystal data top
BNZ = 2
Mr = 24.82F(000) = 24
Hexagonal, P6m2Dx = 2.298 Mg m3
Hall symbol: P -6 2Cu Kα radiation, λ = 1.540598 Å
a = 2.49824 (8) ÅT = 297 K
c = 6.6357 (2) Åblack
V = 35.87 (1) Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
BNV = 35.87 (1) Å3
Mr = 24.82Z = 2
Hexagonal, P6m2Cu Kα radiation, λ = 1.540598 Å
a = 2.49824 (8) ÅT = 297 K
c = 6.6357 (2) Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.00.00.50.025*
B20.33330.66670.00.025*
N30.00.00.00.025*
N40.33330.66670.50.025*
Geometric parameters (Å, º) top
B1—B11.865 (17)N3—B11.517 (12)
B1—B11.865 (17)N3—B11.517 (12)
B1—B2i1.950 (9)N3—B11.517 (12)
B1—B21.742 (14)N3—B41.541 (16)
B1—B21.743 (14)B4—B12.197 (13)
B1—N31.517 (12)B4—B12.197 (13)
B1—B42.197 (13)B4—B12.197 (13)
B2—B1ii1.950 (9)B4—B12.197 (13)
B2—B11.743 (14)B4—B12.197 (13)
B2—B11.742 (14)B4—B12.197 (13)
B2—B2iii1.956 (12)B4—N31.541 (16)
B2—B2iv1.956 (12)B4—N31.541 (16)
B2—B21.514 (11)
B1—B1—B198.2 (12)B1ii—B2—B2129.4 (10)
B1—B1—B2i54.3 (8)B1—B2—B1107.9 (12)
B1—B1—B265.4 (5)B1—B2—B2iii104.3 (3)
B1—B1—B2115.5 (6)B1—B2—B2iv55.9 (5)
B1—B1—N3116.8 (8)B1—B2—B2124.0 (4)
B1—B1—B2i54.3 (8)B1—B2—B2iii55.9 (5)
B1—B1—B2115.5 (6)B1—B2—B2iv104.3 (3)
B1—B1—B265.4 (5)B1—B2—B2124.1 (4)
B1—B1—N3116.8 (8)B2iii—B2—B2iv60.0
B2i—B1—B2112.7 (7)B2iii—B2—B2120.5 (6)
B2i—B1—B2112.7 (7)B2iv—B2—B2120.4 (6)
B2i—B1—N3106.6 (15)B1—N3—B1119.90 (13)
B2—B1—B268.3 (10)B1—N3—B1119.90 (13)
B2—B1—N3126.3 (9)B1—N3—B491.8 (11)
B2—B1—N3126.3 (9)B1—N3—B1119.90 (13)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B2iii102.8 (4)N3—B4—N3180.0
B1ii—B2—B2iv102.8 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) yx+1, x+2, z; (iv) y1, xy+1, z.
(phase_4) boron top
Crystal data top
BZ = 105
Mr = 10.81F(000) = 520
Trigonal, R3mrDx = 2.29 Mg m3
Hall symbol: -P 3 2Cu Kα radiation, λ = 1.540598 Å
a = 10.1398 (3) ÅT = 297 K
c = 10.1398 Åblack
V = 823.05 Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
BV = 823.05 Å3
Mr = 10.81Z = 105
Trigonal, R3mrCu Kα radiation, λ = 1.540598 Å
a = 10.1398 (3) ÅT = 297 K
c = 10.1398 Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.00250.00250.1680.025*
B20.10080.10080.83740.025*
B30.99330.99330.66980.025*
B40.10320.10320.49210.025*
B50.177770.34730.00330.025*
B60.16730.55210.89210.025*
B70.19830.19830.68740.025*
B80.37650.68260.20240.025*
B90.36220.58110.09760.025*
B100.19910.19910.50610.025*
B110.38730.38730.5690.025*
B120.48950.48950.21780.025*
B130.38430.38430.21310.025*
B140.38480.38480.38480.025*
B150.50.50.50.025*
Geometric parameters (Å, º) top
B1—B1i1.865 (17)N3—B11.517 (12)
B1—B1ii1.865 (17)N3—B11.517 (12)
B1—B2iii1.950 (9)N3—B11.517 (12)
B1—B2iv1.742 (14)N3—B41.541 (16)
B1—B2v1.743 (14)B4—B12.197 (13)
B1—N31.517 (12)B4—B12.197 (13)
B1—B42.197 (13)B4—B12.197 (13)
B2—B1vi1.950 (9)B4—B12.197 (13)
B2—B1iv1.743 (14)B4—B12.197 (13)
B2—B1v1.742 (14)B4—B12.197 (13)
B2—B2vii1.956 (12)B4—N31.541 (16)
B2—B2viii1.956 (12)B4—N3ix1.541 (16)
B2—B21.514 (11)
B1i—B1—B1ii98.2 (12)B1vi—B2—B2129.4 (10)
B1i—B1—B2iii54.3 (8)B1iv—B2—B1v107.9 (12)
B1i—B1—B2iv65.4 (5)B1iv—B2—B2vii104.3 (3)
B1i—B1—B2v115.5 (6)B1iv—B2—B2viii55.9 (5)
B1i—B1—N3116.8 (8)B1iv—B2—B2124.0 (4)
B1ii—B1—B2iii54.3 (8)B1v—B2—B2vii55.9 (5)
B1ii—B1—B2iv115.5 (6)B1v—B2—B2viii104.3 (3)
B1ii—B1—B2v65.4 (5)B1v—B2—B2124.1 (4)
B1ii—B1—N3116.8 (8)B2vii—B2—B2viii60.0
B2iii—B1—B2iv112.7 (7)B2vii—B2—B2120.5 (6)
B2iii—B1—B2v112.7 (7)B2viii—B2—B2120.4 (6)
B2iii—B1—N3106.6 (15)B1—N3—B1119.90 (13)
B2iv—B1—B2v68.3 (10)B1—N3—B1119.90 (13)
B2iv—B1—N3126.3 (9)B1—N3—B491.8 (11)
B2v—B1—N3126.3 (9)B1—N3—B1119.90 (13)
B1vi—B2—B1iv60.3 (7)B1—N3—B491.8 (11)
B1vi—B2—B1v60.3 (7)B1—N3—B491.8 (11)
B1vi—B2—B2vii102.8 (4)N3—B4—N3ix180.0
B1vi—B2—B2viii102.8 (4)
Symmetry codes: (i) z1, x, y; (ii) y+1, z+1, x; (iii) x, y, z1; (iv) z1, x, y+1; (v) y+1, z+1, x+1; (vi) x, y, z+1; (vii) z+1, x+2, y; (viii) y1, z+1, x; (ix) x, y, z+1.
(phase_5) boric acid top
Crystal data top
H3BO3Z = 6
Mr = 58.81F(000) = 174
Trigonal, P32Dx = 1.42 Mg m3
Hall symbol: P 32Cu Kα radiation, λ = 1.540598 Å
a = 7.0453 ÅT = 297 K
c = 9.60 (1) Åblack
V = 412.67 Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
H3BO3V = 412.67 Å3
Mr = 58.81Z = 6
Trigonal, P32Cu Kα radiation, λ = 1.540598 Å
a = 7.0453 ÅT = 297 K
c = 9.60 (1) Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.18370.64030.28490.025*
B20.5180.30690.29640.025*
O30.06210.73930.28050.025*
O40.08640.41950.28080.025*
O50.4090.7650.28690.025*
O60.64370.21030.29290.025*
O70.2950.18320.29980.025*
O80.61360.52940.29040.025*
Geometric parameters (Å, º) top
B1—B11.865 (17)N3—B11.517 (12)
B1—B11.865 (17)N3—B11.517 (12)
B1—B2i1.950 (9)N3—B11.517 (12)
B1—B21.742 (14)N3—B41.541 (16)
B1—B21.743 (14)B4—B12.197 (13)
B1—N31.517 (12)B4—B12.197 (13)
B1—B42.197 (13)B4—B12.197 (13)
B2—B1ii1.950 (9)B4—B12.197 (13)
B2—B11.743 (14)B4—B12.197 (13)
B2—B11.742 (14)B4—B12.197 (13)
B2—B2iii1.956 (12)B4—N31.541 (16)
B2—B2iv1.956 (12)B4—N31.541 (16)
B2—B21.514 (11)
B1—B1—B198.2 (12)B1ii—B2—B2129.4 (10)
B1—B1—B2i54.3 (8)B1—B2—B1107.9 (12)
B1—B1—B265.4 (5)B1—B2—B2iii104.3 (3)
B1—B1—B2115.5 (6)B1—B2—B2iv55.9 (5)
B1—B1—N3116.8 (8)B1—B2—B2124.0 (4)
B1—B1—B2i54.3 (8)B1—B2—B2iii55.9 (5)
B1—B1—B2115.5 (6)B1—B2—B2iv104.3 (3)
B1—B1—B265.4 (5)B1—B2—B2124.1 (4)
B1—B1—N3116.8 (8)B2iii—B2—B2iv60.0
B2i—B1—B2112.7 (7)B2iii—B2—B2120.5 (6)
B2i—B1—B2112.7 (7)B2iv—B2—B2120.4 (6)
B2i—B1—N3106.6 (15)B1—N3—B1119.90 (13)
B2—B1—B268.3 (10)B1—N3—B1119.90 (13)
B2—B1—N3126.3 (9)B1—N3—B491.8 (11)
B2—B1—N3126.3 (9)B1—N3—B1119.90 (13)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B2iii102.8 (4)N3—B4—N3180.0
B1ii—B2—B2iv102.8 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) y+1, xy+2, z+2/3; (iv) yx1, x+1, z+1/3.
(phase_6) boron nitride top
Crystal data top
BNZ = 2
Mr = 24.82F(000) = 24
Hexagonal, P6m2Dx = 2.236 Mg m3
Hall symbol: P -6 2Cu Kα radiation, λ = 1.540598 Å
a = 2.54 ÅT = 297 K
c = 6.598 (3) Åblack
V = 36.86 Å3flat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Specimen mounting: Si syngle crystal (111)
Radiation source: copper x-ray tube, CuKαData collection mode: reflection
Yes monochromatorScan method: Stationary detector
Refinement top
Least-squares matrix: fullExcluded region(s): unavoidable non-uniform strain render impossible to adjust the profile function parameters in a wide angle range.
Rp = 0.100Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = 95.838 #3(GW) = 7.893 #4(LX) = 1.057 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -0.9606 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 8.000 #4(LX) = 5.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = 20.000 #3(GW) = 30.000 #4(LX) = 0.000 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 5.000 #2(GV) = -5.000 #3(GW) = 12.000 #4(LX) = 2.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = -1.7500 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -2.000 #3(GW) = 786.199 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 2.000 #2(GV) = -5.000 #3(GW) = 591.058 #4(LX) = 1.000 #5(LY) = 1.000 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761Background function: GSAS Background function number 2 with 2 terms. Cosine Fourier series 1: 305.650 2: 196.641
5000 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.65811 h= 1.000 k= 0.000 l= 0.000, March-Dollase AXIS 1 Ratio= 1.00000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000, March-Dollase AXIS 1 Ratio= 0.10000 h= 0.000 k= 0.000 l= 1.000
Crystal data top
BNV = 36.86 Å3
Mr = 24.82Z = 2
Hexagonal, P6m2Cu Kα radiation, λ = 1.540598 Å
a = 2.54 ÅT = 297 K
c = 6.598 (3) Åflat_sheet, 0.2 × 0.2 mm
Data collection top
G3000 TEXT Inel
diffractometer
Data collection mode: reflection
Specimen mounting: Si syngle crystal (111)Scan method: Stationary detector
Refinement top
Rp = 0.1005000 data points
Rwp = 0.13614 parameters
Rexp = 0.0340 restraints
R(F2) = 0.02645(Δ/σ)max = 0.21
χ2 = 15.761
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.00.00.50.025*
B20.33330.66670.00.025*
N30.00.00.00.025*
N40.33330.66670.50.025*
Geometric parameters (Å, º) top
B1—B11.865 (17)N3—B11.517 (12)
B1—B11.865 (17)N3—B11.517 (12)
B1—B2i1.950 (9)N3—B11.517 (12)
B1—B21.742 (14)N3—B41.541 (16)
B1—B21.743 (14)B4—B12.197 (13)
B1—N31.517 (12)B4—B12.197 (13)
B1—B42.197 (13)B4—B12.197 (13)
B2—B1ii1.950 (9)B4—B12.197 (13)
B2—B11.743 (14)B4—B12.197 (13)
B2—B11.742 (14)B4—B12.197 (13)
B2—B2iii1.956 (12)B4—N31.541 (16)
B2—B2iv1.956 (12)B4—N31.541 (16)
B2—B21.514 (11)
B1—B1—B198.2 (12)B1ii—B2—B2129.4 (10)
B1—B1—B2i54.3 (8)B1—B2—B1107.9 (12)
B1—B1—B265.4 (5)B1—B2—B2iii104.3 (3)
B1—B1—B2115.5 (6)B1—B2—B2iv55.9 (5)
B1—B1—N3116.8 (8)B1—B2—B2124.0 (4)
B1—B1—B2i54.3 (8)B1—B2—B2iii55.9 (5)
B1—B1—B2115.5 (6)B1—B2—B2iv104.3 (3)
B1—B1—B265.4 (5)B1—B2—B2124.1 (4)
B1—B1—N3116.8 (8)B2iii—B2—B2iv60.0
B2i—B1—B2112.7 (7)B2iii—B2—B2120.5 (6)
B2i—B1—B2112.7 (7)B2iv—B2—B2120.4 (6)
B2i—B1—N3106.6 (15)B1—N3—B1119.90 (13)
B2—B1—B268.3 (10)B1—N3—B1119.90 (13)
B2—B1—N3126.3 (9)B1—N3—B491.8 (11)
B2—B1—N3126.3 (9)B1—N3—B1119.90 (13)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B160.3 (7)B1—N3—B491.8 (11)
B1ii—B2—B2iii102.8 (4)N3—B4—N3180.0
B1ii—B2—B2iv102.8 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) yx+1, x+2, z; (iv) y1, xy+1, z.

Experimental details

(phase_1)(phase_2)(phase_3)(phase_4)
Crystal data
Chemical formulaB13N2BNxBNB
Mr168.5410.8124.8210.81
Crystal system, space groupTrigonal, R3mTetragonal, P4n2Hexagonal, P6m2Trigonal, R3mr
Temperature (K)297297297297
a, b, c (Å)5.4455 (2), 5.44546, 12.2649 (9)8.7979 (18), 8.7979, 5.037 (3)2.49824 (8), 2.49824, 6.6357 (2)10.1398 (3), 10.1398, 10.1398
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 12065.351 (3), 65.3509, 65.3509
V3)314.97 (4)389.9135.87 (1)823.05
Z3502105
Radiation typeCu Kα, λ = 1.540598 ÅCu Kα, λ = 1.540598 ÅCu Kα, λ = 1.540598 ÅCu Kα, λ = 1.540598 Å
Specimen shape, size (mm)Flat_sheet, 0.2 × 0.2Flat_sheet, 0.2 × 0.2Flat_sheet, 0.2 × 0.2Flat_sheet, 0.2 × 0.2
Data collection
DiffractometerG3000 TEXT Inel
diffractometer
G3000 TEXT Inel
diffractometer
G3000 TEXT Inel
diffractometer
G3000 TEXT Inel
diffractometer
Specimen mountingSi syngle crystal (111)Si syngle crystal (111)Si syngle crystal (111)Si syngle crystal (111)
Data collection modeReflectionReflectionReflectionReflection
Scan methodStationary detectorStationary detectorStationary detectorStationary detector
2θ values (°)2θfixed = ?2θfixed = ?2θfixed = ?2θfixed = ?
Refinement
R factors and goodness of fitRp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761Rp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761Rp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761Rp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761
No. of data points5000500050005000
No. of parameters14141414
(Δ/σ)max0.210.210.210.21


(phase_5)(phase_6)
Crystal data
Chemical formulaH3BO3BN
Mr58.8124.82
Crystal system, space groupTrigonal, P32Hexagonal, P6m2
Temperature (K)297297
a, b, c (Å)7.0453, 7.0453, 9.60 (1)2.54, 2.54, 6.598 (3)
α, β, γ (°)90, 90, 12090, 90, 120
V3)412.6736.86
Z62
Radiation typeCu Kα, λ = 1.540598 ÅCu Kα, λ = 1.540598 Å
Specimen shape, size (mm)Flat_sheet, 0.2 × 0.2Flat_sheet, 0.2 × 0.2
Data collection
DiffractometerG3000 TEXT Inel
diffractometer
G3000 TEXT Inel
diffractometer
Specimen mountingSi syngle crystal (111)Si syngle crystal (111)
Data collection modeReflectionReflection
Scan methodStationary detectorStationary detector
2θ values (°)2θfixed = ?2θfixed = ?
Refinement
R factors and goodness of fitRp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761Rp = 0.100, Rwp = 0.136, Rexp = 0.034, R(F2) = 0.02645, χ2 = 15.761
No. of data points50005000
No. of parameters1414
(Δ/σ)max0.210.21

Computer programs: program (reference)?, GSAS.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds